Tet-inducible lymphoma in a new Tax transgenic mouse model

Daniel Rauch
Washington University School of Medicine in St. Louis
Sirosh Bokhari
Washington University School of Medicine in St. Louis
John Harding
Washington University School of Medicine in St. Louis
Lee Ratner
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/94

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Tet-inducible lymphoma in a new Tax transgenic mouse model

Daniel Rauch, Sirosh Bokhari, John Harding, Lee Ratner*

From 15th International Conference on Human Retroviruses: HTLV and Related Viruses
Leuven and Gembloux, Belgium. 5-8 June 2011

The sufficiency of Tax in cancer initiation is evident in a variety of animal models, but the role Tax plays in cancer maintenance is less well understood. Tax is often undetectable in freshly obtained ATLL cells and while Tax promotes proliferation and protects cells from apoptosis it is also highly immunogenic and cytotoxic. We developed a mouse model in which Tax is expressed in the Tet-On system in vivo. These mice carry 4 transgenes. Tax, under the TET-promoter (TET-TAX) was provided by Warner Greene. The reverse tet activator, coupled to the granzyme B promoter (GZB-rtTA), drives Tax in activated T and NK cells in a doxycycline (dox)-inducible manner. Two additional transgenes were included for non-invasive imaging. TET-GFP, which is regulated by the same promoter as Tax in this model, serves as a readout for Tax gene expression and firefly luciferase driven by the HTLV-1 LTR (LTR-LUC) serves as a bioluminescent readout for Tax activity. Quadruple transgenic mice were maintained with or without dox-diet for 18 months. Over that time, 6 of 8 animals receiving dox-diet developed marked lymphadenopathy and splenomegaly, compared to 2 of 9 on normal diet. 1 of 9 mice lacking the GZB-rTA transgene and 0 of 7 mice lacking the TET-TAX transgene developed lymphoma. Discontinuation of dox after lymphadenopathy resulted in a decrease in lymph node size and bioluminescence, but remission was transient. This mouse model allows us to regulate and detect Tax activity non-invasively and will enable targeted interrogation of the role of Tax in lymphoma.

Published: 6 June 2011

* Correspondence: lratner@dom.wustl.edu
Division of Molecular Oncology, Washington University in St. Louis, St Louis, MO, 63110, USA

doi:10.1186/1742-4690-8-S1-A4

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2011 Rauch et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.