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Genome Biology

RESEARCH Open Access

Candidate genes for alcohol preference identified
by expression profiling in alcohol-preferring and
-nonpreferring reciprocal congenic rats

Tiebing Liang'", Mark W Kimpel®, Jeanette N McClintick®, Ashley R Skillman', Kevin McCall*, Howard J Edenberg?,

Lucinda G Carr'

Abstract

region.

alcohol-nonpreferring rats.

Background: Selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats differ greatly in alcohol
preference, in part due to a highly significant quantitative trait locus (QTL) on chromosome 4. Alcohol
consumption scores of reciprocal chromosome 4 congenic strains NP.P and P.NP correlated with the introgressed
interval. The goal of this study was to identify candidate genes that may influence alcohol consumption by
comparing gene expression in five brain regions of alcohol-naive inbred alcohol-preferring and P.NP congenic rats:
amygdala, nucleus accumbens, hippocampus, caudate putamen, and frontal cortex.

Results: Within the QTL region, 104 cis-regulated probe sets were differentially expressed in more than one region,
and an additional 53 were differentially expressed in a single region. Fewer trans-regulated probe sets were
detected, and most differed in only one region. Analysis of the average expression values across the 5 brain
regions yielded 141 differentially expressed cis-regulated probe sets and 206 trans-regulated probe sets. Comparing
the present results from inbred alcohol-preferring vs. congenic P.NP rats to earlier results from the reciprocal
congenic NP.P vs. inbred alcohol-nonpreferring rats demonstrated that 74 cis-regulated probe sets were
differentially expressed in the same direction and with a consistent magnitude of difference in at least one brain

Conclusions: Cis-regulated candidate genes for alcohol consumption that lie within the chromosome 4 QTL were
identified and confirmed by consistent results in two independent experiments with reciprocal congenic rats.
These genes are strong candidates for affecting alcohol preference in the inbred alcohol-preferring and inbred

Background

Alcoholism has a substantial genetic component, with
estimates of heritability ranging from 50 to 60% for
both men and women [1-3]. The associations of several
genes with risk for alcoholism have been replicated in
human studies: GABRA2 [4-11], ADH4 [12-14], and
CHRM?2 [15,16]. Several other genes have been asso-
ciated with alcoholism or related traits and await repli-
cation [17,18], including TAS2RI6 [19,20], NTRK2 [21],
GABRG3 [22], GABRAI [23], OPRKI and PDYN
[24,25], NFKBI1 [26], ANKKI [27], ACN9 [28], TACR3
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[29], CHRNAS [30], SNCA [31], NPY [32,33], and NPY
receptors [34].

Selected strains of rodents that differ in voluntary
alcohol consumption have been valuable tools to aid in
dissecting the genetic components of alcoholism
[35-38]. The alcohol-preferring (P) and -nonpreferring
(NP) rat lines were developed through bi-directional
selective breeding from a randomly bred, closed colony
of Wistar rats on the basis of alcohol preference in a
two-bottle choice paradigm [36]. P rats display the phe-
notypic characteristics considered necessary for an ani-
mal model of alcoholism [39,40]. Subsequently, inbred
alcohol-preferring (iP) and -nonpreferring (iNP) strains
were established; these inbred strains maintain highly
divergent alcohol consumption scores [41]. Due to the

© 2010 Liang et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
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physiological and genetic similarity between humans and
rats, iP and iNP rats can be studied to identify impor-
tant genetic factors that might influence predisposition
to alcoholism in humans.

A highly significant quantitative trait locus (QTL) that
influenced alcohol preference was identified on chromo-
some 4, with a maximum LOD score of 9.2 in a cross
between iP and iNP rats [41]. The chromosome 4 QTL
acts in an additive fashion and accounts for approxi-
mately 11% of the phenotypic variability. This approxi-
mately 100 million bases (Mb) QTL region is likely to
harbor genes that directly contribute to alcohol prefer-
ence. Several candidate genes identified in human stu-
dies (SNCA, NPY, CHRM?2, TAS2R16, and ACN9) have
homologs located within this rat chromosome 4 QTL.
Snca and Npy have been shown to be differentially
expressed between these two strains [42,43].

Reciprocal congenic strains (Figure 1) in which the iP
chromosome 4 QTL interval was transferred to the iNP
(NP.P-(D4Rat119-D4Rat55) and the iNP chromosome 4
QTL interval was transferred to the iP (P.NP-
(D4Ratl119-D4Rat55) exhibited the expected effect on
alcohol consumption: that is, the consumption corre-
lated with the strain that donated the chromosome 4
QTL interval [44]. (In this paper, the reciprocal con-
genic strains will be referred to as NP.P and P.NP.)
Thus, the chromosome 4 QTL region is, in part,
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responsible for the disparate alcohol consumption
observed between the iP and iNP rats.

Identifying the genes in the chromosome 4 interval
that underlie the phenotype has been difficult. We
adopted a strategy of using transcriptome analysis to
determine which genes are altered in expression in the
congenic strains; this is a powerful approach toward
gene identification [45-47]. Using this approach reduces
the ‘noise’ from unrelated differences in gene expression,
because the two strains are identical except for the QTL
sequences, and thereby increases the specificity with
which genes contributing to the specific phenotype can
be detected.

Previous transcriptome profiling of the NP.P congenic
strain and the iNP background strain identified 35 can-
didate genes in the chromosome 4 QTL that were cis-
regulated in at least one of the five brain regions studied
[47]. Nucleus accumbens, frontal cortex, amygdala, hip-
pocampus, and caudate putamen were examined, based
on their inclusion in the mesolimbic and mesocortical
systems, both of which are important in the initiation
and maintenance of goal-directed and reward-mediated
behaviors [48,49]. In the present paper, we compare the
iP background strain with the reciprocal congenic strain
(P.NP) to identify cis and trans differentially expressed
genes. The strategy of identifying differentially expressed
genes in congenic strains and using comparisons
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Figure 1 Development of reciprocal congenic strains. Alcohol-preferring (P) and alcohol-nonpreferring (NP) rats were selectively bred for
high and low alcohol drinking from a closed colony of Wistar rats [36]. Inbreeding was initiated at generation 30 to create the inbred P (iP) and
iNP rats [41]. Chromosome 4 reciprocal congenic rats were developed in which the iP chromosome 4 QTL interval from D4Rat119 to D4Rat55
was transferred to the iNP (NP.P-(D4Rat119-D4Rat55)) and the iNP chromosome 4 QTL interval was transferred to the iP (P.NP-(D4Rat119-
D4Rat55)) [44]. Genotyping of D4Rat15, D4Rat119, D4Rat55, and D4Rat 192 revealed that the recombination location was between D4Rat15 and
D4Rat119 and between D4Rat55 and D4Rat192 [44].
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between the reciprocal congenic strains to further sup-
port the differences allowed us to identify genes that are
strong candidates for affecting alcohol preference.

Results

Cis-regulated genes

Because alcohol preference in the congenic strains cor-
related with the strain origin of the introgressed region,
our primary hypothesis was that the genes in that region
contributing to the phenotype would differ in expression
as a result of cis-acting elements. Transcriptome ana-
lyses were performed to detect differences in gene
expression between iP and congenic P.NP rats in five
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brain regions: nucleus accumbens, frontal cortex, amyg-
dala, hippocampus, and caudate putamen.

Of the probe sets differentially expressed in the intro-
gressed region of chromosome 4, many are located
within the 95% confidence interval of the QTL (54.8 to
105 Mb). (Figure 2) The number of differentially
expressed probe sets (false discovery rate (FDR) < 0.25)
within the QTL was similar in each of the 5 brain
regions, ranging from 72 in the nucleus accumbens to
89 in the hippocampus (Table 1). most probe sets signif-
icant in any one brain region were significant in multi-
ple regions; 104 of the 157 cis-regulated probe sets
showed differential expression in more than one brain
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Figure 2 Differentially expressed probe sets within the chromosome 4 QTL interval. Top panel: chromosome 4 QTL lod plot, based on
reanalysis of our original data from [101] plus additional genotyping, using the current positions of the markers. The 95% confidence interval for
the QTL is indicated by a horizontal line. The transferred region of the QTL is indicated by vertical lines. Bottom panel: The expression (E) ratios
(Epnp-Eip)/Eip Of the probe sets from approximately 30 Mb to 130 Mb were aligned with the lod plot in the top panel.
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Table 1 Number of differentially expressed probe sets in the iP vs P.NP Comparison

Nucleus Amygdala Frontal Hippo- Caudate At least one Multiple brain  Combined
accumbens cortex campus putamen brain region regions regions
Significant cis-regulated
probe sets
Total 72 74 78 89 82 157 104 141
Single brain region 11 8 7 10 17
only
Only significant in 19
combined
Significant trans-
regulated probe sets
Total 14 7 16 17 54 85 10 206
Single brain region 9 2 8 10 46
only
Only significant in 143

combined

Cis-regulated probe sets are those located in the chromosome 4 QTL interval; trans-regulated probe sets are located in the remainder of the genome. The first
five columns show the number of cis- and trans-regulated probe sets that differ between iP and P.NP in each individual brain region. ‘At least one brain region’
shows the total number of unique probe sets that differed in one or more regions. ‘Multiple brain regions’ shows the total number of unique probe sets that
differed in at least two of the five brain regions. ‘Average expression’ shows probe sets that differ when the average expression across the five regions in each
animal was analyzed. ‘Single brain region only’ shows the number of unique probe sets significant in only that brain region. ‘In average only’ shows unique
probe sets that were significant only in analysis of the average level of expression across the five regions in each animal.

region. Only 8 to 21% of those detected in any single
region were detected in only that region (Table 1). Ana-
lysis of the average level of gene expression across all 5
regions showed 141 probe sets that significantly differed
between the strains; this included 19 probe sets not
detected in any of the individual regions (Table 1; also
see Table S1 in Additional file 1, which includes a list of
significant differentially expressed cis-regulated genes).

Trans-regulated genes

To detect trans-regulated genes (genes identical in the
two strains that are differentially expressed due to varia-
tions in a regulatory gene located within the chromo-
some 4 region), the remainder of the genome
(everything except the chromosome 4 QTL region) was
analyzed. Differentially expressed genes are not concen-
trated on any chromosome, other than chromosome 4
(Table S2 in Additional file 1). Although the total num-
ber of genome probe sets analyzed was much greater
than the QTL probe sets (for example, 23,050 probe
sets were used in the averaged analysis, versus 960 in
the cis-analysis above; see Materials and methods for
details), fewer trans-regulated probe sets were differen-
tially expressed in each region or in multiple regions
(Table 1). Unexpectedly, we found 54 significant probe
sets in the caudate putamen, of which 46 were only sig-
nificant in that brain region. The analysis of the average
level of gene expression across all 5 regions was more
powerful than the analyses of individual brain regions;
206 trans-regulated probe sets differed, including 143
that did not differ in any individual region (Table 1; also

see Table S2 in Additional file 1, which includes a list of
differentially expressed trans-regulated genes).

Some of the trans-regulated genes were previously
implicated in drug or alcohol addiction, including Pnlip
(pancreatic lipase) [50], Homerl (homer homolog 1
(Drosophila)) [51], Jun (Jun oncogene), Adhfel (alcohol
dehydrogenase, iron containing, 1) [52], Ptprr (protein
tyrosine phosphatase, receptor type, R) [53], Kif15
(Kruppel-like factor 15) [54,55], NfkbI (nuclear factor of
kappa light polypeptide gene enhancer in B-cells 1) [26],
Sox18 (SRY-box containing gene 18) [56,57], and Qdpr
(quinoid dihydropteridine reductase) [58,59].

Confirmation by quantitative RT-PCR

To confirm some of the genes that differed in expres-
sion between the iP and P.NP, quantitative RT-PCR
(qRT-PCR) was performed using RNA samples of the
brain regions. Ten genes were selected based on litera-
ture reports of their possible involvement in pathways
related to alcohol seeking behavior (Table 2). Among
the 44 comparisons with genes that significantly differed
on microarrays, 35 (79%) were differentially expressed in
the same direction when tested by qRT-PCR.

Comparison of reciprocal congenic strains

Previously published data comparing expression in NP.P
versus iNP congenics [47] were compared to the present
data (iP versus P.NP) to identify probe sets that exhib-
ited consistent expression differences between the two
experiments. For both experiments we calculated the
ratio of expression from the animals carrying the iP
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Table 2 Quantitative RT-PCR confirmation
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Ratio of expression (iP vs P.NP)®

Nucleus accumbens Amygdala Frontal cortex Hippocampus Caudate putamen
Affymetrix Gene Microarray  gRT-  Microarray qRT-  Microarray qRT-  Microarray gRT-  Microarray  qRT-
ID symbol PCR PCR PCR PCR PCR
1368358_a_at  Ptprr 2.22 228 247 271 217 1.85 242 277 1.98 228
1395714_at Copg2 IT -3.97 -245 -28.29 -1.73 -31.36 -1.61 -4.57 -2.12 -20.13 -1.23
1394939_at PomTk -2.05 1.30 -1.74 -1.62 -2.79 -2.54 -1.86 -3.12 -2.39 -249
1379275_at Snx10 1.67 -1.16 218 1.68 1.94 1.15 1.69 242 2.02 1.64
1380094_a_at Zfp212 1.30 1.54 1.22 -1.04 1.21 1.19 1.28 1.58 143 1.86
1367734_at  Akribl 1.22 1.13 1.12 1.30 1.27 1.58 1.16 1.06 1.25 1.15
1379480_at Dgki 1.23 272 1.13 -1.26 117 -297 1.26 .11 1.25 -1.71
1370007_at Pdia4 1.24 1.57 1.34 -1.01 [1.14] 1.05 1.36 -1.13
1367977_at Snca -1.11 -1.22 [1.07] 1.05 -1.12 -1.09
1387154_at  Npy [-1.11] 101 [-1.08] -1.20

A positive number indicates the ratio of the expression level of iP/P.NP; a negative number indicates the ratio of expression level of P.NP/iP. Bold numbers in
the microarray columns indicate expression is significantly different at FDR <0.05; square brackets indicate FDR between 0.05 and 0.25. qRT-PCR value is an

average of six technical replicates.

QTL region to that from the animals carrying the iNP
QTL region (that is, NP.P/iNP and iP/P.NP). Because
the earlier experiment was less powerful (comparing
only six animals from each strain) and because we could
use the consistency of results from the two experiments
to filter out false positives, we relaxed the level of signif-
icance to P < 0.05 for this comparison to reduce false
negatives. Any false positives introduced by this relaxa-
tion should not be consistent between the two indepen-
dent experiments. A total of 74 probesets that were
significant in the two experiments (at P < 0.05) in the
same brain region or in the average of the brain regions
and with consistent direction in both experiments were
identified (Table 3). Additional robust multi-chip aver-
age (RMA) data and uncorrected P-value data are
included (Table S3 in Additional file 1). All of the
reproducible probe sets were located within the chro-
mosome 4 QTL interval, and therefore cis-regulated.
The expression differences of these 74 cis-regulated
genes were highly correlated in the two experiments (R*
= 0.88; Figure 3); 71 showed expression differences of
similar amounts in the same direction in both experi-
ments. Thus, these cis-regulated genes are strong candi-
dates for affecting alcohol preference. Even though the
iP versus P.NP comparison identified 85 significant
trans-regulated probe sets in at least one brain region
and 206 significant probe sets when the data from all 5
regions was averaged (FDR < 0.25; Table 1), no trans-
regulated probe set was common to both experiments.

Discussion

In this study, the iP background strain was compared to
the P.NP congenic strain, which has the iNP chromosome
4 QTL interval between markers D4Rat119 and D4Rat55

introgressed onto the iP background. Because the con-
genic and background strains are identical except for the
region on chromosome 4, the a priori expectation is that
only cis-regulated genes located in that region of chromo-
some 4 or genes trans-regulated by genes within that
region should differ. This is expected to be a small set of
genes, the signal from which could be masked by random
variations in the very large set of genes that do not differ.
Among cis-regulated differentially expressed probe sets,
only 53 out of 157 were significant in a single brain region.
Among the other 104 probe sets, 102 differed in the same
direction in at least two regions. Many genes are expected
to be expressed under similar regulatory control in differ-
ent brain regions, so we also conducted an analysis of the
average expression levels across the five regions and iden-
tified additional genes. The magnitude of the differences
was small. Other comparisons of gene expression in rat
brain have also reported small differences [47,58,60-62].

These findings from the iP versus P.NP congenic
strain were then compared with previous transcriptome
profiling of the reciprocal NP.P congenic strain versus
iNP background strain [47]. We identified 74 cis-regu-
lated probe sets with consistent direction and magnitude
of expression differences in the two experiments (Figure
3; Table 3). These are strong candidates for influencing
the alcohol preference phenotype. The differences in
gene expression, although small, were quite consistent
between experiments for these cis-regulated genes
(Table 3, Figure 3). This is noteworthy since the experi-
ments were completely independent, done at two differ-
ent times using different strains (NP.P versus iNP and
iP versus P.NP) bred at different times, and demon-
strates the reproducibility of transcriptome profiling on
microarrays.
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Table 3 Significant probe sets identified by comparison of reciprocal congenic strains
Ratio of expression (iP vs P.NP and NP.P vs iNP)®

Amygdala  Nucleus Frontal Hippocampus Caudate Combined
accumbens  cortex putamen regions

Probe set Symbol Gene title iP NP.P iP NPP iP NPP iP NP.P iP NP.P iP NPP
Vs. Vvs. vs. Vvs. vs. vs. Vvs. Vs.iNP vs. vs. vs. vs.

P.NP iNP P.NP iNP P.NP iNP P.NP P.NP iNP P.NP iNP

1399134 _at LOC500054  similar to POT1-like telomere end- -1.13 -1.11 -1.13 -1.11 -1.07 -1.18 -1.13 -122 -106 -107 -1.10 -1.14
binding protein

1386777_at ~ LOC500054  similar to POT1-like telomere end- -1.04 -1.13 -1.10 -135 -1.10 -121 -1.19 -1.29 -105 -1.11 -1.10 -1.21
binding protein

1382865_at Tsgal4 testis specific gene A14 -1.06 -1.09 -1.13 -1.06 -1.05 -1.06 -1.11 -1.10 100 -1.14 -1.07 -1.09

1382409_at Tsgal4 testis specific gene A14 -1.06 -112 -106 -1.16 -1.09 -1.02 -1.04 -1.08 -1.09 -1.01 -1.07 -1.08

1383828_at Tsgal3 EST-testis specific gene A13 -1.25 -132 -145 -1.25 -1.19 -1.26 -157 -121 -1.26 -1.13 -134 -1.23
(predicted)

1369895_s_at  Podxl podocalyxin-like 104 -101 100 1315 105 101 104 1.08 103 106 1.03 1.06

1378956_at — EST-similar to plexin A4 155 ND 216 ND 173 155 1.95 1.39 228 ND 191 141

1389291_at  Chchd3 coiled-coil-helix-coiled-coil-helix -1.09 -1.10 -1.06 -1.13 -1.06 -1.15 -1.11 -1.10 -1.05 -1.16 -1.08 -1.13
domain containing 3

1378824 _at — EST-4.8 Kb at 3' side of similarto  1.06 1.08 109 ND 110 108 1.03 1.04 109 ND 1.07 1.10
solute carrier family 35, member
B4

1367734 _at Akrib1 aldo-keto reductase family 1, 112 112 122 113 127 129 1.16 1.1 125 124 120 1.18
member B1

1395190_at  Akr1b10 aldo-keto reductase family 1, 1.28 112 155 127 121 121 134 1.05 123 138 132 1.20
member B10

1382034 _at Akr1ib10 aldo-keto reductase family 1, 119 -102 -141 -108 109 -1.16 -1.17  -1.05 112 112 -1.02 -1.04
member B10

1383551_at  Bpgm 2,3-bisphosphoglycerate mutase  1.12 1.10 1.14 -1.07 113 116 114 115 110 1.10 113 1.09

1388544_at  Bpgm 2,3-bisphosphoglycerate mutase 109 108 110 111 111 114 110 1.3 1.08 106 1.10 1.10

1390042_at  Tmem140 transmembrane protein 140 121 132 138 124 114 113 1.1 1.14 127 106 122 1.18

1383598_at Wdro1 WD repeat domain 91 (Wdr91) 133 134 130 ND 147 127 150 1.23 146 126 141 125

1378125_at — EST-0.5 Kb at 3’ side of similarto  1.32 128 146 122 135 132 142 1.24 142 131 140 1.27
HSPC049 protein

1373746_at Wdro1 WD repeat domain 91 -121 -1.09 -130 -1.14 -1.20 -1.13 -126 -1.14 -118 -1.23 -1.23 -1.14

1373190_at Cnot4 CCR4-NQOT transcription complex, 100 109 102 116 102 101 107 1.14 103 100 1.03 1.08
subunit 4

1388441_at LOC689574  hypothetical protein LOC689574  -1.10 -1.03 102 -106 -1.05 -1.13 -108 -1.10 -1.04 -1.09 -1.05 -1.08

1377890_at — EST-4.9 Kb at 3’ side of solute 117 150 122 134 116 130 1.14 1.23 119 119 1.18 131

carrier family 13, member 4

1392510_at Fam180a family with sequence similarity 122 149 178 143 113 108 1.15 1.24 1.08 111 125 1.26
180, member A

1391721_at — EST-2.5 Kb at 5’ side of -155 ND -291 ND -182 -210 -1.71 -163 -1838 ND -192 -1.67
cholinergic receptor, muscarinic 2

1379480_at  Dgki diacylglycerol kinase, iota 113 114 123 122 117 124 126 1.09 125 127 121 1.19

1395107_at  Dgki EST-similar to diacylglycerol -1.02 104 -115 106 101 -1.01 110 116 -1.01 102 -1.01 105
kinase iota

1393410_at — EST-0.79 Kb at 5’ side of similar to 100 -1.18 109 115 -1.09 -1.11 102 -106 103 100 101 -1.04
contactin associated protein-like 2
isoform a

1390393_at — EST-5 Kb at 5’ side of similar to -1.08 -1.15 -101 101 -1.16 -1.21 -103 -112 -103 -107 -1.06 -1.11
contactin associated protein-like 2
isoform a

1370007_at Pdia4 protein disulfide isomerase 134 124 124 110 114 119 106 112 136 1.14 122 1.16
associated 4

1397447 _at Zfp398 zinc finger protein 398 -1.04 -113 -108 -1.08 -1.04 101 -1.04 -1.02 -1.06 101 -1.05 -1.04

1380094_a_at Zfp212 zinc finger protein 212 122 ND 130 ND 121 ND 1.28 1.15 143 ND 129 1.16
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Table 3: Significant probe sets identified by comparison of reciprocal congenic strains (Continued)

1390625_at RGD1304879 similar to zinc finger protein 398 143 140 127 139 133 120 130 1.36 146 122 136 131
(zinc finger DNA binding protein
p52/p71)

1377600_at Znf777 zinc finger protein 777 1.08 110 107 -100 1.09 112 113 1.08 103 110 1.08 1.08

1375914_at  Krbal KRAB-A domain containing 1 -1.04 -1.07 -1.07 104 -1.07 -1.02 -105 -1.14 -1.06 -1.12 -1.06 -1.06

1371691_at  Rarres2 retinoic acid receptor responder ~ -1.14 -1.01 112 -109 -1.16 -1.22 -123 -1.19 -101 -108 -1.08 -1.11
(tazarotene induced) 2

1376401 _at RGD1561107 EST-replication initiator 1 112 110 116 113 119 112 113 1.13 118 1.14 115 1.12

1382755_at  Tra2a rranscribed locus 11 116 <13 -112 107 120 113 132 111 143 1.06 1.19

1387154 _at Npy neuropeptide Y -1.04 -1.19 -106 112 -1.11 -1.11 -109  -1.14  -1.08 -1.05 -1.08 -1.07

1380062_at  Mpp6 membrane protein, palmitoylated 102 100 103 -1.09 107 104 113 119 106 102 106 103
6 (MAGUK p55 subfamily
member 6)

1383324_at  Mppb membrane protein, palmitoylated 1.01 109 110 -101 111 112 110 120 106 109 1.07 1.10
6 (MAGUK p55 subfamily
member 6)

1397419_at  Mpp6 membrane protein, palmitoylated -1.02 112 112 101 118 113 114 122 107 110 1.09 1.11
6 (MAGUK p55 subfamily
member 6)

1397949 _at — EST-similar to MAGUK p55 -1.00 113 116 106 115 1.18 1.15 1.20 107 112 110 1.14
subfamily member 6

1398627 _at — EST- similar to MAGUK p55 -1.01 104 105 110 1.09 1.09 1.07 1.16 104 102 1.05 1.08
subfamily member 6

1384136_at Osbpl3 oxysterol binding protein-like 3 -1.06 -1.03 -1.09 107 -115 -103 -1.12 -1.16 -1.15 -1.06 -1.11 -1.04

1378543 _at Hnrnpa2b1 EST-heterogeneous nuclear -1.31 -1.23 -126 -118 -1.17 -135 -1.16 -1.16 -1.19 -1.25 -1.22 -1.23
ribonucleoprotein A2/B1
(predicted)

1371395_at Cbx3 chromobox homolog 3 (HP1 -1.07 -107 -1.04 -100 -104 -102 -103 -103 -1.05 -1.10 -1.04 -1.04
gamma homolog, Drosophila)

1379275_at ~ Snx10 sorting nexin 10 218 140 167 -105 194 158 169 158 202 155 189 139

1383585_s_at Snx10 EST-sorting nexin 10 -1.10 -1.17 -108 -105 -1.12 -1.09 -1.06 -103 -108 -126 -1.09 -1.12

1377198_at — EST-2 Kb at 3’ side of src family -1.23 -133 -1.16 -1.09 -1.10 -1.09 -1.10 -1.19 -103 -115 -1.12 -1.17
associated phosphoprotein 2

1369979 _at Skap2 src family associated -1.20 -1.22 -111 -1.04 -1.03 -1.16 -1.05 -1.07 101 -112 -1.07 -1.12
phosphoprotein 2

1388118_at  Hibadh 3-hydroxyisobutyrate -1.07 -101 -101 -104 -1.05 -1.09 -105 -103 -1.06 -1.05 -1.05 -1.04
dehydrogenase

1378742_at  LOC682099  EST-similar to juxtaposed with 205 164 192 180 211 171 185 176 183 143 195 1.66
another zinc finger protein 1

1379629_at — EST-4.7 kb at 5' side of similarto -1.38 -1.35 -140 -137 -134 -127 -142 -120 -141 -134 -139 -1.30
CcAMP responsive element
binding protein 5 isoform alpha

1394833 _at — EST-0.6 Kb at 5" side of beta -1.12 -1.15 -1.04 -119 -108 102 -106 -1.10 108 -103 -1.04 -1.09
chimerin

1370648_a_at Wipf3 WAS/WASL interacting protein 101 118 -101 100 -101 109 100 -110 111 112 102 106
family, member 3

1392541_at  Ggct gamma-glutamy! cyclotransferase  -1.34 -1.19 -128 -106 -1.26 -126 -1.18 -108 -133 -1.26 -1.28 -1.16

1398107_at  Ggct gamma-glutamy! cyclotransferase  -1.10 -1.15 -102 114 -1.17 ND -106 -107 -1.15 -1.00 -1.10 -1.03

1394973 _at Pdelc EST-cyclic nucleotide 114 -101 108 109 102 102 -102 -1.01 137 116 111 105
phosphodiesterase 1 C

1375640_at ~ Fkbp9 FK506 binding protein 9 -1.05 128 123 101 115 104 102 101 107 105 1.08 1.07

1388493 _at Ecop EGFR-coamplified and -1.05 -1.10 -1.04 -100 -1.10 -1.09 -105 -105 ~-1.11 -1.09 -1.07 -1.06
overexpressed protein

1396215_at — EST-similar to RIKEN cDNA 101 -107 -107 -110 -103 -107 -1.08 -1.07 -1.14 -1.20 -1.06 -1.10
2610022G08

1394939_at  Ppmik protein phosphatase 1 K (PP2C -1.74 -267 -2.05 -236 -279 -257 -186 -205 -239 -2.05 -2.13 -2.33
domain containing)

1392921 _at Ppm1k Protein phosphatase 1 K (PP2C -1.07 -1.22 -1.21 -1.19 -1.12 -1.16 -1.14 -1.22 -1.15 -1.12 -1.14 -1.18

domain containing)
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Table 3: Significant probe sets identified by comparison of reciprocal congenic strains (Continued)
1388778_at — EST-36 Kb at 5" side of similar to  -1.27 -1.27 -127 -1.17 -118 -127 -122 -123 -122 -126 -123 -1.24
protein phosphatase 1 K (PP2C
domain containing)
1367977 _at Snca synuclein, alpha 1.03 -108 -104 -111 -1.10 -1.09 107 103 -1.12 -1.12 -1.03 -1.07
1385271_at RGD1565731 EST-similar to KIAA1680 protein -1.02 104 -105 -108 -103 -102 -1.20 -1.11 -1.09 -101 -1.08 -1.04
(predicted)
1391945_at — Transcribed locus 201 133 237 160 154 138 1.88 130 261 170 205 145
1393607_at  Grid2 EST-glutamate receptor, -1.27 -134 -113 104 -1.17 -1.14 1120 -123 -102 -1.08 -1.14 -1.14
ionotropic, delta 2
1386869_at Actg2 actin, gamma 2, smooth muscle, 103 105 107 -111 103 -100 -1.06 -1.10 -1.01 -102 101 -103
enteric
1379610_at — EST 119 131 -100 ND 114 103 124 107 -103 ND 110 106
1376481 _at Adamts9 a disintegrin-like and 109 130 116 ND 122 ND 130 1.28 127 ND 120 1.18
metalloprotease (reprolysin type)
with thrombospondin type 1
motif, 9
1376747_at  — EST, strongly similar to membrane -1.11 -122 100 105 -1.25 -1.12 106 102 -1.20 -1.13 -1.09 -1.08
associated guanylate kinase, WW
and PDZ domain containing 1
isoform b [Mus musculus]
1381871_at NA Transcribed locus 121 120 -105 190 128 149 1.31 142 119 108 118 1.39
1384504 _at Magi1 membrane associated guanylate 115 105 105 141 116 120 120 1.08 108 117 113 1.7
kinase, WW and PDZ domain
containing 1
1397438_at  Magil membrane associated guanylate 126 101 112 109 ND 102 126 ND 1.17 108 1.18 104

kinase, WW and PDZ domain
containing 1

Comparison of iP versus P.NP (this paper) and NP.P versus iNP [47] data. Probe sets that were significant (at P < 0.05) with consistent direction in at least one
brain region or in the average of the brain regions were analyzed. *Positive number is the ratio of the expression level of iP/P.NP (this paper) or NP.P/iNP [47]
(that is, in both cases expression is higher in the strain with the P alleles in the introgressed region); negative numbers indicate the ratio of expression level of P.
NP/iP (this paper) or iNP/NP.P [47]. Bold numbers indicate significant ratio of expression. ND indicates not detectable. The probe sets were sorted by genomic

location; all are on chromosome 4.

In these comparisons between congenic animals, the
only genes outside the chromosome 4 QTL region that
are expected to show differential expression are those
that are trans-regulated by genes lying within the region.
Fewer trans-regulated genes showed differential expres-
sion in any one brain region, whereas analyzing the
average expression values resulted in more trans-regu-
lated genes (Table 1). However, most of these were not
common to the reciprocal congenic experiment [47],
suggesting that most of these trans-differences could be
false positives.

Of the 74 cis-regulated candidate genes common to the
reciprocal congenic experiments and the most significant
trans-regulated candidate genes from the iP vs P.NP
comparison, 10 genes were chosen for PCR confirmation
based on their expression differences and/or literature
reports of their possible involvement in pathways related
to alcohol-seeking behavior. Of these, 79% showed con-
sistent direction of expression, in part because RT-PCR
is a logarithmic process and not as good for detecting
small differences in expression (Table 2). The primers
for these confirmation studies, when possible, were in
the coding sequences spanning an intron. It has been
our experience that when primers are designed based on

the coding regions, as we did here, the number of con-
firmed genes is lower (50 to 70%) than when using pri-
mers designed within the 3’ sequences used on the
microarray chips (80 to 90%), perhaps due in part to
alternative splicing or 3’ untranslated regions. A limita-
tion of this confirmation was that samples were pooled
by brain region, limiting the statistical power for data
analysis.

Sorting nexinl0 (Snx10) is one of the most significant
genes identified in both reciprocal congenics. Snx10
protein is a member of sorting nexins, a diverse group
of cellular trafficking proteins that are unified by the
presence of a phospholipid-binding motif, the PX
domain. Snx10 protein may be involved in the regula-
tion of endosome homeostasis [63]. In four of the brain
regions we studied, the animals with the iP chromosome
4 QTL segment (iP and NP.P) demonstrated a higher
expression of Snx10 mRNA than those with the iNP
segment (iNP and P.NP; Table 3).

Ppm1lk is a serine/threonine protein phosphatase.
Together with other protein kinases, these enzymes con-
trol the state of phosphorylation of cell proteins and
thereby provide an important mechanism for regulating
cellular activity.
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Figure 3 Differential expression is highly correlated between the reciprocal congenic lines. There were 74 probe sets within the
chromosome 4 QTL that were at P < 0.05 in the same brain region (or in the average) in both experiments, and with a consistent expression
direction (Table 3). Data from the average of brain regions was plotted as Log2 of the expression in NP.P/iNP (x-axis) versus log2 ratio of iP/P.NP
(y-axis). Three probe sets have the same expression direction in the same brain region but not in the average of brain regions (red triangles) and
include: EST-similar to Diacylglycerol kinase iota (DGKi); EST-0.79 Kb at 5’ side of similar to contactin associated protein-like 2 isoform a

Aldo-keto reductase 1 member B1 (Akrlbl), and
Akrlb10 catalyze the reduction of aliphatic and aro-
matic aldehydes to their corresponding alcohols. These
two genes are both expressed at higher levels in the ani-
mal with the P chromosome 4 interval than the animal
with the iNP chromosome 4 interval in both iP versus
P.NP and NP.P versus iNP comparisons. Although
sepiaperterin reductase (SPR) is known to be the major
enzyme in the tetrahydrobiopterin (BH4) synthesis,
aldo-keto reductases (AKRs) and carbonyl reductases
(CBRs) can also convert 6-pyruvoyltetrahydropterin to
BH4 [64-66], which is an essential cofactor for tyrosine
hydroxylase (TH) and tryptophan hydroxylase (TPH),
both of which are involved in dopamine and serotonin
biosynthesis (Figure 4). Alcohol is known to interact

with the dopamine and serotonin neurotransmitter sys-
tems in the brain.

Diacylglycerol kinase (Dgki) regulates the levels of var-
ious pools of diacylglycerol (DAG), affecting DAG-
mediated signal transduction. We found that Dgki
mRNA is expressed at higher levels in animals with the
iP chromosome 4 QTL interval (iP and NP.P) than
those with the iNP interval (P.NP and iNP) in all the
brain regions studied. Dgki mRNA has been shown to
be expressed at higher levels in discrete brain regions of
the alcohol accepting (AA) rats than in the alcohol non-
accepting (ANA) rats [67]. The highest mRNA expres-
sion of Dgki was found in the human brain [68]. Dgki is
expressed in the cytoplasm of most dorsal root ganglion
neurons, through which primary afferent information
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Figure 4 Candidate genes in the dopamine and serotonin system. Sepiaperterin reductase (SPR) and aldo-keto reductase (AKR) reduces an
intermediate, 6-pyruvoyl-tetrahydropterin (PPH4), to 1-OXPH4, or 2-OXPH4, and catalyzes the final step of tetrahydrobiopterin (BH4) synthesis, an
essential cofactor for phenylalanine hydroxylase, tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH) and nitric oxide synthase (NOS) [65,66].
Quinoid dihydropteridine reductase (QDPR) mediates reduction of quinonoid dihydrobiopterin. Several candidate genes are related to dopamine
function. Snca regulates dopamine biosynthesis and attenuates dopamine transporter activity. Scap2 phosphorylates Snca, and Copg? is involved
in the transport of the dopamine receptor 1 (D1). Arrows represent metabolic steps, and dashed lines represent genes that are functionally
related. Identified candidate genes are in boxes; gray color indicates a lower expression in iP and white color indicates higher expression in iP.
GTPCH, GTP-cyclohydrolase I; PTPS, 6-pyruvoyltetrahydropterin synthase; 1'-OXPH4, 1"-oxo-2-hydroxypropyl tetrahydropterin; 2-OXPH4, 1-hydroxy-
2-oxo-tetrahydropterin; OH-4a-BH4, pterin-4a-carbinolamine; PCD, pterin-4a-carbinolamine dehydratase.
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passes en route to the brain [69]. Dgki catalyzes the
phosphorylation of DAG, an activator of protein kinase
C, to phosphatidic acid, and thus down-regulates second
messenger pathways activated by protein kinase C,
which play important roles in regulating behavioral
responses to ethanol [70].

Protein disulfide isomerase family A, member 4
(Pdia4), also known as endoplasmic reticulum p72
(ERp72) [71], functions in disulfide bond formation and
isomerization. Together with other endoplasmic reticu-
lum-resident molecular chaperones, Pdia4 protein parti-
cipates in critical steps in the folding of apolipoprotein
B before any substantial lipidation occurs. Pdia4 mRNA
was differentially expressed in four microarray gene pro-
filing studies using animals selected for high and low
alcohol consumption, which include iP versus iNP [58],
inbred high-alcohol-drinking (iHAD) versus inbred low-
alcohol-drinking (iLAD) (unpublished data), NP.P versus
iNP [47], and iP versus P.NP (this paper). In all these
studies, the animals with the high drinking allele had
higher levels of Pdia4 mRNA than the animals that had
the low drinking allele.

NPY is one of the most abundant neuropeptides in
the central nervous system, and has been shown to have
multiple functions, including regulation of feeding beha-
vior, anxiety, addiction, bone density and memory reten-
tion [72,73]. In the present study, Npy expression has
the same trend in all five brain regions, with lower
expression in animals with the iP chromosome 4 QTL
interval; this is consistent with previous findings of
lower expression in iP than in iNP animals [43]. Alcohol
consumption is inversely related to NPY levels in the
brain [43,74]. Intracerebroventricular administration of
NPY significantly decreased ethanol intake in P rats
[75].

Suca is a previously identified candidate gene for
alcohol consumption in the iP/iNP animals [42,47],
and has been associated with craving and alcohol
dependence in humans [31,76]. In both microarray
comparisons,Snca was found expressed at lower levels
in the frontal cortex and caudate of animals with the
iP QTL interval. However, an opposite trend was
observed in the hippocampus, where Snca was pre-
viously shown to have higher expression in iP rats
[42]. Higher mRNA and protein levels have been
observed in serum from alcoholic patients compared
to that from controls [77,78]. SNCA has been asso-
ciated with craving and alcohol dependence in humans
[31,76]. Skap2 and Fyn-kinase were previously identi-
fied as being involved in the phosphorylation of Snca
(Figure 4). Scap?2 is expressed at lower levels in NP.P
than iNP and also lower in iP than P.NP; it inhibits
the phosphorylation of Suca and acts as a substrate for
the Src family of kinases, such as Fyn [79]. Fyn

Page 11 of 17

specifically phosphorylates tyrosine residue 125 of Snca
[80]. Snca and Fyn are co-localized in subcellular
structures and expressed in similar brain regions [80].
Miyakawa and colleagues found that Fyn-kinase is
involved in ethanol sensitivity through NMDA-recep-
tor function [81]. Thus, these genes could work in
concert to control alcohol seeking behavior.

A limitation of microarray technology is that a SNP
that differs between the two strains tested could affect
the hybridization to a probe set in a way that mimics an
expression difference. Because expression data are com-
posites from many probe sets, this is likely to make only
a small difference. To address this possibility, individual
probes within each of the 74 strong candidate probe
sets were analyzed. There were no detectable SNP
effects in 71 of these genes; only 3 genes had one probe
that differed from the overall pattern (data not shown).
This indicated that the majority of expression differ-
ences detected in this study were not the result of SNP
effects.

Ingenuity Pathways Analysis (Ingenuity Systems, Inc.,
Mountain View, CA, USA) of the genes significant in
either experiment (iP versus P. NP or NP.P versus iNP,
at FDR <0.25) was performed. The dopamine and sero-
tonin biosynthesis and other pathways - for example,
the Nfkb1 pathway - were overrepresented. Six candi-
date genes, including Akribl, Qdpr, Snca, Spr, Scap2,
and Copg2, are directly or indirectly involved with the
dopamine and serotonin biosynthesis pathway (Figure
4). Confirmation of candidate genes in the Nfkb1 path-
way, which is associated with alcohol dependence [26],
is ongoing.

Conclusions

Two independent gene profiling experiments using reci-
procal congenic strains have identified strong, cis-acting
candidate genes for alcohol consumption within the
chromosome 4 QTL region. These findings provide
important candidate genes for future functional and
knockout studies.

Materials and methods

Animals

Creation of the P.NP-(D4Rat119 (62.8 Mb)-D4Rat55
(127.9 Mb) congenic strain has been previously
described [44]. Briefly, it was initiated by crossing one
male rat from the iNP strain with one female rat from
the iP strain to create iP x iNP F1 animals, which were
backcrossed to the iP strain to produce the N2 genera-
tion. Ten generations of backcrossing to the iP strain
were performed, followed by an intercross between N10
animals to produce homozygous animals (N10F1),
which resulted in the finished congenic P.NP strain
(Figure 1).
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Presence of the chromosome 4 interval was confirmed
using four to five microsatellite markers, including
D4Rat119 and D4Rat55. Microsatelitte markers at 47.8
Mb (D4Rat15) and 159.3 Mb (D4Rat192) defined the
extent of the introgressed region for both the P.NP and
the NP.P congenic strains. At microsatelitte markers
62.8 Mb (D4Ratl119) and 127.9 Mb (D4Rat55), the NP.P
strain was homozygous for the iP allele and the P.NP
strain was homozygous for the iNP allele. Although the
locations of the recombination boundaries have not
been resolved, they are between 62.8 Mb and 47.8 Mb
and between 127.9 Mb and 159.3 Mb [44]. The QTL
map in Figure 2 was generated using our published data
[51] plus additional markers using MAPMAKER/EXP82;
the 95% confidence interval was calculated [83] and it
spans 54.8 Mb to 105 Mb.

All animal housing and handing was as previously
described [47]. The animals used in these experiments
were maintained in facilities fully accredited by the
Association for the Assessment and Accreditation of
Laboratory Animal Care (AAALAC). All research proto-
cols were approved by the Institutional Animal Care
and Use Committee and are in accordance with the
guidelines of the Institutional Animal Care and Use
Committee of the National Institute on Drug Abuse,
NIH, and the Guide for the Care and Use of Laboratory
Animals (Institute of Laboratory Animal Resources,
Commission on Life Sciences, National Research Coun-
cil 1996).

A total of 16 (8 iP and 8 P.NP) male rats, 14 to 15
weeks of age, were sacrificed by decapitation between
0900 and 1000 hours over two consecutive days, with
equal numbers of animals from each strain sacrificed
each day. The head was immediately immersed in
chilled isopentane (-50°C) for 15 seconds and then
placed in a cold box maintained at -15°C, where the
brain was rapidly removed and placed on a glass plate
for dissection. All equipment used to obtain tissue was
treated with RNaseZap (Ambion, Inc. Austin, TX, USA)
to prevent RNA degradation. The amygdala, nucleus
accumbens, caudate putamen, frontal cortex, and hippo-
campus were dissected as previously described [84].

RNA isolation

Dissected tissues were immediately homogenized in Tri-
zol reagent (Invitrogen, Carlsbad, CA, USA) and pro-
cessed according to the manufacturer’s protocol, but
with triple the suggested ratio of Trizol to tissue [60].
RNA was further purified through RNeasy® mini col-
umns (Qiagen, Valencia, CA, USA), according to the
manufacturer’s protocol. To avoid genomic DNA con-
tamination in the real-time PCR assay, the RNA was
treated with DNase 1. Total RNA yields from the iP and
P.NP groups were similar (P > 0.4). The quality of the
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RNA from all rats and regions was similar, as monitored
by absorbance spectra from 210 to 350 nm, by electro-
phoresis on 1% agarose gels, and using the Agilent Bioa-
nalyzer to confirm the ribosomal bands.

RNA labeling and microarray hybridization

RNA from each brain region of each individual rat was
labeled and hybridized separately on an Affymetrix Rat
Genome 230 2.0 microarray. Starting with 5 ug of total
RNA from each animal, biotinylated cRNA was pro-
duced using the GeneChip® Expression 3’ Amplification
One-Cycle Target Labeling and Control Reagents kit
according to Affymetrix standard protocol. Fragmented,
biotinylated cRNA (15 pg) was mixed into 300 pul of
hybridization cocktail, of which 200 ul was used for
each hybridization. Hybridization was for 17 hours at
42°C. Washing, staining, and scanning were carried out
according to the standard protocol.

To minimize systematic errors, all stages of the experi-
ment were balanced across phenotypes. That is, equal
numbers of P.NP and iP animals were sacrificed each
day, and equal numbers of RNA preparations from iP
and P.NP animals were processed through the labeling,
hybridization, washing and scanning protocols on each
day, in different alternating orders. Whenever possible,
common premixes of reagents were used.

Data analysis and informatics
Each GeneChip® was scanned using an Affymetrix
Model 3000 scanner and underwent image analysis
using Affymetrix GCOS software. Microarray data are
available from the National Center for Biotechnology
Information’s Gene Expression Omnibus [85,86], under
series accession [GEO:GSE15415] [87]. Raw cel files
were imported into the statistical programming environ-
ment R for further analysis with tools available from the
Bioconductor Project [88]. Expression data were normal-
ized and log, transformed using the RMA method
[89,90] implemented in the Bioconductor package RMA.
Our primary hypothesis was that cis-regulated genes
within the QTL were responsible for the strain differ-
ences; thus, to detect genes within the region that dif-
fered between the P.NP and iP rats, the probe sets that
mapped to the chromosome 4 QTL region between
microsatellite markers D4Rat151 and D4Rat55 that
flanked the introgressed region (from 29,413,686 to
128,186,835 bases) were analyzed using ¢-tests, calcu-
lated using the package Limma [91]. To increase power
and decrease the false discovery rate [92], probe sets not
reliably detected on at least one-third of the microarrays
in at least one experimental group (using the Affymetrix
Microarray Analysis Suite 5.0 detection call) were not
analyzed [93]. For the analyses of a specific brain region,
the QTL probe sets were retained if present on at least
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one-third of the microarrays for either the congenic P.
NP or iP animals (number of probe sets detected ranged
from 644 to 694). To detect differences in gene expres-
sion common to several regions, data from the five dis-
crete brain regions of each animal were averaged. This
reduces random technical variation from the individual
extractions and labeling, and thereby provides more
power to detect differences that are in the same direc-
tion in multiple regions but may fall below significance
in individual regions. For the analyses of average expres-
sion level, QTL probe sets were retained if present on at
least one-third of the microarrays in at least one brain
region in at least one strain (690 probe sets).

Secondary analyses examined expression differences
elsewhere in the genome that could arise from trans-
acting factors within the region. For the analyses of a
specific brain region, the probe sets were retained if pre-
sent on at least one-third of the microarrays for either
the congenic P.NP or iP animals (21,345 to 22,994
probe sets). For the analyses of average expression level,
probe sets were retained if present on at least one-third
of the microarrays in at least one brain region in at least
one strain (23,050 probe sets).

Comparison of reciprocal congenics

Previously published data comparing expression in NP.P
versus iNP congenics [47] were compared to the present
data (iP versus P.NP) to identify probe sets that exhib-
ited consistent expression differences between the two
experiments. For both experiments we calculated the
ratio of expression from the animals carrying the iP
QTL region to that from the animals carrying the iNP
QTL region (that is, NP.P/iNP and iP/P.NP). Thus, for
both experiments, a positive ratio of expression repre-
sents higher expression in the animals with the iP chro-
mosome 4 QTL interval (iP and NP.P), and a negative
value represents lower expression in the animals with iP
chromosome.

Because the earlier experiment was less powerful
(comparing only six animals from each strain) and
because we could use the consistency of results from
the two experiments to filter out false positives, we
relaxed the level of significance to P < 0.05 for this com-
parison to reduce false negatives. Any false positives
introduced by this relaxation should not be consistent
between the two independent experiments. Thus, genes
that were significant in the two experiments (at P <
0.05) in the same brain region or in the average of the
brain regions and with consistent direction in both
experiments were identified (Table 3).

SNP effect analysis
Potential chromosomal regions containing SNPs were
identified using probe, as opposed to probe set, level
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analysis according to the method of Rostoks, Borevitz,
et al. [94]. Briefly, probe level expression was extracted
from individual CEL files from all five brain regions
after background correction. Expression levels for indivi-
dual probes were averaged within animal, across brain
regions, in a manner identical to that applied to probe
sets. An algorithm was applied to the probes belonging
to each probe set such that overall probe set group dif-
ferential expression was ascertained and then each
probe’s expression was corrected for this. This made it
easier to identify individual probes with relatively small
deviations from large overall group differential expres-
sions. For each probe set, the differential expression of
each probe was then plotted using the matplot function
of Bioconductor package affyPLM [95,96].

Mapping of ESTs

In order to map the genomic location of significant
ESTs, sequences were obtained from the Affymetrix
website [97] and aligned to the rat genome using
BLAST at NCBI [98]. Probe sets that aligned within a
gene were referred to by that gene name. Probe sets
that aligned between genes were listed as the nearest
gene with the distance noted. ESTs that aligned to mul-
tiple loci or could not be positioned on the genome
were labeled as EST.

Quantitative real-time PCR

Ten genes were selected for confirmation in the five
brain regions used in the microarray analysis, using
qRT-PCR. Amplification primers were designed from
the sequence in the coding region of the gene using
Vector NTI (Invitrogen); when possible, at least one pri-
mer spanned an exon/intron boundary. qRT-PCR was
carried out using SYBR Green chemistry and the ABI
Prism 7300 Sequence Detection System (Applied Biosys-
tems, Foster City, CA, USA) as previously described
[47]. To correct for sample-to-sample variation, an
endogenous control (glyceraldehyde 3-phosphate dehy-
drogenase, GAPDH) was amplified with the target and
served as an internal reference to normalize the data.
The average GAPDH Ct values for iP and P.NP were
the same in each brain region tested, making this an
appropriate control gene to normalize the expression of
the candidate genes of interest. Relative quantification
was performed using the standard curve method
(Applied Biosystems, User Bulletin #2) [99]. For each
pooled iP and P.NP sample, eight animals were pooled
by each of five brain regions and six technical replicates
were performed.

Ingenuity pathway analysis
The interactions between differentially expressed genes
in either comparisons (with FDR <0.25) were
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investigated using Ingenuity Pathway Analysis (IPA 5.0;
Ingenuity Systems, Inc., Mountain View, CA). The dif-
ferentially expressed genes were uploaded into IPA.
Each gene identifier was mapped to its corresponding
gene in the Ingenuity Pathway Knowledge Base, a manu-
ally curated database of interactions from literature
[100]. These genes were overlaid onto a global network
developed from the information contained in the Inge-
nuity Pathway Knowledge Base. Networks of these
genes, defined as the reflection of all interactions of a
given gene defined in the literature, were then algorith-
mically generated based on their connectivity. The inter-
actions indicate physical association, induction/
activation or repression/inactivation of one gene product
by the other, directly or through another intermediary
molecule.

Additional file 1: iP-PNP supplemental tables Supplemental data of
expression profiling in alcoholpreferring and non-preferring reciprocal
congenic rats.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/gb-2010-11-2-
r11-S1.xls]
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