Yale Assistant Director Is Appointed As Head Of Steinberg Gallery

Gerald D. Bolas, assistant to the director, Yale University Art Gallery, has been appointed director of the Steinberg Gallery of Art, Provost Merle Kling announced last week. The appointment is effective Dec. 1.

Bolas has been associated since 1976 with the Yale University Art Gallery where he was also a National Endowment for the Humanities Fellow. His responsibilities included conservation of paintings and design, exhibit installation for Greek vases and color photography and reinstallation of the gallery's African collection.

Prior to his association with Yale's Art Gallery, he served as a teaching assistant with the University of California, Santa Barbara, where he was responsible for weekly presentations of prehistoric to contemporary Western art history. He also organized and guided museum field trips.

Bolas has a bachelor's degree in English and a master's degree in art history from the University of California, Santa Barbara.

A member of the College Art Association of America and the American Association of Museums, Bolas has lectured on various subjects ranging from contemporary art to Greek vases. His publications include A Medieval Miscellany: Romanesque and Early Gothic Metalwork and Drawings by Seventeenth Century Italian Masters from the Collections of Janos Scholz.

Kling said that the search committee was faced with a tremendous responsibility in finding a director who could handle the challenging requirements of the Steinberg Art Gallery. The committee consisted of the following: Constantine E. Michaelides, dean of the School of Architecture; Leon A. Gottfried, dean of the Faculty of Arts and Sciences; Hylarie McMahon, associate professor of art; Mark S. Well, associate professor of art and archaeology, and Emily R. Pulitzer, a prominent civic leader and patron of the arts.

$5.7 Million Awarded By NIH To WU For Computer Research

The contribution of computer technology to the broad field of medicine, including diagnosis, treatment and research, was recognized once again today with the granting of an additional $5,773,000 to the Washington University Computer Laboratories (WUCL). The award, from the Division of Research Resources of the National Institutes of Health, was announced jointly this morning by Jerome R. Cox, Jr., of Washington University and Senator Thomas F. Eagleton, Missouri's senior senator.

The allocation is a continuation of support from the NIH, which has contributed some $13 million since the mid-sixties to the WUCL complex and/or its components.

In a message to Cox, one of only a few scientific pioneers in this country who foresaw the benefits of mating computers to medicine, Senator Eagleton said: "I am happy to see the grant renewed at Washington University for another four years. This continuation of funding is indicative of the fine work Washington University is doing."

This new, four-year grant will support a project entitled "A Resource for Biomedical Computing" by the WUCL, a federation of two laboratories and two new special working groups. This comprehensive program in biomedical computing will continue a biotechnology resource that serves the Washington University Medical Center, biomedical engineering and the national biomedical community. The components of the WUCL are: Computer Systems Laboratory (CSL) headed by Charles E. Molnar, director; Biomedical Computer Laboratory (BCL) headed by Dr. Lewis J. Thomas, Jr., M.D.; Information Systems Group with Cox as leader; and Systems Design Aid Groups (SDAG) with Donald F. Wann as leader.

(continued on page 2)
$5.7 Million Awarded By NIH To WU

(continued from page 1)

These key personnel all have academic appointments at the Medical School or on the Hilltop Campus, with Cox, professor and chairman of the department of computer science and founder of BCL, as chief investigator.

The origins of the present-day WUCL federation date back to April, 1964, when Cox founded the Biomedical Computer Laboratory (BCL) to apply computer technology to biology and medicine. Only a few months later, in June, Wesley A. Clark and a key group of computer scientists and technicians moved from the Massachusetts Institute of Technology (MIT) to St. Louis to form a sister organization now known as the Computer Systems Laboratory (CSL).

Today, 13 years later, the Washington University Computer Laboratories is collectively one of the oldest and largest such centers in this country. Undoubtedly, it was this group's ability to realize the potential need for small, manageable computers tailored for specific needs that enabled it to establish a reputation as a leader in biomedical computing.

An important factor in its success, Cox has observed, is the group's ability "to match technology to the problem. The biomedical scientist and the computer scientist must both make an intellectual investment in the other's field for effective communication to take place."

From the beginning, the labs established strong ties with most of the departments at the University's School of Medicine, developed a vigorous biomedical engineering program with the School of Engineering, and completed a variety of biomedical computing projects. Nearly all of these major projects Cox has pointed out, "have had substantial impact on the national biomedical community."

The first mini-computer introduced to medicine was known as LINC (Laboratory Instrument Computers) and have become, according to Cox, "the model for a generation of mini-computer applications in medicine." Invented by Molnar and Clark while still at MIT, it was developed and perfected in St. Louis at WUCL. Explaining the success of the LINC recently, Molnar said, "One of the novel things about the project was that it provided biological researchers with simple, small computers which they could use as tools. We decided we had to make them small, inexpensive and easy enough to understand in order that the researchers could manage them themselves without having to depend on computer professionals."

The design of the LINC was not an easy task with the result that when the Computer Systems Laboratory set up shop in St. Louis, it proceeded, according to Molnar, "to develop a set of computer building blocks. Called macromodules, these components (each about the size of a cigarette carton) could be put together, stuck into a frame and interconnected with cables. The general ground rules were that anything that could be plugged together in a way that made logical sense should work," Molnar recalled.

Of this accomplishment, Molnar said, "We are the only group whose activities have spanned the entire range from developing theory to how to modularize systems and how to handle their intercommunication all the way up to building modules and using them to make systems that did work." Inevitably, the macromodules earned the nickname in some circles of "electronic erector sets."

WUCL has made important and widely recognized contributions to the advancement of medical science since its inception. Radiation Treatment Planning and Computerized Axial Tomography (CAT Scanning) are two of the systems it has developed through basic and applied research.

Recently, scientists at Washington University have developed what is called Positron Emission Transaxial Tomography (PETT) as a computerized tool for diagnosis. The original idea was developed by Michel M. Ter-Pogossian, professor of radiation science in radiology. Ter-Pogossian, his staff in the division of radiation science, and researchers at BCL devised a technique which involves administering to the patient (usually by intravenous injection) a selected metabolic substance labelled with a positron-emitting radionuclide. Popularly known as positron tracers, these substances emit photons traveling in straight lines in opposite directions. Their distribution in time and space can be followed by means of images provided by the latest model, PETT IV. These images, can, by mathematical computations, enable medical researchers to measure regional metabolic processes. The newly designed PETT IV was built for the cardiology division at the University's Medical School, and is destined for the cardiac care unit, where it will be used to assess damage done by heart attacks and in the study of the effects of therapy on such patients.

Research in tomography as well as in many other fields are ongoing projects at WUCL. Recently, computer drawn pictures of molecules have become important to the X-ray crystallographic community. The MMS-X (Molecular Modeling System) is a combination of a minicomputer with special electronics for control, coordinate transformation and line-drawing. It is a system devised as a means for displaying rather elaborate molecular structures on what is essentially a TV screen in order that one can form a mental image of what these structures look like in three dimensions. Garland Marshall, professor of physiology and biophysics at the University's Medical School, who participates

(continued on page 3)
Women's Society Serves Up a Touch of Home With Study Munchies and Birthday Cakes

If parents of college-age kids are afraid that their children away from home will not be remembered on their birthdays or will starve during exam time, they need not fret anymore. The WU Women's Society has taken care of the problem.

Last September, the Society began a student hospitality service to provide birthday cakes, care packages and survival kits for WU students. Parents order what they want and specify how much they want to spend, and the Women's Society does the rest. The care packages and survival kits, popular during exam time, are filled with such delights as cheese and crackers, candies, nuts and quick protein mixes from the Society's shop, the Uncommon Market in Stix International House. Most of these gifts average about $10.

As a result of its commercial enterprises, the Society is able to provide a two-year, full-tuition scholarship for a St. Louis community college student entering WU. The total scholarship is $8000.

Co-ED VOLLEYBALL intramural teams of students, faculty, staff and spouses are forming for tournament play on Monday and Wednesday nights, beginning January 30, in the Women's Building Gym. Entry forms, which will include team roster, captain and team name, are available in the Women's Intramural Office in the Women's Building. For further information, call Lynn Imergoot at Ext. 5204.

THE MISSOURI ASSOCIATION FOR AUTISTIC CITIZENS (MAY-DAY) will hold an all-day workshop on autism Saturday, Dec. 3, in Umbrath Lounge on campus. Workshop observers will learn about autism from professionals, parents, researchers and citizen advocates. Speakers will include Lois Blackwell, director of the Judevine Center. Registration is $3 and begins at 8 a.m.
April 2-8

FRIDAY, DECEMBER 2

SATURDAY, DECEMBER 3
8 a.m. Missouri Association for Autistic Citizens (MAYDAY) All-day Conference. Umrath Lounge. Registration $3.

12 noon. WU Woman's Club Luncheon. WU student Kathy Whitaker will perform on her dulcimer. Swiss Inn, 2401 S. Brentwood. Admission $5.80. For reservations call Alice Yawitz, 968-2785.

SUNDAY, DECEMBER 4

MONDAY, DECEMBER 5
4 p.m. Department of Psychology Colloquium, "Suicide and Parasuicide: Toward a Quantitative Model," Karl Wilson, WU asst. prof. of psychology, 102 Eads.

TUESDAY, DECEMBER 6

8:30 p.m. School of Architecture Tuesday Night Lecture Series, "Wrapped Reichtag Project for Berlin," Christo, Bulgarian artist who erected the much publicized "Running Fence" in California last year. Steinberg Auditorium.

WEDNESDAY, DECEMBER 7

4 p.m. Department of Music Lecture, "Western Influences on Non-Western Music in the 20th Century," Bruno Nettl, prof. of ethnomusicology, U. of Ill., Champaign. Tietjens Rehearsal Hall.

THURSDAY, DECEMBER 8

2:30 p.m. Department of Mechanical Engineering Seminar, "The Search for the Missing Mode," David A. Peters, WU assoc. prof. of mechanical engineering. 100 Capples II.

4 p.m. Department of Chemistry Seminar, "The Molecular Structure of Paramyosin from Clams and Worms," Alfred M. Holitzer, WU prof. of chemistry. 311 McMillen Lab.

8 p.m. Department of English, Poetry and Fiction Reading Series, John Irving, novelist, reading from his works.Hurst Lounge, Duncker Hall.

PERFORMING ARTS
FRIDAY, DECEMBER 2
8 p.m. Edison Theatre Dance Series, with the Solomon Company/Dance. Edison Theatre. Admission $4.80; $3.75 for students not from WU, and WU faculty and staff; $2 for WU students.

9:30 p.m. and 11 a.m. Newman Chapel Community Masses. Newman Chapel, 6352 Forsyth.

MONDAY, DECEMBER 5
4 p.m. Department of Psychology Colloquium, "Suicide and Parasuicide: Toward a Quantitative Model," Karl Wilson, WU asst. prof. of psychology, 102 Eads.

TUESDAY, DECEMBER 6

8:30 p.m. School of Architecture Tuesday Night Lecture Series, "Wrapped Reichtag Project for Berlin," Christo, Bulgarian artist who erected the much publicized "Running Fence" in California last year. Steinberg Auditorium.

WEDNESDAY, DECEMBER 7

4 p.m. Department of Music Lecture, "Western Influences on Non-Western Music in the 20th Century," Bruno Nettl, prof. of ethnomusicology, U. of Ill., Champaign. Tietjens Rehearsal Hall.

THURSDAY, DECEMBER 8

2:30 p.m. Department of Mechanical Engineering Seminar, "The Search for the Missing Mode," David A. Peters, WU assoc. prof. of mechanical engineering. 100 Capples II.

4 p.m. Department of Chemistry Seminar, "The Molecular Structure of Paramyosin from Clams and Worms," Alfred M. Holitzer, WU prof. of chemistry. 311 McMillen Lab.

8 p.m. Department of English, Poetry and Fiction Reading Series, John Irving, novelist, reading from his works. Hurst Lounge, Duncker Hall.

EXHIBITIONS
"The Understanding Eye: Stanley Morison Typographer," an exhibit of books and manuscripts documenting Morison's works. Rare Book Department, level five, Olin Library. 8:30 a.m.-5 p.m., Mon.-Fri. Through Jan. 31.

"Art on Art," an exhibit by nine contemporary artists who use the art of yesterday to make statements on political, social and artistic issues relevant to contemporary society. Steinberg Gallery. 9-5 p.m., Mon.-Fri.; 1-5 p.m., Sat. and Sun. Dec. 4-31.