Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease

Jonas B. Nielsen
University of Michigan-Ann Arbor
Karen Schwander
Washington University School of Medicine in St. Louis
et al.

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Nielsen, Jonas B.; Schwander, Karen; and al., et, "Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease." Nature Communications. 11, 1. 6417 (2020).
https://digitalcommons.wustl.edu/open_access_pubs/10020
Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease

Jonas B. Nielsen et al.#

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD drug targets without these adverse effects, we perform genome-wide analyses of participants in the HUNT Study in Norway (n = 69,479) to search for protein-altering variants with beneficial impact on quantitative blood traits related to cardiovascular disease, but without detrimental impact on liver function. We identify 76 (11 previously unreported) presumed causal protein-altering variants associated with one or more CVD- or liver-related blood traits. Nine of the variants are predicted to result in loss-of-function of the protein. This includes ZNFS29:p.K405X, which is associated with decreased low-density-lipoprotein (LDL) cholesterol (P = 1.3 × 10⁻⁸) without being associated with liver enzymes or non-fasting blood glucose. Silencing of ZNFS29 in human hepatoma cells results in upregulation of LDL receptor and increased LDL uptake in the cells. This suggests that inhibition of ZNFS29 or its gene product should be prioritized as a novel candidate drug target for treating dyslipidemia and associated CVD.

#A list of authors and their affiliations appears at the end of the paper.
Cardiovascular disease (CVD) – in particular cerebrovascular and ischemic heart diseases – is the leading cause of death globally. Lowering circulating lipids is an important treatment strategy to reduce risk. However, some pharmaceutical mechanisms of lipid lowering and CVD risk reduction may unfortunately increase risk of fatty liver disease or other metabolic disorders.

The vast majority of novel candidate drugs that enter clinical testing fail to demonstrate sufficient safety and efficacy to gain regulatory approval. This is largely due to poor predictive value of preclinical models of disease along with a lack of knowledge about the long-term consequences of targeting specific biological processes in humans. It has been estimated, however, that drugs with genetic support of efficacy are twice as likely to have success in clinical testing.

We aim to identify novel candidate pharmaceutical strategies for CVD risk reduction that, importantly, are unlikely to increase the risk of liver disease, diabetes, or other metabolic disorders. To attain this, we conduct a large data-driven genomic discovery effort to identify presumed causal protein-altering variants with impact on lipids and other liver-related blood traits. In particular, we are interested in identifying presumed causal protein-altering variants associated with a more favorable lipid profile without being associated with elevated liver enzymes or vice versa.

We analyze 9 liver-related blood traits in close to 70,000 participants in the Trøndelag Health (HUNT) Study. The HUNT Study is a large population-based health survey conducted in a geographically confined region in Norway. The examined traits are related to: (i) blood lipid levels which impact cardiovascular, neurological and eye-related diseases: total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels; (ii) C-reactive protein (CRP; only values <15 mg/L were included) which is predictive of cardiovascular disease; and (iii) enzymes which are directly genotyped variants that were included as custom content genotyping if they were (i) identified in Norwegian clinics for familial hypercholesterolemia, or (iii) not-previously-observed variants predicted to introduce a premature stop codon in any of 56 genes. We consider these 24 loci as protein-altering variants, including 4 LoF variants, which are associated with one or more of the liver-related blood traits (Supplementary Data 3).

For the purpose of further fine-mapping of loci and identification of additional presumed causal protein-altering variants, we performed trans-ancestry meta-analyses by combining summary statistics based on the primary discovery effort in HUNT with additional GWAS statistical from Sardinia (Sardinia cohort) and Japan (Biobank Japan). The combined meta-analyses comprised up to 203,476 participants (N range 128,794 for CRP to 203,476 for TC) and 31.5 million unique variants (n range 24.7–31.5 million) (Supplementary Fig. 3). The analyses resulted in identification of an additional 86 loci and 351 independent variants, including 13 presumed causal protein-altering variants. One of the protein-altering variants comprise a previously reported LoF variant in HBB (p.Q40X) associated with decreased TC (Table 1 and Supplementary Data 4).

To identify rare HUNT-specific presumed causal protein-altering variants, we performed genome-wide association testing for the 9 liver-related blood traits in up to 57,060 HUNT Study participants (N range 15,520 for AST to 57,060 for TG) based on directly genotyped variants that were included as custom content on the array and not part of the primary GWAS (see Materials and Methods for details). In brief, variants were selected for custom content genotyping if they were (i) identified by HUNT-specific low-coverage (5x) WGS (N = 2202 HUNT Study participants), (ii) observed in Norwegian clinics for familial hypercholesterolemia, or (iii) not-previously-observed variants predicted to introduce a premature stop codon in any of 56 genes in which protein-altering variants are deemed clinically actionable by The American College of Medical Genetics and Genomics (ACMG56). This resulted in identification of an additional 11 protein-altering variants, including 4 LoF variants, which are associated with one or more of the 9 traits. Five of the 11 variants originated from region-specific WGS and all variants are rare (ranging from 1 in 178 to 1 in 6313 individuals) (Table 1 and Supplementary Data 5).

Combining all discovery strategies, we identified a total of 674 unique independent variants within 287 loci associated with at least one of the 9 quantitative liver-related blood traits. Of the 287 loci, 92 have not previously been associated with the trait of interest (Supplementary Fig. 4). We identified genome-wide significant associations with at least one trait at 76 presumed causal protein-altering variants, of which 9 result in loss-of-function (LoF) of a specific protein – 3 frameshift indels and 6 premature stop codons (Table 1 and Fig. 1). Eleven of the 76 protein-altering variants, including 1 LoF variant, do not fall within a previously reported locus with respect to the trait of interest.

Results

Genomic discovery of presumed causal protein-altering variants. We imputed 26 million genomic variants with sufficient quality and at least 10 minor allele copies into 69,479 participants in the HUNT Study (Supplementary Data 1). Using a linear mixed model to account for relatedness among study participants, we tested for genome-wide association (P < 5 × 10^-8) with 9 liver-related blood traits. We identified 201 genomic regions (i.e., loci) associated with one or more of the traits. At 24 of the 201 loci, the locus index variant alters (n = 22) or results in loss-of-function (LoF) (n = 2) of the protein. We consider these 24 variants as presumed causally related to the trait of interest (Supplementary Fig. 2 and Supplementary Data 2). Stepwise conditional analyses resulted in identification of an additional 150 independently associated variants within the 201 loci. These include 28 additional protein-altering variants, hereof 2 LoF variants, which are significantly and independently associated with one or more of the liver-related blood traits (Supplementary Data 3).

For the purpose of further fine-mapping of loci and identification of additional presumed causal protein-altering variants, we performed trans-ancestry meta-analyses by combining summary statistics based on the primary discovery effort in HUNT with additional GWAS statistical from Sardinia (Sardinia cohort) and Japan (Biobank Japan). The combined meta-analyses comprised up to 203,476 participants (N range 128,794 for CRP to 203,476 for TC) and 31.5 million unique variants (n range 24.7–31.5 million) (Supplementary Fig. 3). The analyses resulted in identification of an additional 86 loci and 351 independent variants, including 13 presumed causal protein-altering variants. One of the protein-altering variants comprise a previously reported LoF variant in HBB (p.Q40X) associated with decreased TC (Table 1 and Supplementary Data 4).

To identify rare HUNT-specific presumed causal protein-altering variants, we performed genome-wide association testing for the 9 liver-related blood traits in up to 57,060 HUNT Study participants (N range 15,520 for AST to 57,060 for TG) based on directly genotyped variants that were included as custom content on the array and not part of the primary GWAS (see Materials and Methods for details). In brief, variants were selected for custom content genotyping if they were (i) identified by HUNT-specific low-coverage (5x) WGS (N = 2202 HUNT Study participants), (ii) observed in Norwegian clinics for familial hypercholesterolemia, or (iii) not-previously-observed variants predicted to introduce a premature stop codon in any of 56 genes in which protein-altering variants are deemed clinically actionable by The American College of Medical Genetics and Genomics (ACMG56). This resulted in identification of an additional 11 protein-altering variants, including 4 LoF variants, which are associated with one or more of the 9 traits. Five of the 11 variants originated from region-specific WGS and all variants are rare (ranging from 1 in 178 to 1 in 6313 individuals) (Table 1 and Supplementary Data 5).

Combining all discovery strategies, we identified a total of 674 unique independent variants within 287 loci associated with at least one of the 9 quantitative liver-related blood traits. Of the 287 loci, 92 have not previously been associated with the trait of interest (Supplementary Fig. 4). We identified genome-wide significant associations with at least one trait at 76 presumed causal protein-altering variants, of which 9 result in loss-of-function (LoF) of a specific protein – 3 frameshift indels and 6 premature stop codons (Table 1 and Fig. 1). Eleven of the 76 protein-altering variants, including 1 LoF variant, do not fall within a previously reported locus with respect to the trait of interest.
Table 1 Loss-of-function variants associated with liver-related blood traits.

<table>
<thead>
<tr>
<th>rs ID</th>
<th>Minor allele</th>
<th>MAF</th>
<th>Trait</th>
<th>N</th>
<th>Beta</th>
<th>SD</th>
<th>SE</th>
<th>P</th>
<th>Discovery method</th>
<th>Novelty of variant-trait association</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs113569197</td>
<td>C/CT</td>
<td>0.099</td>
<td>LDL-C</td>
<td>15</td>
<td>2.101481</td>
<td>0.009</td>
<td>0.075</td>
<td>1.3 × 10⁻³⁸</td>
<td>Custom array</td>
<td>Novel (in known LDL-C locus, known gene 17,18)</td>
</tr>
<tr>
<td>rs113569197</td>
<td>C/CT</td>
<td>0.099</td>
<td>LDL-C</td>
<td>15</td>
<td>2.2101481</td>
<td>0.009</td>
<td>0.075</td>
<td>1.3 × 10⁻³⁸</td>
<td>Custom array</td>
<td>Novel (in known LDL-C locus, known gene 17,18)</td>
</tr>
</tbody>
</table>

Table 1 (continued)

Gene variant | Chr pos | MAF | Trait | N | Beta | SD | SE | P | Discovery method | Novelty of variant-trait association |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs745457003</td>
<td>T/C</td>
<td>0.011</td>
<td>LDL-C</td>
<td>107</td>
<td>6.21007608</td>
<td>0.011</td>
<td>0.075</td>
<td>1.3 × 10⁻³⁸</td>
<td>Custom array</td>
<td>Novel (in known LDL-C locus, known gene 17,18)</td>
</tr>
<tr>
<td>rs573778305</td>
<td>C/CT</td>
<td>0.85</td>
<td>ALP</td>
<td>485</td>
<td>0.621007608</td>
<td>0.005</td>
<td>0.075</td>
<td>1.3 × 10⁻³⁸</td>
<td>Custom array</td>
<td>Novel (in known LDL-C locus, known gene 17,18)</td>
</tr>
<tr>
<td>rs11549407</td>
<td>C/CT</td>
<td>0.97</td>
<td>ALP</td>
<td>485</td>
<td>0.621007608</td>
<td>0.005</td>
<td>0.075</td>
<td>1.3 × 10⁻³⁸</td>
<td>Custom array</td>
<td>Novel (in known LDL-C locus, known gene 17,18)</td>
</tr>
<tr>
<td>rs328</td>
<td>G/C</td>
<td>11.9</td>
<td>TG</td>
<td>180981</td>
<td>3.3 × 10⁻³⁵</td>
<td>0.005</td>
<td>0.075</td>
<td>1.3 × 10⁻³⁸</td>
<td>Custom array</td>
<td>Novel (in known LDL-C locus, known gene 17,18)</td>
</tr>
</tbody>
</table>

Functional characterization of ZNF529:p.K405X. We expect that protein-altering variants that are the most strongly associated variants in a region represent functional variants that pinpoint biologically relevant genes and potential drug targets. We also sought not previously described genes that decreased cardiovascular risk factors (such as LDL-C) without increasing risk of liver disease or impact liver enzymes. Thus, we focused on the not previously reported association between ZNF529:p.K405X and LDL-C (beta = -0.6, P = 1.3 × 10⁻⁸) since this variant is neither associated with liver enzymes (P = 0.4–0.9 for all 4 liver enzyme traits, N range 21,530–48,569) nor non-fasting blood glucose (P = 0.93, N = 54,093 individuals) in HUNT.

Zinc finger 529 (ZNF529) does not have a homolog in rodents. To experimentally assess the consequence of ZNF529 LoF on cholesterol metabolism, we transiently knocked-down ZNF529 in human hepatoma HepG2 cells using siRNA (90.1% reduction, P = 2.7 × 10⁻⁸, Fig. 3a, Supplementary Data 6) and conducted an unbiased analysis of gene expression using RNA sequencing. Principal component analysis revealed a distinct gene expression pattern in HepG2 cells following ZNF529 knockdown with a total of 476 differentially expressed genes identified (Supplementary Fig. 6), including a significant upregulation of the LDL receptor (LDLR, FDR = 7.8 × 10⁻⁷) (Supplementary Data 7). Pathway analysis revealed enrichment of general metabolism pathways, drug metabolism pathways, and lipid-related pathways (statin pathway, plasma lipoprotein remodeling and plasma lipoprotein assembly, remodeling, and clearance, P = 6.5 × 10⁻⁴, P = 2.2 × 10⁻², and P = 3.9 × 10⁻², respectively) (Supplementary Data 8). We confirmed the upregulation of LDLR mRNA by qPCR (90.6% increase, P = 2.9 × 10⁻⁸, Fig. 3b, Supplementary Data 9) and protein by western blot (83.0% increase, P = 0.001, Fig. 3c, d, Supplementary Data 10).

We used 1,1-dioctadecyl-3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled LDL to assess the effects of ZNF529 LoF on LDL uptake in HepG2 cells. First, we confirmed that DiI-LDL is taken-up by the cells in a dose-dependent manner, resulting in saturated uptake at 25 μg/ml (Supplementary Fig. 7). Next, we assessed the specificity of the binding in competition experiments to result in LoF of a gene. This included the not previously reported association between ZNF529:p.K405X and decreased LDL-C, which we identified in Norwegian samples via sequencing and custom content genotyping (Table 1). We observed 4 additional LoF variants also resulting in substantially decreased LDL-C (3 nonsense variants in APOB, and a common frameshift indel in SLC22A1; Table 1). The 4 remaining LoF variants are associated with other blood lipid traits (LDLR:p.S474X with TG, HBB:p.Q40X with TC, and LIPC:p.G247Asp11 with HDL-C) or ALP (GPLD1:p.V815Ser46). The previously reported LPL:p.S474X (also known as p.S447X)17,18, is, in contrast to other stop-gain variants in the lipoprotein lipase (LPL) gene, known to result in gain-of-function of LPL19. This explains the association with decreased TG and points to LPL activation as a potential mechanism of CVD risk reduction.

Of the 9 predicted LoF variants, the 4 within LPL, LIPC, and ZNF529 were not even nominally significantly associated (P > 0.05) with ALT, AST, ALP or GGT (Fig. 2). Although we observed two very rare non-coding variants in proximity to ZNF529 that are associated with increased ALT (Supplementary Data 2-3 and Supplementary Fig. 5), these variants are completely independent (r² < 0.01) of ZNF529:p.K405X. Altogether, association results for liver enzymes and blood lipids indicate that hemizygous loss-of-function alleles in LIPC and ZNF529 and gain-of-function alleles in LPL do not cause liver damage, prioritizing these genes as potential drug targets to reduce blood lipids and CVD without liver-damaging side effects.
We sought to replicate homozygous knockout of this gene is compatible with survival.

Fig. 1 Protein-altering variants with effect on lipid and liver-related blood traits. Smile plot comparing the frequency of the blood-trait increasing allele with the allele’s effect size for protein-altering variants significantly (P < 5 × 10−5) associated with a lipid (HDL-C, LDL-C, TG, TC) or liver (ALT, ALP, AST, GGT) trait. The most significant trait is shown for variants with significant association for multiple traits. Color indicates the trait category for which the variant is significant, with loss-of-function variants shown as x. Power curve (dashed line) denotes estimated 90% power in the meta-analysis with a sample size of N = 210,000 at alpha = 5 × 10−8.

between Dil-labeled and unlabeled LDL. Pretreatment of cells with 25-fold excess amounts of unlabeled LDL inhibited the uptake of Dil-LDL (Fig. 3e, Supplementary Fig. 8). After confirming dose-dependent saturation and specificity, we evaluated the effects of ZNF529 silencing on LDL uptake. We found that ZNF529 silencing resulted in a marked increase in Dil-LDL uptake by HepG2 cells which was suppressed in the presence of excess amounts of unlabeled LDL (Fig. 3e). Additionally, we noted a 2.2-fold increase in intracellular cholesterol following ZNF529 knockdown (P < 0.008, Fig. 3f, Supplementary Data 11).

Altogether, these findings suggest that ZNF529 is a regulator of plasma LDL-C via upregulation of hepatic LDLR and enhanced LDL uptake.

Clinical implications of ZNF529:p.K405X. Individuals heterozygous for ZNF529:p.K405X (N = 109, minor allele frequency of 0.1%) had a mean LDL-C level of 2.58 mmol/L (99.8 mg/dL) vs. 3.44 mmol/L (133.0 mg/dL) in non-carriers. This reduction in LDL-C of 25% in heterozygous carriers is in the range of what is seen for treatment with 40 mg of statin20, and usually corresponds to a relative risk reduction of major cardiovascular events by 20–25%2. We only observed one homozygous female carrier. Despite being obese and hypertensive, she was alive at age >90 years and had no diagnosis of cardiovascular disease, liver disease, or diabetes, and had an LDL-C level slightly below average for her age group (3.45 mmol/L [133.4 mg/dL] vs. mean 3.8 mmol/L [147.0 mg/dL] for women >90 years old). This one individual with a natural absence of both copies of ZNF529 suggests that homozygous knockout of this gene is compatible with survival. We sought to replicate ZNF529:p.K405X outside the HUNT Study, but found that the allele count was too low for meaningful association analyses (e.g., 1 copy in 26,638 alleles in the Michigan Genomics Initiative [MGI] and 1 copy in 125,568 alleles in TOPMed). The existence of ZNF529:p.K405X in HUNT was confirmed by Sanger sequencing of the homozygous sample and 9 heterozygous samples (100% match between genotyping and Sanger sequencing) (Supplementary Fig. 9).

Highlight of protein-altering variants with high effect size. We highlight 17 protein-altering variants with an impact >1 standard deviation on the trait (Fig. 1 and Supplementary Data 12). For lipids, protein-altering variants in APOB, LDLR, and PCSK9 that impact LDL-C, and in CETP that impact HDL-C, are well known17. However, for liver enzyme traits, TNK1:p.G574V is a new finding to complement genes previously known to impact or encode liver enzymes including ALPL (with ALP)21, GPD1 (with ALP), and GPT (with ALT)22. This rare TNK1 variant, present in 46 individuals (1 in 814 individuals), was first identified in Norwegian sequenced samples, then genotyped using the custom array, and observed to have a large impact on ALP (beta = 1.2, P = 1.7 × 10−14).

Gene-based burden tests. Gene-based burden results are, in contrast to single variant tests, independent of nearby signals and may point to the functional gene in a region. To identify genes functionally involved in the 9 liver-related blood traits, we performed gene-based burden tests using SKAT-O as implemented in SAIGE-GENE23. We included all protein-altering variants with frequency below 0.5% in the HUNT dataset. Although we found 33 unique genes to be significantly associated (P < 2 × 10−7) with
at least one of 9 liver traits (Supplementary Data 13), in only two cases was the gene-based evidence for association substantially stronger than the strongest single variant. This comprised 10 variants in the gene GPT associated with ALT ($P = 2.35 \times 10^{-66}$ vs. $P = 6.43 \times 10^{-25}$ for rs147998249) and 6 variants in the gene ALPL associated with ALP ($P = 2.9 \times 10^{-239}$ vs. $P = 3.99 \times 10^{-67}$ for rs138587317). These data suggest there are multiple, functional coding rare variants in each of these two genes. The gene-based burden test also identified well-known genes such as CETP and ABCA1 associated with HDL-C, PCSK9, LDLR and APOB associated with LDL-C; the CRP gene associated with CRP; and GLP1R associated with ALP (Supplementary Data 13). Additionally, burden tests for the 3 LoF APOB variants indicated no association with liver enzymes for heterozygous LoF carriers (Supplementary Data 14), highlighting APOB as another potentially valuable pharmaceutical target for blood lipid lowering.

Cross-trait analyses for evaluating potential consequences of gene targeting. To expand our understanding of the 76 presumed causal protein-altering variants, to investigate their impact on disease, and to evaluate potential consequences of targeting the implicated gene or its gene product, we imputed the TOPMed reference panel into the UK Biobank and performed a phenome-wide association study (PheWAS) across 1342 ICD code-defined disease groups24,25, in 408,961 people of white British ancestry. Sixty-four of the 76 protein-altering variants could be imputed sufficiently well ($R^2 > 0.3$). Of 64 variants assessed, we found that 24 variants are associated with one or more diseases at a phenome-wide significance level ($P < 3.5 \times 10^{-5}$) (Fig. 4, Supplementary Fig. 10, and Supplementary Data 15).

To identify potentially useful pharmaceutical strategies that may reduce blood lipid levels and risk of coronary artery disease (CAD) and type 2 diabetes (T2D) without increasing the risk of fatty liver disease, we attempted to identify variants that decreased LDL-C or TG and decreased the risk of cardiovascular disease, but were not associated with changes in liver enzyme levels ($P > 0.05$, Figs. 2, 4, Supplementary Fig. 10 and Supplementary Data 12–15), suggesting that liver function was not altered. The 2 variants with this pattern of association include (i) COBLL1:p.N497D which is associated with decreased TG levels and decreased risk of T2D in both HUNT and UK Biobank and of liver disease in HUNT and (ii) LPL:p.S474X which is associated with decreased risk of CAD, T2D, and hypertension. LDL-C-associated ANGPTL4 p.E40K appears to decrease risk of T2D, CAD, and hypertension but is also associated with an increased risk of ankylosing spondylitis (Supplementary Fig. 10 and Supplementary Data 15), hence a potential complication of targeting this gene.

From the PheWAS, we observed other interesting associations. For example, we found that the variant SERPINA1:p.E366K, which is known to cause alpha-1-antitrypsin deficiency, often complicated by severe liver and pulmonary disease26, is also associated with a decreased risk of myocardial infarction. This finding supports clinical evidence that individuals with alpha-1-antitrypsin deficiency may be protected against coronary artery disease27. The association, however, also suggests caution in ongoing efforts to treat acute myocardial infarction with
exogenous administration of alpha-1-antitrypsin, because the genetic association suggest the opposite effect – an increased risk of myocardial infarction. Another interesting finding is the low-frequency S1PR2 variant p.Y257C (chr19:10224136T>C, MAF = 0.003) which we found to be associated with decreased LDL-C (effect of -0.37 SD, \(P = 6 \times 10^{-9}\)) and a decreased risk of coronary artery disease, including myocardial infarction (odds ratio 0.45, \(P = 0.0005\)), without being associated with liver enzyme traits (Supplementary Data 12).

Further studies are obviously warranted to uncover the biological mechanisms underlying the associations described here, however, each of them could help inform clinical implications of targeting the underlying gene or gene product.

Discussion

By using complementary approaches for genomic association discovery: sequencing, imputation, array-based genotyping, stepwise conditional analyses and trans-ancestry meta-analyses, we identified >650 independent genomic variants associated with quantitative liver-related disease precursors. This included 76 protein-altering variants that we assume to be causally related to one or more of the traits. By broadly considering associations between these protein-altering variants, quantitative traits, and disease endpoints, we prioritize several genes as potential pharmaceutical targets for preventing or treating CVD.

The newly uncovered association and in vitro studies indicate that ZNF529 LoF is associated with lower plasma LDL-C, which could be explained by induction of LDLR in hepatic cells and increased LDL uptake. While these findings indicate a therapeutic potential for lowering plasma LDL-C by ZNF529 inhibition, further studies are warranted to elucidate the mechanisms by which ZNF529 regulates LDLR and LDL uptake in the liver. Considering that ZNF529 does not have a homolog in rodents, the use of animal models for such studies is limited.

Another interesting finding to highlight is the presumed causal low-frequency protein-altering variant S1PR2:p.Y257C that we found to be associated with decreased LDL-C and a >50% reduction in the risk of myocardial infarction, without being associated with altered liver function or non-fasting blood glucose. The variant was identified via low-pass sequencing and custom content genotyping in HUNT. S1PR2 encodes sphingosine-1-phosphate receptor 2, which seems to play a critical role in the endothelial inflammatory response. Several animal models have already indicated that inhibition of S1PR2 could be a valuable pharmaceutical target for vascular recovery in...
coronary artery disease and stroke. The associations that we report here represent the first direct human data supporting that S1PR2 might play an important role in ischemic heart disease.

Taken together, we demonstrate that identifying rare protein-altering variants and careful consideration of multiple phenotypes in well-powered studies may point to promising pharmaceutical drug targets. We used a variety of approaches to identify rare protein-altering variants, and we found that if exome sequencing in well-powered studies may point to promising pharmaceutical drug targets.

Methods
The HUNT Study. The Trøndelag Health Study (HUNT) is a population-based health survey conducted in the county of Trøndelag, Norway, since 1984. Participation in the HUNT Study is based on informed consent and the study has been approved by the Data Inspectorate and the Regional Ethics Committee for Medical Research in Norway (REK: 2014/144). We included a total of 69,479 individuals with values for at least one of the traits examined (ALT, ALP, AST, CRP, GGT, HDL-C, LDL-C, TC, and TG). Genotyping was performed using the Illumina HumanCoreExome v1.1 array with 70,000 additional custom content beads. Variants were selected for genotyping if they were: protein-altering (n = 13,618); modestly associated with lipids in HUNT but not tested in large consortia (n = 960); identified as causing familial hypercholesterolemia in Norwegian patients (n = 110); or predicted to result in a loss-of-function of one of the 56 ACMG genes (n = 27,144, Supplementary Data 16). Additionally, we selected rare variants with 2 or more copies (n = 8720) and nonsense variants with 1 or more copy (n = 756) identified from low-pass whole-genome sequencing of 2202 HUNT samples. Please see Supplementary Data 17 for a summary of selected custom content variants.

Inception was performed from 60,039 TOPMed reference genomes using Minimac3 and variants with imputation quality >0.3 were retained. To account for relatedness within the sample, we performed association testing using the linear mixed model with genetic relationship matrix as implemented in SAIGE [https://github.com/weizhouUMICH/SAIGE]12. Birth year, sex and PC1-4 were included as covariates. Conditional analysis was performed with the same analysis tools and command line options as the association analysis by adding the lead-SNP(s) in a step-wise manner as covariate(s) into the SAIGE step1 parameter estimation until the variant with smallest P value in the locus was >5 × 10^-8.

Biobank Japan. Biobank Japan (BBJ) is a multi-institutional hospital-based registry of ~200,000 individuals from 66 Japanese hospitals collected from 2003 to 2007. Written informed consent was obtained from all participants, as approved by the ethics committees of RIKEN Center for Integrative Medical Sciences and the Institute of Medical Sciences, the University of Tokyo. Genotype, imputation, and QC were performed as described previously14. Briefly, samples were genotyped with Illumina HumanOmniExpressExome or a combination of the Illumina HumanOmniExpress and HumanExome BeadChips and imputed using 1000 Genomes Project Phase 1 version 3 East Asian reference haplotypes. Publicly available summary statistics from linear regression assuming an additive model for quantitative measures of ALP, ALT, AST, CRP, GGT, HDL-C, LDL-C, TC, and TG were used. Quantitative traits were adjusted for age, sex, top 10 PCs of genetic ancestry, and disease status for 47 target diseases. Sample sizes for traits ranged from 70,567 to 134,18214.

Sardinia. 6602 individuals from four villages in the Lanusei valley on Sardinia (>60% of the adult population) were genotyped on four different Illumina Infinium arrays: OmniExpress, Cardio-Metabochip, Immunochip, and Exome Chip.
Low-depth (~4x coverage) whole-genome sequencing on 3839 individuals was performed, of which 2340 were also genotyped. Imputation of 1.1 million indels and 24.1 million biallelic single nucleotide variants was performed using Minimac37 and markers with imputation quality >0.3 (or >0.6 if MAF<1%) were retained. Samples, genotyping, sequencing and variant calling have been previously described18.

Liver samples (ALT, AST, CRP, GGT, HDL-C, TC, and TG) from the first visit were used and LDL-C was computed using the Friedewald Equation13. Association analyses were performed for liver traits assessed in 5570–5942 individuals (median N = 5917) using age, age2 and sex-adjusted inverse-normalized residuals of the outcomes as input to the Efficient Mixed Model Association eXpedited (EMMAX)39 single variant association test (https://github.com/mtk/EFFEMAPTS). Genomic control corrected summary statistics from the contributing cohorts were combined with METAL40 using inverse variance weighted meta-analysis. Meta-analysis was performed for intramural research at the National Institutes of Aging, Baltimore, Maryland, Biomedica (IRGB; Cagliari, Italy), for the MedStar Research Institute (responsible for the informed consent for participants (or consent from their legally authorized representative, if any)), and approved by institutional review boards for the Istituto di Ricerca Genetica e Biomedica (IRGB; Cagliari, Italy), for the MedStar Research Institute (responsible for the informed consent for participants (or consent from their legally authorized representative, if any)), and approved by institutional review boards for the Istituto di Ricerca Genetica e Biomedica (IRGB; Cagliari, Italy).

HepG2 cells. The HepG2 human hepatoma cell line was obtained from the American Type Culture Collection (ATCC) and cultured at 37 °C and 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM). Cells were grown with 10% fetal bovine serum (FBS, Sigma-Aldrich) and 1% Penicillin-Streptomycin (Pen-Strep, Gibco).

ZNF529 gene silencing using small interfering RNA (siRNA). siRNA targeting zinc finger protein 529 (siZNF529: GGCUUUUAGAUUGAAGUAAG) and non-targeting control siRNA (siCTRL) were obtained from Ambion (siRNA, E7760L) and AM4611, respectively. HepG2 cells were transfected with 20 nM of siZNF529 or siCTRL using Lipofectamine RNAiMAX (Invitrogen) in Opti-MEM reduced-serum medium (Gibco) according to the manufacturer’s protocol39. Cellular lipid or protein extraction, RNA isolation or LDL uptake assays were conducted 48 h post transfection.

RNA sequencing. Total RNA was purified from HepG2 cells using the QiAGEN’s RNeasy kit (QuiAGEN). Library preparation and sequencing were performed by the University of Michigan DNA Sequencing Core. RNA was assessed for quality using the TapeStation (Agilent, Santa Clara, CA). All samples had RNA integrity numbers (RINs) >8.5. Samples were prepared using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB, E7760L) with Poly(A) mRNA Magnetic Isolation Module (NEB, E7490L) and NEBNext Multiplex Oligos for Illumina Unique dual (NEB, E6440L), where 10-15 μg of total RNA were subjected to polyA purification. The mRNA was then fragmented and copied into first strand cDNA using reverse transcriptase and dUTP mix. Samples underwent end repair and A-addition using NEBNext and Q5 polymerase. cDNAs were purified and enriched by PCR to create the final cDNA library. Final libraries were checked for quality and quantity by TapeStation (Agilent) and qPCR using Kapa’s library quantification kit for Illumina Sequencing platforms (Kapa Biosystems, KK4835). Libraries were paired-end sequenced on a NovaSeq 6000 Sequencing System (Illumina).

Novelty of identified genomic loci. A locus was classified as known if a variant previously published was associated with the trait of interest fell within 1Mb of the locus lead variant that we identified. Otherwise, a locus was classified as novel. Previously published variants were extracted from papers and the GWAS catalog [https://www.ebi.ac.uk/gwas/] at the time of analyses.

Novelty of identified genomic loci. A locus was classified as known if a variant previously published was associated with the trait of interest fell within 1Mb of the locus lead variant that we identified. Otherwise, a locus was classified as novel. Previously published variants were extracted from papers and the GWAS catalog [https://www.ebi.ac.uk/gwas/] at the time of analyses.
changed to serum- and probe-free DEEM. For each experiment two random fields were chosen and photographed in a blinded fashion. DII-ILDI and DAPI images were merged using ImageJ software (v.1.52k, NIH).

Lipid extraction and cholesterol quantification. The lipids of HepG2 cells were extracted using hexane (≥99%, 32293, Sigma-Aldrich) and isopropanol (≥99.5%, A426-4, Fisher Chemicals) at a 3:2 ratio (v/v), and the hexane phase was left to evaporate for 48 h. The remaining cells in the plates were disrupted in 0.1 M NaOH for 24 h and an aliquot was taken for measurement of cellular protein using the Bradford protein assay (Bio-Rad). The content of cellular cholesterol was determined spectrophotometrically using a commercially available kit (Wako Chemicals, 999-02601). Cholesterol data were normalized to cellular protein levels [24–26].

Statistical analyses for in vitro studies. Statistical analyses were performed using SPSS 24.0 software (SPSS Inc. IBM). Unless indicated otherwise, values are presented as mean ± SD showing all points. All data were tested for normality and equal variance. If the data passed those tests, Student t test was used for comparisons between the two groups. If the data did not pass those tests, nonparametric Mann–Whitney U test was used. P < 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. All relevant data supporting the key findings of this study are available within the article and its Supplementary Information or Source data files or from the corresponding author upon reasonable request. The genome-wide association study associations are available for download at http://cgp.sph.umich.edu/wilmer/public/hunt-lipids/lipid-2020/ or at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA549711/. Source data are provided with this paper.

Received: 21 January 2020; Accepted: 17 September 2020; Published online: 18 December 2020

References

55. Haghpanah, S., Davani, M., Samadi, B., Ashra...

1Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, MI, USA. 2K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway. 3Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA. 4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 5Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA. 6Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA. 7Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA. 8Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA. 9Instituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy. 10Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA. 11Department of Dermatology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway. 12Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. 13Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark. 14The Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Los Angeles Biomedical Research Institute, Harbor-UCLA, Torrance, CA, USA. 15Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA. 16Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. 17Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA. 18Channing Division of Network Medicine, Department of Medicine Brigham and Women’s Hospital, Boston, MA, USA. 19Harvard Medical School, Boston, MA, USA. 20Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA. 21Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA. 22Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA. 23Framingham Heart Study, Framingham, MA, USA. 24Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. 25GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA. 26Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA. 27Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA. 28The University of Alabama at Birmingham, Birmingham, AL, USA. 2923andMe, Inc., Sunnyvale, CA, USA. 30Deans Office, College of Public Health, University of Kentucky, Lexington, KY, USA. 31Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. 32Jackson Heart Study, Jackson, MS, USA. 33Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. 34Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. 35BloodWorks Northwest, University of Washington, Seattle, WA, USA. 36Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. 37Department of Medicine, Duke University Medical Center, Durham, NC, USA. 38Division of Biostatistics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA. 39Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA. 40South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA. 41Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma, OK, USA. 42Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan. 43Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan. 44Division of Biostatistics,
Washington University School of Medicine, St. Louis, MO, USA. 45University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 46University of Illinois at Chicago, Chicago, IL, USA. 47Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 48Department of Epidemiology, University of Washington, Seattle, WA, USA. 49Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH, USA. 50Division of Pharmacogenomics University of Arizona, Tucson, AR, USA. 51Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AR, USA. 52Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria. 53Institute for Biomedicine, Eurac Research, Bolzano, Italy. 54Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA. 55Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. 56Laboratory of Genetics, National Institute on Aging, US National Institutes of Health, Baltimore, MD, USA. 57Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy. 58HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway. 59Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. 60Broad Institute, Cambridge, MD, USA. 61Regeneron Pharmaceuticals, Tarrytown, NY, USA. 62Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway. 63These authors contributed equally: Jonas B. Nielsen, Oren Rom, Ida Surakka, Sarah E. Graham, Wei Zhou. *email: jonas.bille.nielsen@gmail.com; echenum@umich.edu; cristen@umich.edu; kristian.hveem@ntnu.no