Dendritic and parallel processing of visual threats in the retina control defensive responses

T Kim
N Shen
J-C Hsiang
K P Johnson
D Kerschensteiner

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
Dendritic and parallel processing of visual threats in the retina control defensive responses

T. Kim1,2*, N. Shen1, J.-C. Hsiang1,2, K.P. Johnson1,2, D. Kerschensteiner1,3,4,5†

Approaching predators cast expanding shadows (i.e., looming) that elicit innate defensive responses in most animals. Where looming is first detected and how critical parameters of predatory approaches are extracted are unclear. In mice, we identify a retinal interneuron (the VG3 amacrine cell) that responds robustly to looming, but not to related forms of motion. Looming-sensitive calcium transients are restricted to a specific layer of the VG3 dendrite arbor, which provides glutamatergic input to two ganglion cells (W3 and OFFα). These projection neurons combine shared excitation with dissimilar inhibition to signal approach onset and speed, respectively. Removal of VG3 amacrine cells reduces the excitation of W3 and OFFα ganglion cells and diminishes defensive responses of mice to looming without affecting other visual behaviors. Thus, the dendrites of a retinal interneuron detect visual threats, divergent circuits downstream extract critical threat parameters, and these retinal computations initiate an innate survival behavior.

INTRODUCTION

To survive, animals need to evade threats in their environments. How sensory systems detect threats quickly and how they measure critical parameters of a threat (e.g., the speed of an approaching predator) to select appropriate behavioral responses are central questions in neuroscience. Approaching objects cast expanding shadows (i.e., looming) that elicit innate defensive reactions in a wide range of animals, from insects to humans (1, 2). Mice use vision to avoid aerial predators (3, 4). The midbrain circuits that mediate looming responses in mice have been studied extensively (5–10), but where looming-selective signals first arise and how crucial parameters of predatory approaches are computed are unclear.

Early investigators suggested that the retina detects specific stimulus features and signals them to the brain through ganglion cell spike trains to trigger rapid behavioral responses (11, 12). Since then, a wide range of feature-selective responses have been identified in approximately 40 retinal ganglion cell types of mammals (13, 14). However, except for a link between direction-selective responses and a gaze-stabilizing reflex (15, 16), the behavioral significance of retinal feature detection remains uncertain. Furthermore, behavioral salience often depends on a combination of stimulus features (17). Whether and how the retina generates cooperative feature representations in ganglion cells are unknown.

The stimulus preferences of ganglion cells are shaped by amacrine cells, a diverse class of interneurons that encompasses more than 60 cell types (18–20). In part because of this diversity, the organization and function of circuits between amacrine and ganglion cells are poorly understood, a state that is emblematic of interneuron circuits throughout the nervous system (18, 21). Most amacrine cells lack axons and receive input and provide output through their dendrites (18). By restricting the spread of input signals, different amacrine cell dendrites can compute different visual information and convey this information to separate targets (18, 22, 23). This enhances the computational power of amacrine cells and the complexity of retinal circuits. The sensory computations of amacrine cell dendrites, their influence on feature representations of ganglion cells, and contributions to vision are mostly unknown.

Here, we combine two-photon guided patch-clamp recordings, dendritic calcium imaging, optogenetics, anatomical circuit reconstructions, type-specific cell deletion, and behavioral assays to decipher the retinal processing of visual threats and its contributions to defensive responses.

RESULTS

Behavioral and neuronal responses to looming
We presented dark expanding disks (i.e., looming) on a monitor above a rectangular arena with virtual shelters on two sides (Fig. 1A; see Materials and Methods). After a period of acclimatization (>5 min), looming was triggered when mice crossed the center of the arena. Looming elicited stereotypic responses in which mice fled to a shelter and froze (Fig. 1, A and D, and movie S1). Consistent with previous observations (3), neither receding (i.e., dark contracting disks) nor white looming evoked similar responses (Fig. 1, B to D, and movies S2 and S3). How retinal circuits process looming and distinguish it from related forms of motion and which retinal circuits drive defensive behaviors are unclear.

Amacrine cells are an extraordinarily diverse class of interneurons that enable the retina to distinguish different forms of motion (18–20, 24, 25). On the basis of their receptive field properties (22, 23, 26, 27), we hypothesized that VGLUT3-expressing (VG3) amacrine cells contribute to the retinal processing of looming. In targeted patch-clamp recordings, we found that VG3 amacrine cells depolarized strongly to looming (Fig. 1, E and H, and fig. S1), hyperpolarized to receding (Fig. 1, F and H), and responded weakly to white looming (Fig. 1, G and H). In voltage-clamp recordings, excitatory inputs elicited by looming were consistently faster than those elicited by white looming (Fig. 1, I, K, and L). This created a window during which excitation exceeded inhibition, explaining the greater
depolarization of VG3 amacrine cells to looming than white looming (Fig. 1, I, K, and M). Receding elicited strong synaptic inhibition with excitation relegated to the stimulus offset (Fig. 1J).

**Dendritic processing of looming in VG3 amacrine cells**

Amacrine cells send and receive signals through their dendrites. Thus, one amacrine cell can contain multiple input-output pathways that process information separately, bypassing the soma (22, 23, 28, 29). We used two-photon calcium imaging to analyze motion signals in VG3 dendrite arbors. Looming elicited robust calcium transients in VG3 dendrites in the outer part of the inner plexiform layer (Fig. 2, A and D). By contrast, receding did not evoke calcium transients during motion (Fig. 2, B and D), and the preference for looming versus receding was high throughout the VG3 dendrite arbor (Fig. 2E and fig. S2). White looming signals were weak and restricted to VG3 dendrites in the inner part of the inner plexiform layer (Fig. 2, C and D). Throughout the VG3 arbor, the preference for looming versus white looming was greater than the preference for stationary dark versus bright stimuli (Fig. 2F and fig. S2), and the preference for looming versus white looming in calcium signals was greater than that observed in voltage recordings (calcium, 0.75 ± 0.04; voltage, 0.35 ± 0.06; P = 8.92 × 10⁻⁷). Thus, looming-sensitive calcium signals are enhanced by dendritic nonlinearities and spatially segregated from weaker responses to related forms of motion.

**VG3 amacrine cells provide excitatory input to W3 and OFFα ganglion cells**

The VG3 dendrites with the most robust looming responses overlap with the dendrites of two ganglion cell types that have been suggested to signal approaching aerial predators: W3 and OFFα (30–32). We used optogenetics to test the functional connectivity of VG3 amacrine cells with W3 and OFFα ganglion cells. VG3 amacrine cells are dual transmitter neurons that release glutamate and glycine (33, 34). We pharmacologically blocked transmission of photoreceptor signals to bipolar cells and matched Channelrhodopsin-2–mediated depolarizations of VG3 amacrine cells to their physiologic light responses...
To reconstruct anatomical connectivity patterns, we biolistically labeled OFFα ganglion cells with cytосyclic cyan fluorescent protein and PSD95–yellow fluorescent protein (YFP), a marker of excitatory synapses (36), in mice in which VG3 amacrine cells express tdTomato (VG3-Cre Ai9; Fig. 3, C and D). In confocal image stacks, we found that approximately half the PSD95-YFP clusters on OFFα dendrites were apposed by VG3 boutons (Fig. 3E). The number of appositions markedly dropped when we rotated the tdTomato channel by 90° (Fig. 3E). Using a similar approach, we previously found that VG3 dendrites account for approximately half the excitatory synapses on W3 dendrites (26). Thus, VG3 amacrine cells provide a similar fraction (~1/2) of the excitatory input to W3 and OFFα ganglion cells.

Parallel parameter estimation in divergent VG3 circuits

To understand how looming signals are transformed from VG3 amacrine cells to W3 and OFFα ganglion cells, we analyzed the responses and underlying synaptic inputs of all three cells to dark disks expanding at different speeds. Responses of VG3 amacrine cells were restricted to the onset of motion (stimulus size at peak: 145 ± 8 μm, 4.3 ± 0.2°, n = 24 cells) and stable across looming speeds (Fig. 4, A and B). Responses were restricted to the onset of motion because transient excitation preceded sustained inhibition (Fig. 4, C and E). Responses were stable across looming speeds because the amplitudes of excitation and inhibition increased in parallel with stimulus speed, maintaining balance (Fig. 4D). W3 ganglion cell responses received a similar sequence of synaptic excitation and inhibition. Both inputs increased in amplitude together as a function of stimulus speed (Fig. 4, H to J). W3 ganglion cell responses, therefore, similar to those of VG3 amacrine cells, signaled the onset (i.e., critical size) of looming (stimulus size at peak: 154 ± 12 μm, 4.5 ± 0.4°, n = 5 cells) stably across different speeds of expansion (Fig. 4, F and G). By contrast, OFFα ganglion cell responses increased during looming motion and increased at higher stimulus speeds (Fig. 4, K and L) (31). Responses increased during motion because excitation coincided with disinhibition (Fig. 4, M and O). Responses increased at higher speeds as excitation and inhibition diverged in amplitudes (Fig. 4N). Stimulation with stationary dark spots revealed that the cell type–specific trajectories of excitation and inhibition during looming were temporal realizations of distinct spatial receptive field architectures by expanding motion (Fig. 4, E, J, and O, and fig. S3). W3 and OFFα ganglion cells strongly preferred expanding over contracting motion (fig. S4). Thus, by combining similar and, in part, shared excitatory input with dissimilar inhibition W3 and OFFα ganglion cells, which form
parallel pathways from the retina to the brain, transform signals from VG3 amacrine cells to encode the onset (i.e., critical size) and speed of looming, respectively.

Responses of W3 and OFFα ganglion cells to looming depend on VG3 amacrine cells
To test the contributions of VG3 amacrine cells to the looming responses of W3 and OFFα ganglion cells, we selectively removed VG3 amacrine cells from the adult retina by injecting VG3-DTR mice intraperitoneally with diphtheria toxin (DT; fig. S5) (33, 35). We first analyzed the effect of this manipulation on ganglion cell dendrites and their synapses. Using biolistic labeling and confocal reconstructions, we found that VG3 removal did not affect the size of W3 and OFFα dendrite arbors but approximately halved the density of excitatory synapses (Fig. 5, A to D). This synapse loss matched the estimated fraction of excitatory synapses from VG3 amacrine cells in control retinas (Fig. 3E) (36), indicating that ganglion cells do not shift connections to other input partners in the adult retina as they do during development (37, 38).

In patch-clamp recordings, we found that the responses of W3 (Fig. 6, A to C) and OFFα ganglion cells (Fig. 6, D to F) to looming were attenuated by the removal of VG3 amacrine cells across a wide range of stimulus contrasts and speeds. For both ganglion cell types, this was caused by reduced synaptic excitation during looming (Fig. 6, G to L), whereas inhibition of W3 (Fig. 6, M and O) and disinhibition of OFFα ganglion cells (Fig. 6, P and R) were unchanged. Thus, looming signals from the retina to the brain depend on VG3 amacrine cells.

Defensive responses to looming stimuli depend on VG3 amacrine cells
We next wanted to test how the removal of VG3 amacrine cells affects the behavioral responses to looming stimuli. In VG3-DTR mice, VG3 neurons in the retina and the brain express the DT receptor. Using tdTomato labeling in VG3-DTR Ai9 mice as a proxy, we found that a subset of midbrain areas involved in defensive responses to looming contain VG3 neurons (fig. S5) (5–10). To our surprise, these neurons were unaffected by intraperitoneal injections of DT that ablated most VG3 amacrine cells (fig. S5). Thus, the systemic administration of DT selectively removed VG3 neurons in the retina. To ensure further that cell removal was restricted to the retina, we alternatively injected DT directly into both eyes (i.e., intraocularly) of VG3-DTR mice (fig. S5).

In behavioral experiments, we found that the stereotypic behavioral responses to looming consisting of flight and prolonged freezing were preserved in control mice injected with DT intraperitoneally (Fig. 7, A and C, and movie S4) or i.o. (Fig. 7, E and G, and movie S5) but diminished by the same injections in VG3-DTR mice (Fig. 7, B, C, F, G, and movies S6 and S7). In contrast, all four groups of mice performed indistinguishably in a visual cliff test (Fig. 7, D and H). Furthermore, visually evoked potentials, which measure the signals propagated along the retina-geniculo-cortical pathway, were not significantly different between VG3-DTR mice and littermate controls irrespective of the DT injection site (Fig. 7, I to P). Thus, VG3 amacrine cells are required selectively for the innate defensive responses of mice to looming.

DISCUSSION
Threat detection and assessment are essential functions of nervous systems. Yet, where threats are detected and how critical threat parameters are measured to guide behavioral responses are unclear. Here, we characterize circuits in the mouse retina that process looming, a visual threat that elicits innate defensive responses in a wide range of animals, including humans (1, 2). We reach six main conclusions. First, a retinal interneuron (the VG3 amacrine cell) detects looming through stimulus-specific delays between synaptic excitation and inhibition. Second, the dendrites of VG3 amacrine cells enhance and spatially isolate looming signals. Third, the looming-sensitive dendrites of VG3 amacrine cells provide excitatory input to two ganglion cell types: W3 and OFFα. Fourth, W3 and OFFα ganglion cells combine shared excitation with dissimilar inhibition to encode the onset and speed of looming, respectively. Fifth, looming responses of W3 and OFFα ganglion cells depend on VG3 amacrine cells. Sixth, innate defensive responses to looming, but not other visual behaviors, depend on VG3 amacrine cells.

A contrast-specific delay in synaptic inputs generates feature selectivity
VG3 amacrine cells receive excitatory input from ON and OFF bipolar cells, which signal light increments (i.e., positive contrast) and decrements (i.e., negative contrast), respectively (26, 27, 39). We find that VG3 amacrine cells respond more strongly to looming than white looming because of a contrast-specific delay between excitation and inhibition. Whereas excitation and inhibition coincide during
white looming, excitation precedes inhibition during looming (Fig. 1). This could either be due to differences in the size or arrangement of ON and OFF excitatory and inhibitory receptive fields, differences in the kinetics of the underlying mechanisms, or a combination of both. Maps constructed from responses to stationary stimuli indicate that OFF receptive fields of VG3 amacrine cells are smaller than their ON counterparts (22, 26, 27). The smaller OFF receptive fields explain the faster time to peak excitation for looming versus white looming (Fig. 1). However, the size ratios of the excitatory and inhibitory receptive fields of VG3 amacrine cells are likely driven by glutamate release from OFF bipolar cells. Identification of the amacrine cell types that inhibit VG3 amacrine cells will enable tests of this hypothesis.

**Dendritic processing enhances feature selectivity**

The dendrites of many neurons process synaptic inputs locally (41). Yet, the mechanisms of dendritic processing and its contributions to sensory feature detection remain mostly unknown (28, 29, 42). We combined patch-clamp recordings and two-photon calcium imaging to analyze how the dendrites of VG3 amacrine cells process visual threats. We found that dendritic processing enhances the looming preferences of VG3 amacrine cells via (i) thresholding and (ii) spatial segregation. The preference of VG3 amacrine cells for looming versus white looming was greater for dendritic calcium transients than voltage responses (Fig. 2). This was true across regions of interest (ROIs) with different baseline fluorescence, suggesting that it is not an effect of the calcium indicator (22). Instead, the higher selectivity of dendritic calcium signals likely reflects activation thresholds
of voltage-gated calcium channels, which are expressed in VG3 amacrine cells and contribute to transmitter release (27, 39). These activation thresholds sharpen the tuning of dendritic signals (43, 44). The cooperativity of calcium in promoting vesicle fusion likely further enhances looming preferences at the level of dendritic transmitter release (45). Thus, layered thresholding nonlinearities help VG3 dendrites detect visual threats.

VG3 dendrites limit the spread of synaptic inputs vertically and horizontally. Restrictions on vertical signal propagation segregate the processing of negative- and positive-contrast stimuli, which are relayed to different layers of their arbor by ON and OFF bipolar cells, respectively (22, 23). Vertical segregation enhances the looming preferences of the proximal layer of the VG3 arbor by preventing contamination from the white looming signals in the distal layer. In the VG3 plexus, the arbor of seven neighboring cells overlap at any point (26). Restrictions on horizontal signal spread (22, 23) increase the spatial resolution of looming signals and impose activity patterns with subcellular precision on the VG3 plexus irrespective of the cell identities of its constituent dendrites. Thus, spatial separation enhances the feature selectivity and topographic precision of looming responses in VG3 dendrites. Locally processing dendrites that receive input and provide output are a conserved feature of interneurons at the first three synapses of the visual system (i.e., horizontal cells, amacrine cells, and local interneurons of the thalamus) (18, 46, 47).

**Fig. 5.** VG3 removal reduces the density of excitatory synapses on W3 and OFFα ganglion cells. (A and B) Overview projections and excerpts (insets) of W3 dendrites biolistically labeled with CFP and PSD95-YFP in VG3-DTR mice (B) and littermate controls (A). (C and D) Summary data show that W3 dendrite length was unchanged (C; control: \( n = 8 \) cells; VG3-DTR: \( n = 5 \) cells, \( P = 0.35 \), Mann-Whitney U test), but excitatory synapse density was reduced (D; \( P = 0.0016 \), by Wilcoxon rank-sum test) by VG3 amacrine cell removal. (E and F) Overview projections and excerpts of OFFα dendrites biolistically labeled as in (A). (G and H) Summary data indicate that OFFα dendrite length was unchanged (G; control: \( n = 6 \) cells; VG3-DTR: \( n = 6 \) cells, \( P = 0.24 \), Mann-Whitney U test), but excitatory synapse density was reduced (H; \( P = 0.0022 \), Mann-Whitney U test) by VG3 amacrine cell removal.

**Fig. 6.** Looming responses of W3 and OFFα ganglion cells depend on VG3 amacrine cells. (A to F) Representative traces and summary data of W3 (A to C) and OFFα (D to F) ganglion cell spike responses to looming. The speed for all representative traces in this figure is 800 \( \mu \text{m s}^{-1} \). Across stimulus speeds and contrasts (including luminance-neutral approach motion; N), spike responses of W3 (control: \( n = 6 \) cells; VG3-DTR: \( n = 6 \) cells; speed: \( P = 4 \times 10^{-5} \); contrast: \( P = 0.0017 \), bootstrapping) and OFFα (control: \( n = 4 \) to 5 cells; VG3-DTR: \( n = 6 \) to 8 cells; speed: \( P = 0.048 \); contrast: \( P = 0.047 \), bootstrapping) ganglion cells were attenuated by VG3 amacrine cell removal. (G to L) Synaptic excitation was reduced by VG3 amacrine cell removal in W3 (G to I; control: \( n = 5 \) cells; VG3-DTR: \( n = 7 \) to 8 cells; speed: \( P = 0.0024 \); contrast: \( P = 0.0021 \), bootstrapping) and OFFα (J to L; control: \( n = 4 \) cells; VG3-DTR: \( n = 4 \) cells; speed: \( P = 3 \times 10^{-5} \); contrast: \( P = 0.0013 \), bootstrapping) ganglion cells. (M to R) Looming-evoked synaptic inhibition was unaffected by VG3 amacrine cell removal in W3 (M to O; control: \( n = 5 \) cells; VG3-DTR: \( n = 6 \) to 7 cells; speed: \( P = 0.77 \); contrast: \( P = 0.82 \), bootstrapping) and OFFα (P to R; control: \( n = 5 \) cells; VG3-DTR: \( n = 4 \) cells; speed: \( P = 0.91 \); contrast: \( P = 0.83 \), bootstrapping) ganglion cells. The control data for different looming speeds in this figure are the same as those in Fig. 4. Exc, excitation; Inh, inhibition.
In each case, they enhance spatial resolution and enable individual neurons to make different contributions to parallel pathways that generate and propagate feature-selective signals.

**Synaptic mechanisms of parallel parameter estimation in divergent circuits**

Using optogenetics and anatomical circuit reconstructions, we show that VG3 amacrine cells form glutamatergic synapses with W3 and OFFα ganglion cells (Fig. 2) (26, 27, 35). Analyses of synaptic contacts in control mice (Fig. 2) (26) and synapse loss in VG3-DTR mice suggest that VG3 amacrine cells provide approximately half of the excitatory input to W3 and OFFα ganglion cells (Fig. 5); bipolar cells likely account for the remainder. W3 and OFFα ganglion cells combine shared excitation with categorically different inhibition to encode distinct parameters of looming (Fig. 4). During looming, W3 ganglion cells receive delayed inhibition (Fig. 4) from TH2 and other wide-field GABAergic amacrine cells (32, 35, 48). In this feedforward circuit, inhibitory and excitatory receptive fields have the opposite sign but similar size. As a result, OFFα ganglion cells’ firing ramps up gradually during looming. Because excitation increases unopposed with stimulus speed, OFFα ganglion cells encode the speed of expanding motion. Together, these findings highlight the modularity of interneuron circuits in the retina, in which a single amacrine cell can distribute signals to multiple targets (i.e., divergence modularity), which combine them with input from other amacrine cells that make distinct and separable contributions to the overall computation (i.e., convergence modularity). Modular circuits transform signals from VG3 dendrites into parallel retinal outputs that encode the onset (or critical size) and speed of looming, respectively. It will be interesting to see how modular combinations of amacrine cells generate other feature representations in the retinal output and whether the principle of modularity generalizes to interneuron circuits elsewhere in the nervous system (49).

**Behavioral significance of retinal feature detection**

More than 60 years ago, Lettvin et al. (11) suggested that the frog retina explicitly reports salient events in the visual world to the frog brain. The behavioral significance of this retinal event detection, however, remained untested. Here, we show that VG3 amacrine cells and downstream ganglion cells signal looming and drive defensive responses by which mice evade aerial predators (Fig. 7). We find that W3 and OFFα ganglion cells signal different aspects of looming, critical size, and speed, respectively (Fig. 4). Similar response types have been
identified in the looming-sensitive tectal neurons of pigeons (17), indicating a conserved strategy in assessing predatory approaches.

In the taxonomy of visual motion, the first distinction is between (local) object motion and (global) self-generated motion (50). Looming is a specific form of object motion. VG3 amacrine cells distinguish object motion from self-generated motion and respond strongly to looming (Fig. 1) (26). Object motion sensitivity is tested with patterned stimuli that balance bright and dark regions (26, 32, 51), whereas looming consists of a radially expanding darkness (3, 50).

The VG3 amacrine cell responses to balanced object motion and looming differ in their subcellular distribution. All VG3 dendrites respond to balanced object motion (22), whereas looming responses are restricted to the proximal layer of the VG3 arbor (Fig. 2). These stimulus-specific dendritic response distributions likely cause VG3 amacrine cells to activate (and suppress) different ganglion cell complements and contribute to the different behavioral responses to looming and balanced object motion.

We characterize the VG3-dependent looming responses of W3 and OFFα ganglion cells (Figs. 4 and 6). How other ganglion cell types, including suppressed-by-contrast ganglion cells, which receive stimulus-specific inhibition from VG3 amacrine cells (33, 34), respond to looming and how their responses are shaped by VG3 amacrine cells remains to be tested. Furthermore, how the VG3-dependent signals of W3, OFFα, and other ganglion cells are processed in downstream pathways that mediate defensive responses to looming is an exciting area for future investigation (5–10, 52). VG3 amacrine cells are conserved from rodents to primates (53, 54). We speculate that VG3 amacrine cells contribute to the innate defensive responses of infants to expanding shadows (55).

**MATERIALS AND METHODS**

**Animals**

To genetically target VG3 amacrine cells, we used bacterial artificial chromosome (BAC) transgenic mice expressing Cre recombinase under the control of regulatory sequences of the SkL7a8 gene, which encodes VG3 (VG3-Cre mice) (39). We crossed VG3-Cre mice to a fluorescent reporter (Ai9) (56) and optogenetic actuator (Ai32) (57) 57 lines to enable targeted recording and connectivity mapping. For subcellular analyses of visual processing by two-photon imaging, we crossed VG3-Cre mice to a Cre-dependent manner (DTR mice) (59). We injected double-positive offspring (VG3-DTR mice) and their Cre and/or DTR littermates (control mice) intraperitoneally or intraocularly (i.o.) with DTR. For intraperitoneal administration, mice were injected four times with DT (1 mg per 50 g body weight) once a day every other day starting at postnatal day 30 (P30). For i.o. administration, mice were injected once with 10 to 15 ng of DT in each eye at P30. Experiments were performed 1 to 2 weeks after the last injection. All procedures in this study were approved by the Animal Studies Committee of Washington University School of Medicine (protocol nos. 20170033 and 20-0055) and performed in compliance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

**Patch-clamp recordings and optogenetics**

We obtained patch-clamp recordings of VG3 amacrine cells and W3 and OFFα ganglion cells in retinal flat-mount preparations. Retinas from dark-adapted (>2 hours) mice were isolated under infrared illumination, mounted on membrane disk (Anodisc, Whatman), and continually perfused (7 ml min⁻¹) with warm (33°C) bicarbonate-buffered mouse artificial cerebrospinal fluid (mACSFNaHCO₃) containing 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl₂, 1.25 mM NaH₂PO₄, 2 mM CaCl₂, 20 mM glucose, 26 mM NaHCO₃, and 0.5 mM L-glutamine equilibrated with 95% O₂/5% CO₂. For optogenetics, t-2-amino-4-phosphonobutyric acid (AP4; 20 mM) and (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-3-yl)-5-methylpyrimidine-2,4-dione (ACET) (10 mM) were added to mACSFNaHCO₃ to block transmission of photoreceptor signals to ON and OFF bipolar cells, respectively. The intracellular solution for current-clamp recordings contained 125 mM K-glutamate, 10 mM NaCl, 1 mM MgCl₂, 10 mM EGTA, 5 mM Heps, 5 mM adenosine 5’-triphosphate–Na, and 0.1 mM guanosine 5’-triphosphate–Na (pH adjusted to 7.2 with KOH). The intracellular solution for voltage-clamp recordings contained 120 mM Cs-gluconate, 1 mM CaCl₂, 1 mM MgCl₂, 10 mM Na-Heps, 11 mM EGTA, 10 mM tetraethylammonium (TEA)–Cl, and 2 mM Qx314 (pH adjusted to 7.2 with CsOH). Patch pipettes had resistances of 4 to 7 MΩ (borosilicate glass). Signals were amplified with a Multiclamp 700B amplifier (Molecular Devices), filtered at 3 kHz (8-pole Bessel low-pass), and sampled at 10 kHz (Digitida 1440A, Molecular Devices). In voltage-clamp recordings, series resistance (10 to 15 MΩ) was compensated electronically by ~75%. Excitatory postsynaptic currents and inhibitory postsynaptic currents were isolated by holding cells at the reversal potential of inhibitory (~60 mV) and excitatory (0 mV) conductances, respectively. In current-clamp recordings, no bias currents were injected. We targeted VG3 amacrine cells under two-photon guidance and recorded W3 and OFFα ganglion cells under conventional infrared illumination. We identified ganglion cell types and confirmed VG3 amacrine cell identity by including Alexa 488 or Alexa 568 (0.1 mM) in the intracellular solution and acquiring two-photon image stacks at the end of each recording.

Visual stimuli were presented on an organic light-emitting display (eMagin) and projected onto the photoreceptor side of the dorsal retina via the substage condenser. In looming stimuli, a 20-μm (0.6°) disk appeared on a gray background, remained stable for 1 s, then expanded to 600 μm (17.6°), remained at this size for 1 s, and disappeared (Fig. 1). The contrast of the disk relative to the background was varied (~100 to 100% Weber contrast), as was the speed of expansion (100 to 1000 μm s⁻¹ or 2.9 to 29° s⁻¹). In receding stimuli, the inverse sequence to looming stimuli was shown. In luminance-neutral approaching motion stimuli, the summed intensity in a 600-μm-diameter disk was kept constant as the central disk expanded (Fig. 6 and fig. S1). Response amplitudes were measured as the mean of the respective traces in 100-ms windows centered on their extrema.

To activate Channelrhodopsin-2 in VG3-Cre Ai32 retinas, light stimuli were presented from the ganglion cell side through a 20 × 0.95 numerical aperture (NA) water immersion objective. Light from a mercury bulb (Olympus) was bandpass-filtered (426 to 446 nm, Chroma) and attenuated by neutral density filters (Chroma). In targeted recordings from VG3 amacrine cells, we previously identified an optogenetic stimulus intensity (3.15 × 10⁻¹ W mm⁻²) that matches photoreceptor-mediated light responses of VG3 amacrine cells (33). Stimulus timing was controlled by a Uniblitz shutter (Vincent Associates).

**Two-photon calcium imaging**

The retina was isolated and flat-mounted as for patch-clamp recordings. A custom-built upright two-photon microscope (Scientifica)
controlled by the Scanimage r3.8 MATLAB toolbox was used to acquire images via a DAQ NI PCIe6110 data acquisition board (National Instruments). In VG3-Cre Ai148 mice, GCaMP6f was excited with a Mai-Tai laser (Spectra-Physics) tuned to 930 nm (laser power: <7 mW at the sample), and fluorescence emission was collected via a 60×1.0 NA water immersion objective (Olympus) filtered through consecutive 450-nm long-pass (Thorphabs) and 513- to 528-nm band-pass filters (Chroma). This blocked visual stimulus light (385 nm) from reaching the PMT. We acquired images throughout this study at 9.5 Hz with a pixel density of 4.7 pixels/μm². Imaging depths were registered by their relative distances to the borders between the inner plexiform layer (IPL) and the inner nuclear layer (IPL depth: 0%) and between the IPL and the ganglion cell layer (IPL depth: 100%). Borders were detected in transmitted light images. Scan fields at different IPL depths were imaged in pseudorandom order, and for each scan, the retina was adaptated to the laser light for 30 s before the presentation of visual stimuli. Throughout the experiments, retinas we perfused at ~7 ml min⁻¹ with 33°C mACSF NaHCO₃ equilibrated with 95% O₂/5% CO₂. Images were denoised, registered, and segmented into functionally distinct ROIs as described previously (22).

Visual stimuli were presented from a ultraviolet E4500 MKII PLUS II projector illuminated by a 385-nm light-emitting diode (EKB Technologies) and focused onto the photoreceptors of the ventral retina, where S-opsin dominates (60%), via the substage condenser. We used neutral density filters (Thorlabs, FW102CNEB) to attenuate the output of the projector. Stimuli were centered on the two-photon laser (385 nm) from reaching the PMT. We acquired images throughout this study at 9.5 Hz with a pixel density of 4.7 pixels/μm². Imaging depths were registered by their relative distances to the borders between the inner plexiform layer (IPL) and the inner nuclear layer (IPL depth: 0%) and between the IPL and the ganglion cell layer (IPL depth: 100%). Borders were detected in transmitted light images. Scan fields at different IPL depths were imaged in pseudorandom order, and for each scan, the retina was adaptated to the laser light for 30 s before the presentation of visual stimuli. Throughout the experiments, retinas we perfused at ~7 ml min⁻¹ with 33°C mACSF NaHCO₃ equilibrated with 95% O₂/5% CO₂. Images were denoised, registered, and segmented into functionally distinct ROIs as described previously (22).

Visual stimuli were presented from a ultraviolet E4500 MKII PLUS II projector illuminated by a 385-nm light-emitting diode (EKB Technologies) and focused onto the photoreceptors of the ventral retina, where S-opsin dominates (60%), via the substage condenser. We used neutral density filters (Thorlabs, FW102CNEB) to attenuate the output of the projector. Stimuli were centered on the two-photon laser (385 nm) from reaching the PMT. We acquired images throughout this study at 9.5 Hz with a pixel density of 4.7 pixels/μm². Imaging depths were registered by their relative distances to the borders between the inner plexiform layer (IPL) and the inner nuclear layer (IPL depth: 0%) and between the IPL and the ganglion cell layer (IPL depth: 100%). Borders were detected in transmitted light images. Scan fields at different IPL depths were imaged in pseudorandom order, and for each scan, the retina was adaptated to the laser light for 30 s before the presentation of visual stimuli. Throughout the experiments, retinas we perfused at ~7 ml min⁻¹ with 33°C mACSF NaHCO₃ equilibrated with 95% O₂/5% CO₂. Images were denoised, registered, and segmented into functionally distinct ROIs as described previously (22).

Visual stimuli were presented from a ultraviolet E4500 MKII PLUS II projector illuminated by a 385-nm light-emitting diode (EKB Technologies) and focused onto the photoreceptors of the ventral retina, where S-opsin dominates (60%), via the substage condenser. We used neutral density filters (Thorlabs, FW102CNEB) to attenuate the output of the projector. Stimuli were centered on the two-photon laser (385 nm) from reaching the PMT. We acquired images throughout this study at 9.5 Hz with a pixel density of 4.7 pixels/μm². Imaging depths were registered by their relative distances to the borders between the inner plexiform layer (IPL) and the inner nuclear layer (IPL depth: 0%) and between the IPL and the ganglion cell layer (IPL depth: 100%). Borders were detected in transmitted light images. Scan fields at different IPL depths were imaged in pseudorandom order, and for each scan, the retina was adaptated to the laser light for 30 s before the presentation of visual stimuli. Throughout the experiments, retinas we perfused at ~7 ml min⁻¹ with 33°C mACSF NaHCO₃ equilibrated with 95% O₂/5% CO₂. Images were denoised, registered, and segmented into functionally distinct ROIs as described previously (22).

Visual stimuli were presented from a ultraviolet E4500 MKII PLUS II projector illuminated by a 385-nm light-emitting diode (EKB Technologies) and focused onto the photoreceptors of the ventral retina, where S-opsin dominates (60%), via the substage condenser. We used neutral density filters (Thorlabs, FW102CNEB) to attenuate the output of the projector. Stimuli were centered on the two-photon laser (385 nm) from reaching the PMT. We acquired images throughout this study at 9.5 Hz with a pixel density of 4.7 pixels/μm². Imaging depths were registered by their relative distances to the borders between the inner plexiform layer (IPL) and the inner nuclear layer (IPL depth: 0%) and between the IPL and the ganglion cell layer (IPL depth: 100%). Borders were detected in transmitted light images. Scan fields at different IPL depths were imaged in pseudorandom order, and for each scan, the retina was adaptated to the laser light for 30 s before the presentation of visual stimuli. Throughout the experiments, retinas we perfused at ~7 ml min⁻¹ with 33°C mACSF NaHCO₃ equilibrated with 95% O₂/5% CO₂. Images were denoised, registered, and segmented into functionally distinct ROIs as described previously (22).

Visual stimuli were presented from a ultraviolet E4500 MKII PLUS II projector illuminated by a 385-nm light-emitting diode (EKB Technologies) and focused onto the photoreceptors of the ventral retina, where S-opsin dominates (60%), via the substage condenser. We used neutral density filters (Thorlabs, FW102CNEB) to attenuate the output of the projector. Stimuli were centered on the two-photon laser (385 nm) from reaching the PMT. We acquired images throughout this study at 9.5 Hz with a pixel density of 4.7 pixels/μm². Imaging depths were registered by their relative distances to the borders between the inner plexiform layer (IPL) and the inner nuclear layer (IPL depth: 0%) and between the IPL and the ganglion cell layer (IPL depth: 100%). Borders were detected in transmitted light images. Scan fields at different IPL depths were imaged in pseudorandom order, and for each scan, the retina was adaptated to the laser light for 30 s before the presentation of visual stimuli. Throughout the experiments, retinas we perfused at ~7 ml min⁻¹ with 33°C mACSF NaHCO₃ equilibrated with 95% O₂/5% CO₂. Images were denoised, registered, and segmented into functionally distinct ROIs as described previously (22).
with kinetic and size parameters matching the looming stimulus (Fig. 1, B and C). Mice were acclimated to the behavioral arena for at least 5 min before stimulus presentation. Because mice habituate to these stimuli, only the first presentation of each stimulus for an animal was included in our analysis. We recorded and analyzed mouse behavior automatically using ANY-maze tracking software (Stoelting). Consistent with previous studies (8), we defined mice as frozen when the freezing score was <30. We report the percentage of time mice spent in this state from stimulus onset to 20 s later as a summary parameter. We confirmed that varying the freezing score threshold (±50%) did not qualitatively change our results.

Visual cliff tests were performed on a 56-cm by 41-cm platform (width x depth) with a 3.8-cm by 1.7-cm ridge (height x width) across its center. On one side of the ridge, a checkered pattern was immediately below the platform (i.e., the shallow side), and on the other side, an identical checkered pattern was 61 cm below the platform (i.e., the cliff side). Mice were placed on the ridge and filmed via a USB camera (720p, ELP, or C310, Logitech). For each mouse, we measured the percentage of shallow-side choices in at least 10 trials.

**Statistical analyses**

Data were analyzed using scripts written in MATLAB (The MathWorks). Nonparametric tests (Mann-Whitney U, Wilcoxon signed-rank, Friedman’s, and Kruskal-Wallis) and b

**REFERENCES AND NOTES**


Acknowledgments: We thank all members of the Kerschensteiner laboratory for discussions throughout the project; B. Wang and L. Zhao for expert technical assistance; and M. Bagnall, M. Kerschensteiner, J. L. Morgan, and F. Soto for critical reading of the manuscript. Funding: This work was supported by the NIH (EY023341, EY026978, EY027411, and EY030623 to D.K.) and the Vision Core grant EY0268), the Grace Nelson Lacy Research Fund (director: D.K.), and an unrestricted grant to the Department of Ophthalmology and Visual Sciences from Research to Prevent Blindness. Author contributions: T.K. and D.K. conceived of this study. T.K. and K.P.J. performed patch-clamp recordings. T.K. and D.K. performed anatomy experiments. T.K. and D.K. performed behavioral experiments. All authors analyzed data and contributed to the experimental design. D.K. wrote the manuscript with input from all authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 25 May 2020
Accepted 1 October 2020
Published 18 November 2020
10.1126/sciadv.abc9920

Citation: T. Kim, N. Shen, J.-C. Hisiang, K. Johnson, D. Kerschensteiner, Dendritic and parallel processing of visual threats in the retina control defensive responses. Sci. Adv. 6, eabc9920 (2020).
Dendritic and parallel processing of visual threats in the retina control defensive responses
T. Kim, N. Shen, J.-C. Hsiang, K.P. Johnson and D. Kerschensteiner

Sci Adv 6 (47), eabc9920.
DOI: 10.1126/sciadv.abc9920

Use of this article is subject to the Terms of Service