Atoh7-independent specification of retinal ganglion cell identity

Justin Brodie-Kommit
Brian S Clark
Fion Shiau
Philip A Ruzycki
et al

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
Atoh7-independent specification of retinal ganglion cell identity

Justin Brodie-Kommit1, Brian S. Clark2,3,* Qing Shi4†, Fion Shiu2, Dong Won Kim5, Jennifer Langel6, Catherine Sheely1, Philip A. Ruzyczki2, Michel Fries7,8, Awais Javed7,8, Michel Cayouette7,8,9,10, Tiffany Schmidt11, Tudor Badea12,13, Tom Glaser14, Haiqing Zhao1, Joshua Singer4, Seth Blackshaw15,16,17‡, Samer Hattar2

Retinal ganglion cells (RGCs) relay visual information from the eye to the brain. RGCs are the first cell type generated during retinal neurogenesis. Loss of function of the transcription factor Atoh7, expressed in multipotent early neurogenic retinal progenitors leads to a selective and essentially complete loss of RGCs. Therefore, Atoh7 is considered essential for conferring competence on progenitors to generate RGCs. Despite the importance of Atoh7 in RGC specification, we find that inhibiting apoptosis in Atoh7-deficient mice by loss of function of Bax only modestly reduces RGC numbers. Single-cell RNA sequencing of Atoh7;Bax-deficient retinas shows that RGC differentiation is delayed but that the gene expression profile of RGC precursors is grossly normal. Atoh7;Bax-deficient RGCs eventually mature, fire action potentials, and incorporate into retinal circuitry but exhibit severe axonal guidance defects. This study reveals an essential role for Atoh7 in RGC survival and demonstrates Atoh7-dependent mechanisms for RGC specification.

INTRODUCTION

The retina has six major classes of neurons that develop from a common progenitor cell pool during overlapping temporal intervals. Retinal ganglion cells (RGCs), the only projection neurons from the retina to the brain, are the first retinal cell type to be generated. RGC development in zebrafish, mice, and humans has been shown to require the basic helix-loop-helix transcription factor atonal homolog 7, Atoh7 (Math5) (1–8). Atoh7 is conserved across all vertebrate species and distantly related to atonal, which specifies atonal homolog 7, Atoh7 (Math5) (1–8). Atoh7 is conserved across all vertebrate species and distantly related to atonal, which specifies Atoh7 in Crx-expressing photoreceptor precursors was sufficient to drive RGC specification (22, 30, 32–38). However, misexpression of Atoh7 in Crx-expressing photoreceptor precursors was sufficient to rescue the development of a limited number of RGCs (22).

These findings have suggested that Atoh7 acts in neurogenic RPCs to confer competence to generate RGCs (10, 16, 18) potentially in combination with as yet unidentified factors. Recent experiments have shown that when Pou4f2 and Isl1 are expressed under the control of the endogenous Atoh7 promoter, these transcription factors are sufficient to fully rescue the defects in RGC development seen in Atoh7 mutants (32, 34, 35). This implies that Atoh7 may act permissively to enable the expression of these two factors in early-stage RPCs in order to generate RGCs.

Other data, however, suggest that a large number of RGCs are specified independently of Atoh7. Previous studies indicate that immature RGCs are present in Atoh7-deficient mice in embryonic retinal vasculature in both mice and humans, likely as an indirect result of the loss of RGCs (17,18).

In mice, Atoh7 is expressed in neurogenic retinal progenitor cells (RPCs) between E12 and P0, corresponding to the interval in which RGCs are generated (8,15,16,26). Upon cell fate specification, Atoh7 expression is rapidly down-regulated in mouse RGC precursors (23,45) although expression persists in immature human RGCs (28,46). Genetic fate mapping indicates that Atoh7-expressing RPCs also give rise to other early-born retinal cells, including cone photoreceptors, horizontal, and amacrine cells, and that generation of these cell types is increased in Atoh7-deficient mice (1,15,16,26). Although it has been reported that ectopic expression of Atoh7 can promote RGC formation in some situations (22,35), it is typically not sufficient to drive RGC specification (22,36,42–48). However, misexpression of Atoh7 in Crx-expressing photoreceptor precursors was sufficient to rescue the development of a limited number of RGCs (22).
95% of RGCs in Atoh7 mutant retinas may suggest that Atoh7-independent RGCs require trophic support from either Atoh7-expressing RPCs or Atoh7-derived RGCs.

To distinguish the role of Atoh7 in controlling RGC specification and survival, we prevented RGC death in Atoh7-deficient mice by simultaneously inactivating the proapoptotic gene Bax (42, 43). The idea being if RGCs can be specified in the absence of Atoh7 but require it for trophic support, we should reveal RGCs that are specified in an Atoh7-independent manner when cell death is prevented. Notably, we observed only a 25.2 ± 2.7% reduction in adult RGC numbers in Atoh7−/−;Bax−/− retinas relative to Bax−/− controls, implicating an unrecognized Atoh7-independent specification pathway for RGCs. While mutant RGCs showed severe defects in the formation of axonal projections and retinal vasculature, we found that the Atoh7-independent RGCs expressed both Pou4f2 and Isil, the two transcription factors that are sufficient to compensate for Atoh7 function. These RGCs also fired action potentials in response to light and formed functional synapses with upstream retinal neurons. Single-cell RNA sequencing (scRNA-seq) analysis of Atoh7−/−;Bax−/− deficient retinas shows that Atoh7-deficient RGC differentiation is delayed relative to wild type (WT), implicating Atoh7 as responsible for generating early-born pioneering RGCs. To eliminate the possibility that global loss of function of Bax or Atoh7 has a global effect on the retina, we observe that 34% of RGCs in Atoh7−/−;Bax−/− mice, used a melanopsin antibody that predominantly labels the high melanopsin-expressing M1 and M2 ipRGC populations. We observe that 34.1% of ipRGCs are rescued in Atoh7−/−;Bax−/− relative to Bax−/− retinas, but to a much lesser extent than the Brn3a (28.8 ± 6.7% Fig. 8A,B and fig. S1, A and A′; and fig. S2) Brn3b RGCs were also rescued in Atoh7−/−;Bax−/− relative to Bax−/− retinas, although, in some cases, only transiently (51). To determine the percentage of rescued RGCs in Atoh7−/−;Bax−/− mice, we used a melanopsin antibody that predominantly labels the high melanopsin-expressing M1 and M2 ipRGC populations. We observe that 34.1% of ipRGCs are rescued in Atoh7−/−;Bax−/− relative to Bax−/− retinas, proportions similar to the fraction of Brn3b-positive RGCs in WT (Fig. 6E and F). In this model, Bax is selectively disrupted in RPCs beginning at E10 to 10.5 (52). Removal of Bax from all RPCs shows RGC development to the same extent as in Atoh7−/−;Bax−/− (Fig. 6G and H). This indicates that the rescue of RGCs is specific to the retina.

We then reasoned that if cell death has to be rescued specifically in Atoh7−/− RGCs, then the number of RGCs should not be restored in Atoh7−/−;Bax−/− mice. We observed that Atoh7−/−;Bax−/− mice did not show any notable rescue of RGC numbers (Fig. 6E and F), suggesting that preventing cell death in cells that do not express Atoh7 is sufficient for RGCs to differentiate and form connections with retinal neurons.

In both WT and Atoh7−/−;Bax−/− mice, we observe that 34.5 ± 3.2% and 34.6 ± 5.0% of RGCs, respectively, are derived from Atoh7-expressing cells, a finding that independently confirms similar lineage tracings in previous studies (fig. S3, A to C) (10, 53). This indicates that while RGCs that are normally derived from Atoh7-expressing neurogenic RPCs are reduced in the absence of Atoh7, Atoh7 is not required for RPCs to give rise to RGCs in mice. Atoh7−/−;Bax−/− mice showed 34% rescue of RGC number compared to WT mice (Fig. 6C, G, and H).
significant decrease in horizontal cells in the Atoh7−/−;Bax−/− compared with Atoh7−/− but neither with control nor with Bax−/− (fig. S4, C and E). We observed a notable decrease in amacrine cells in the Atoh7−/−;Bax−/− retina compared with both control and Bax−/− substantially increased by the loss of function of Atoh7 in the Bax mutant background.

RGCs specified in the absence of Atoh7 generate light-driven, ganglion cell-like neurons. These neurons are not rescued when apoptosis is blocked in all neural RPCs, when Baxlox/lox is crossed to the Chx10-Cre transgene, which is expressed in all RPCs. However, when Bax is specifically removed in Atoh7-Cre knock-in mice, Brn3a RGCs are not rescued. Means ± 95% confidence intervals. Statistical significance tested by one-way analysis of variance (ANOVA) with Tukey’s posttest for multiple comparisons *P < 0.045, **P = 0.0023, ***P < 0.0003, ****P < 0.0001. ns, non-significant.

Fig. 1. Atoh7-independent development of RGCs. (A to C) We observed a 25.2 ± 0.9 and 21 ± 3% reduction in RBPMS RGC density or Isl1 GCL cells when comparing Atoh7−/−;Bax−/− to Bax−/− mice. (D to H) Brn3a and Brn3b positive RGC density are only moderately reduced when apoptosis is blocked in Atoh7−/−;Bax−/− mice. (G and H) Brn3a positive RGC numbers are rescued when apoptosis is blocked in all neural RPCs, when Baxlox/lox is crossed to the Chx10-Cre transgene, which is expressed in all RPCs.
models. Spatiotemporal noise stimuli were used to activate the retina with a mean excitation of 398 photons cm\(^{-2}\) s\(^{-1}\). Atoh7-deficient mouse using the tet-off system (Figure 3E) (37), in which morpholino-mediated disruption of atoh7 expression in early-stage RPCs disrupted the correct targeting of axons of later-born, atoh7-positive RGCs to the optic tectum (33).

Previous studies have observed a lack of axons in the absence of Atoh7 (33). Consistent with the failure of mutant RGCs to correctly target the optic nerve, we observe severe disruptions in behavioral responses to light in Atoh7\(^{-/-}\);Bax\(^{-/-}\) mice that are essentially indistinguishable from those seen in Atoh7\(^{-/-}\);Bax\(^{-/-}\) mice. Atoh7\(^{-/-}\);Bax\(^{-/-}\) mice show no detectable optokinetic response (fig S9A) and show no visual cue-dependent reduction in escape time during successive trials of the Morris water maze (fig S9B). Onp4: Tau-lacZ knock-in mice, which visualize the axonal projections of M1 ipRGCs, show no detectable signal in the brain in Atoh7\(^{-/-}\);Bax\(^{-/-}\) (fig S9C). Intraocular injection of fluorescently labeled cholera toxin beta, which visualizes RGC axonal terminals (60), likewise shows no brain labeling in both Atoh7\(^{-/-}\);Bax\(^{-/-}\) and Atoh7\(^{-/-}\) mice (fig S9D).

Retinal vasculature development is disrupted in the absence of Atoh7

In both mice and humans, loss of Atoh7 expression results in persistence of the hyaloid vasculature (2, 73, 74). The persistence of the hyaloid vasculature in Atoh7\(^{-/-}\) retinas until P14 was previously observed. We likewise observe persistence of the hyaloid vasculature into adulthood in Atoh7\(^{-/-}\) retinas (Fig. 5E). Unexpectedly, even with this rescue of a majority of Brn3a RGCs in Atoh7\(^{-/-}\);Bax\(^{-/-}\) animals, the hyaloid vasculature still fails to regress (Fig. 5F). Likewise, Crx-Atoh7;Atoh7\(^{-/-}\) mice, in which Atoh7 is misexpressed in photoreceptor precursors, also fail to induce hyaloid regression (Fig. 5G). This is in sharp contrast to the rescued vascular phenotype observed in Atoh7\(^{+/-}\);Tg[Atoh7mCherry]:BKI-EE mice, when Brn3b and Isl1 are ectopically expressed from the endogenous Atoh7 locus in a Atoh7-deficient mouse using the tet-off system (Figure 5) (37), and implies that Brn3b and Isl1 may activate the expression of secreted factors that drive vascular regression in a narrow time window during development.

scRNA-seq analysis of RGCs generated in the absence of Atoh7

To examine potential differences in RGC development within Atoh7\(^{-/-}\) and Atoh7\(^{-/-}\);Bax\(^{-/-}\) compared to WT and Bax\(^{-/-}\) control animals, we next performed scRNA-seq on Bax\(^{-/-}\), Atoh7\(^{-/-}\), and Atoh7\(^{-/-}\);Bax\(^{-/-}\) retinas to more comprehensively profile changes in cell-type specific transcription in Atoh7-deficient RGCs. We analyzed
Fig. 3. RGC axon guidance and retinal vasculature development require Atoh7-dependent RGCs. (A and D) Smi-32 labels a subset of RGCs and their axons in an adult WT retina. In Atoh7−/− mice, the Smi-32-positive RGCs have axon guidance deficits. In Atoh7−/−;Bax−/− mice, RGCs have severe axon guidance deficits. Highlighted region (A, Atoh7−/−;Bax−/−) is magnified in (D). (B and C) Using the contralateral PLR as a readout of retina to brain connection allows the appreciation that the severe axon guidance deficits allow for some connection to the brain of the RGCs in the Atoh7−/− or Atoh7−/−;Bax−/− retinas. (E) It has been previously reported that the hyaloid vasculature fails to regress in Atoh7−/− mice, thought to be due to lack of RGCs; however, when the RGC numbers are rescued, in Atoh7−/−;Bax−/− mice, the hyaloid vasculature fails to regress. However, Atoh7 is not necessary for the hyaloid regression and retinal vasculature development, seen using Atoh7tTA/tTA;B&I mice, which was previously seen to rescue all of the Atoh7 null phenotypes. When Atoh7 is rescued using the Crx>Atoh7 transgene on the Atoh7 null background, the optic nerve and 12% of RGCs are rescued (22), but the hyaloid vasculature does not regress.
Axon fasciculation, as well as axon guidance at the optic chiasm, is controlled by the adhesion molecule Isl2, which has been found to control the specification of genes known to regulate axon guidance, including the cell adhesion molecule Bhlhe22, Insm1, Neurod1, Mybl1, Sstr2, and 311035E14Rik (fig. S11B) (23).

Bhlhe22, Insm1, Neurod1, Mybl1, Sstr2, and 311035E14Rik (fig. S11B) (23) were similar to WT in both Atoh7−/− and Bax−/− animals, these data suggest that loss of Atoh7 expression leads to an increase in expression of genes specific to neurogenic RPCs at the expense of RGC-enriched transcripts; results are consistent with a developmental delay.

As albino mice are known to have fewer ipsilaterally projecting RGCs (71) and because Bax−/− mice are on an albino background, we specifically examined the expression of transcripts traditionally down-regulated in Bax−/− retinas at E14.5; however, these ipsilateral transcripts were similar to WT in both Atoh7−/− and Bax−/− animals (fig. S11C) (71), suggesting that the albino background does not contribute to the observed phenotype in Atoh7−/− Bax−/− mice.
results are consistent with a failure of maturation or developmental delay of RGC specification in Atoh7-deficient RGCs (Fig. 5G). Differential expression analysis assessing for differences between the genotypes' pseudotemporal gene expression dynamics revealed significant genotypic differences across RGC development (Fig. S1 and table S2).

In both Atoh7−/− and Atoh7−/−.Bax−/− samples, we observed a reduction of expression in many genes enriched within mature RGCs—Pou4f2, Gap43, Sncg, and Isl1. We likewise observed reduced expression of a subset of genes in neurogenic RPCs, including Gal. Increased expression of other genes predominantly expressed in neurogenic RPCs, including Neurod1, Ins1, Neurod4, Hes6, Onecut1, Onecut2, and Sox4, is observed in both Atoh7−/− deficient neurogenic RPCs and RGCs compared to controls (Fig. S1L). This implies that loss of function of Atoh7 may delay the differentiation of RGCs from neurogenic RPCs. The temporal expression patterns of genes involved in RGC specification mimic those observed within in additional E14 scRNA-seq datasets (62), and analyses of transcriptomic changes resulting from loss of Atoh7 expression closely match those obtained from scRNA-seq–based analysis of Atoh7−/− retina conducted at E13.5 (73).

We next performed in situ hybridization to examine changes in global transcript expression within the developing retina. RNA transcript expression was detected at E14.5, at which point most RGCs are specified (19, 20), and we observed decreased expression of Pou4f2 (Brn3b), Isl1, and Gal in both Atoh7−/− and Atoh7−/−.Bax−/− mice, as determined by chromogenic in situ hybridization (Fig. S1O). Immunostaining of E14 retinas confirms a reduction in the number of cells immunopositive for Brn3a (Pou4f1) and Brn3b (Pou4f2) (Fig. 5B), as well as the pan-RGC markers RBPMS and Isl1 (Fig. 5B), in the developing GCL of Atoh7-deficient retinas. At E12.5, we observed a marked decrease in both overall RGC density and RGC number (fig. S8). Together, these results suggest that loss of function of Atoh7 delays RGC differentiation and leads to an accumulation of neurogenic RPCs.

To further identify patterns of temporal changes in gene expression across RGC genesis between Atoh7 mutant and control retinas, we performed the nonnegative matrix factorization analysis of the Bayesian NMF technique Single Cell Coordinated Gene Activity in Pattern Sets (scCoGAPS) (74). Implementation of scCoGAPS parses the gene expression into groups ("patterns") based on gene expression profiles without a priori, literature-based knowledge of gene interactions. Using 5235 highly variable genes across the 29,182 neurogenic RPCs and differentiating RGCs, we identified 31 patterns of gene expression (Fig. 5, A, B, and E, and fig. S12). These patterns correlated with both neurogenic RPC—patterns 6, 25, 24, 11, 13, 18, 7, 21, 1, and 4—and RGC—patterns 8, 27, 28, 9, 26, 20, 22, 17, and 31—cell-type annotations and highlighted temporal changes in gene expression, as assessed through pseudotime analyses (Fig. 5, A, B, and E). Individual patterns, patterns 4, 5, and 29, were enriched for high-expression genes in neurogenic RPCs, whereas patterns 9 and 26 were enriched for high-expression genes in mature RGCs. 28 highlights cells toward the end of the RGC trajectory and is largely driven by Sncg, a transcript enriched in most RGCs in the adult mouse retina (Fig. 5, A and B) (77). The association of neurogenic patterns with Atoh7−/− mutant retinas versus those that highlight RGC differentiation and maturation patterns with control retinas further support a developmental delay in mutant RGCs. Analysis of pattern marker expression across the genotypes (fig. S12) highlights both the temporal delay and global changes in gene expression across the Atoh7−/− mutant retinas compared to controls.

Recent studies have comprehensively profiled RGC subtype diversity in the mouse retina (78, 79). However, these studies did not characterize either the birthdates of individual RGC subtypes or the transcriptional networks controlling RGC subtype specification. The delay in RGC maturation and the failure of optic nerve formation seen in Atoh7-deficient retinas suggest that the earliest pathfinding RGCs are Atoh7 dependent. We examined expression of markers of mature RGC subtypes (78) within the developing retina and correlated expression of the transcripts with RGC pseudotime (fig. S13), as many of the mature RGC subtype markers are not specific to RGCs. We detected expression of selective markers for a fraction of mature RGC subtypes within the E14.5 scRNA-seq dataset. Of transcripts in which readily detectable expression was observed, many—including Igfbp4, Foxp1, Stxbp6, Bhlhe22, and Penk—also display enriched expression in primary or neurogenic RPCs. Expression of some markers of RGC development and maturation—Ebf3, Pou4f1, Pou4f2, Pdm6, and Scl7a16—correlated well with pseudotemporal ordering and were depleted in Atoh7-deficient RGCs. However, a limited number of RGC subtype markers, including Irx3, Calb2, and Tac1, were largely absent from Atoh7 mutant RGCs.

Atoh7 binds to loci associated with neurogenic RPC, RGC, and photoreceptor-enriched genes

To gain insight into the function of Atoh7 during RGC specification, we performed Cut&Run experiments (80) on E14 mouse retinas using the established Atoh7 antibody (27) and immunoglobulin G (IgG) as a control. Peak calling was performed using the MACS2 pipeline (81). High concordance of called peaks is observed between Atoh7 Cut&Run replicates (fig. S14A), with ~3000 shared peaks and little enrichment of peak sequences within the IgG sample. Comparisons of Atoh7 peaks to developmental chromatin accessibility (82) determined that peaks proximal to gene transcription start sites, corresponding to proximal promoters, exhibited high accessibility throughout retinal development (fig. S14B). Distal peaks, corresponding to enhancer sequences (>3 kb from the transcription start sites), however, displayed the greatest accessibility during early periods of retinal development when RGCs are being specified and neuronal RPCs (fig. S14C).
We next assigned peaks to genes using ChiPSeeker (84). Many strong peaks were located within genetic loci of transcripts with known functions during early retinal development, including Neurod1, Elav4, Neurog2, Pou62, Otx2, Meis2, and Lhx4 (fig. S14, E and F, and table S5). We also observed strong enrichment of Atoh7 binding within the Atoh7 proximal promoter and distal enhancer sequences (14), suggestive of autoregulation of Atoh7 expression (Fig. 6D). In addition, we detected Atoh7 binding within numerous loci associated with RGCs, including Rbpms, Pou4f2, Isl1, and Pou4f1 (fig. S14, C to F, and table S5); however, the binding sites of Atoh7 within the Pou42 locus are located within the intron of the neighboring gene Ttc29 and, therefore, are assigned to Ttc29 instead of Pou42.

To better understand the mechanism by which Atoh7 regulates transcription of nearby genes, we next examined the consequence of Atoh7 loss of function on bound loci gene expression, as determined by our scRNA-seq experiments in control (WT and Bax−/−) versus Atoh7 null (Atoh7−/− and Atoh7−/−Bax−/−) neurogenic cells and RGCs (fig. S15). Our analyses indicated that many Atoh7-bound genes display decreased expression within Atoh7 mutant retinas, including the RGC-enriched genes Pou62, Elav4, Isl1, and TubB2 (Fig. 6E). Conversely, roughly similar numbers of “bound” genes displayed increased expression in Atoh7 mutant retinas, including neurogenic RPC-enriched transcripts Hes6, Btg2, Neurod1, Neurog2, Sot2, Pklb, and Bhlhe22 (Fig. 6F) (23). To gain further insight into the biological relevance of Atoh7-bound and differentially expressed transcripts, we first binned transcripts into five categories: (i) Atoh7-bound and down-regulated in Atoh7 mutants, (ii) Atoh7-bound and up-regulated in Atoh7 mutants, (iii) no binding and down-regulated in Atoh7 mutants, (iv) no binding and up-regulated in Atoh7 mutants, and (v) Atoh7-bound but no change in expression. Following binning, we calculated the z scores of gene expression on an individual cell basis using the mouse retinal development single-cell dataset (23) and examined the enrichment of expression of binned genes within annotated cell types. Our analysis determined that Atoh7-bound genes that displayed decreased expression in Atoh7 mutant retinas show enriched expression in RGCs, suggesting an active role of Atoh7 in promoting RGC fate (Fig. 6E and F). Conversely, Atoh7-bound genes that are up-regulated in Atoh7 mutant retinas display high expression within neurogenic cells or photoreceptor precursors and include Neurod1, Neurog2, and Hes6 (Fig. 6G and H). We also observe Atoh7 binding within additional cone photoreceptor gene loci, including Lhx4, Otx2, and Thrb (table S5), although these genes did not display robust differences in gene expression between control and Atoh7 mutant retinas. The up-regulation of Atoh7-bound neurogenic and photoreceptor-enriched genes in Atoh7 mutant retinas suggest that Atoh7 actively represses photoreceptor fate during early retinogenesis, an interpretation that is supported by the observed modest increase in cone photoreceptor proportions within Atoh7 mutant scRNA-seq samples (Fig. S1D).

DISCUSSION
It is broadly accepted that Atoh7 acts in RPCs as a competence factor that is essential for RGC specification (10, 53, 54, 77). In this study, though, we show that the specification of the great majority of RGCs occurs even in the absence of Atoh7. While RGC specification can occur independent of Atoh7, Atoh7 function is required to maintain RGC survival and proper targeting of RGC axons to the optic nerve head (Fig. 6F). Following disruption of both Atoh7 and Bax, we observe a 20% reduction in the number of Atoh7 RGCs relative to Bax-deficient controls. This compares to a greater than 95% reduction in RGC numbers in Atoh7 mutants relative to WT controls. Although RGCs in Atoh7−/−Bax−/− retinas show severe defects in targeting the optic nerve head, they respond robustly to photoreceptor stimulation.

The presence of functional RGCs in the absence of Atoh7 helps explain long-standing, puzzling observations: (i) 45% of RGCs are not derived from Atoh7-expressing progenitors, (ii) molecular markers of RGCs are observed at considerably higher levels during early stages of retinal development than in adults in Atoh7-deficient retinas, and (iii) the increased apoptosis in the GCL that occurs in the absence of Atoh7 (10, 53, 77). Previous studies have implicated Atoh7 as a direct upstream regulator of the essential RGC transcription factors Brn3a, Brn3b, and Isl1. Supporting this, an Atoh7 hierarchy of RGC determinants, studies in which Brn3b and Isl1 were inserted in place of the Atoh7 coding sequence observed a complete rescue of normal RGC development (37). Our studies, however, indicate that when apoptosis is inhibited, Brn3a, Brn3b, Iset1, and Rbpms expression is induced at near-normal levels within RGCs in both E14 and adult retinas, independent of Atoh7 expression. We observe that Atoh7 binds to sites in the Isl1 and Pou4f1 (Brn3a) loci (fig. S14, E and F), suggesting active regulation of Isl1 and Brn3a transcription by Atoh7. While no Atoh7 Cut&Run peak was assigned to Pou42 (Brn3b), two Atoh7-binding sites were identified in the terminal intron of Pou4f2-neighboring gene Ttc29 (fig. S14D). While further evidence is required to clearly demonstrate that Atoh7 regulates Pou4f2 expression via these binding sites, we observed reduced expression of Isl1f, Pou4f1, and Pou4f2 within Atoh7-deficient retinal cells. Therefore, we conclude that other factor(s) in addition to Atoh7 act to regulate expression of these genes.
as we did not observe RGC rescue within Atoh7^{Cre}/Cre;Bax^{−/−} mice, we suggest that immature RGCs rapidly degenerate as the result of the lack of an Atoh7-dependent survival factor. This wave of developmental apoptosis has been observed previously, but the underlying molecular mechanisms are unknown (46, 92). We hypothesize that this prosurvival factor or factors must be produced by either Atoh7-expressing neurogenic RPCs or RGCs derived from these cells.

Our data also reveal a marked delay in the formation of RGCs from neurogenic RPCs in the absence of Atoh7. This is consistent with previous results in Atoh7^{−/−} retinas, where RGC formation is delayed by at least a day, in part due to RPCs remaining in cell cycle (22, 23). However, this delay in cell cycle exit later resolves, as essentially normal numbers of all other early-born cell types in the Atoh7^{−/−}-Bax^{−/−} retinas, including RGCs (Fig. 4 and fig. 5). When Atoh7-dependent RGCs are rescued later in development, as seen in targeted mutants in which Atoh7 is expressed from the endogenous Crx locus, the hyaloid vasculature regression was not rescued, even though a modest rescue of RGC formation is observed (22). Consistent with this result, loss of function of atoh7 in early-stage RPCs in the zebrafish retina disrupts the correct targeting of axons from later-born RGCs to the optic nerve (33). Together with the fact that 45% of RGCs arise from a non-Atoh7-dependent lineage in mice, we hypothesize that early, pathfinding RGCs are Atoh7 dependent and provide both survival and guidance cues for later-born RGCs.

Since Atoh7 was previously thought to be a master transcriptional regulator of RGC specification, strategies aimed at targeted differentiation of RGCs for therapeutic purposes have focused on using the forced expression of Atoh7. We, however, now appreciate RGC specification to be a far more complicated process. Although ectopic expression of Atoh7 activates expression of RGC-specific genes in cultured RPCs (94), induced pluripotent stem cells (95), and Müller glia-derived retinal stem cells (96, 97), it is, nonetheless, typically not sufficient to drive these cells to become RGCs. This wave of developmental apoptosis has been previously reported to rescue all reported effects of Atoh7 loss of function and was a gift from X. Mu (MGI:5749708 and MGI:5749713) (37). The Cre>Atoh7 mice, a transgene that expresses the full-length Atoh7 coding sequence under the control of the Crx promoter, was previously published (MGI:5433215) (22). A tdTomato Cre recombinase reporter mouse(Rosa26<i>TdTomAi14</i> (JAX:007914, RRID:IMSR_JAX:007914) (101) was used to label cells in a Cre recombinase–dependent manner. The Chx10-Cre mouse line is a transgenic line purchased from Johns Hopkins University Animal Care and Use Committee guidelines, and we used protocols approved by the Johns Hopkins University Animal Care and Use Committee (protocol number MO16A212). Atoh7^{Cre}/Cre mice are a combination of two genetic strains.

Statistics

All statistical tests, apart from analysis of the scRNA-seq data, were performed in GraphPad Prism 6 (RRID:SCR_002798). The statistical tests used are listed in figure captions.

Immunohistochemistry

Adult retinas from P10 to P200 were obtained by enucleating whole eyes, fixing for 30 minutes in 4% paraformaldehyde (PFA) diluted in phosphate-buffered saline (PBS), dissecting to remove the cornea and lens, and dissecting the retina from the RPE, and antibody staining proceeded in a 24-multiwell cell culture plate (Corning, no. 353047). Retinas were blocked in 3% horse serum containing 0.05% Triton X-100 and 6% goat serum for 2 hours at room temperature (RT). Several antibodies were used in this study (dilutions are in parentheses) and were a gift from X. Mu (MGI:5433215) (22). A tdTomato Cre recombinase widely in all RPCs from E10 to E15.5. The Cre recombinase–dependent line in mice was a gift from X. Mu (MGI:5749708 and MGI:5749713) (37). The Cre>Atoh7 mice, a transgene that expresses the full-length Atoh7 coding sequence under the control of the Crx promoter, was previously published (MGI:5433215) (22). A tdTomato Cre recombinase reporter mouse(Rosa26<i>TdTomAi14</i> (JAX:007914, RRID:IMSR_JAX:007914) (101) was used to label cells in a Cre recombinase–dependent manner. The Chx10-Cre mouse line is a transgenic line purchased from Johns Hopkins University Animal Care and Use Committee guidelines, and we used protocols approved by the Johns Hopkins University Animal Care and Use Committee (protocol number MO16A212). Atoh7^{Cre}/Cre mice are a combination of two genetic strains.

Statistics

All statistical tests, apart from analysis of the scRNA-seq data, were performed in GraphPad Prism 6 (RRID:SCR_002798). The statistical tests used are listed in figure captions.

Immunohistochemistry

Adult retinas from P10 to P200 were obtained by enucleating whole eyes, fixing for 30 minutes in 4% paraformaldehyde (PFA) diluted in phosphate-buffered saline (PBS), dissecting to remove the cornea and lens, and dissecting the retina from the RPE, and antibody staining proceeded in a 24-multiwell cell culture plate (Corning, no. 353047). Retinas were blocked in 3% horse serum containing 0.05% Triton X-100 and 6% goat serum for 2 hours at room temperature (RT). Several antibodies were used in this study (dilutions are in parentheses) and were a gift from X. Mu (MGI:5433215) (22). A tdTomato Cre recombinase widely in all RPCs from E10 to E15.5. The Cre recombinase–dependent line in mice was a gift from X. Mu (MGI:5749708 and MGI:5749713) (37). The Cre>Atoh7 mice, a transgene that expresses the full-length Atoh7 coding sequence under the control of the Crx promoter, was previously published (MGI:5433215) (22). A tdTomato Cre recombinase reporter mouse(Rosa26<i>TdTomAi14</i> (JAX:007914, RRID:IMSR_JAX:007914) (101) was used to label cells in a Cre recombinase–dependent manner. The Chx10-Cre mouse line is a transgenic line purchased from Johns Hopkins University Animal Care and Use Committee guidelines, and we used protocols approved by the Johns Hopkins University Animal Care and Use Committee (protocol number MO16A212). Atoh7^{Cre}/Cre mice are a combination of two genetic strains.
chosen for analysis were all positive for Pax2+ optic nerve head cells, as the central retina contains the earliest-born RGCs. At least two sections with matching criteria were analyzed for each E12.5 embryo. Density was calculated by dividing the number of Brn3a+ RGCs and dividing by the area of the retina. To limit the analysis to the RGC neurogenic zone, we limited the quantification to the leading edge of RGC genesis. The percentage of mature Brn3a+ RGCs at E12.5 was determined by counting their number by the number of total Brn3a+ RGCs in a section and then averaged across all sections. This ratio represents the number of Brn3a+ RGCs already in the nascent GCL versus RGCs migrating through the neuroblast layer to the GCL.

MEA recordings

Mice were dark-adapted for 1 to 2 hours before being euthanized and dissected under dim red light. Retinas were isolated in Ames' medium (Sigma-Aldrich) bubbled with 95% O₂/5% CO₂ (carbogen) at RT, trimmed into small rectangles, and then placed on a 6 × 10 perforated MEA (Multichannel Systems, Tübingen, Germany), ganglion cell side down. Tissue was perfused with Ames' bubbled with carbogen and kept at 32°C throughout the experiment. Data acquisition was performed using the MC_Rack software (ALA Scientific Instruments Inc.), at a 50-kHz sampling rate. An offline spike sorter (Plexon Inc.) was used for spike sorting.

Ultraviolet stimuli (I_{\text{mean}} = 10^8 \text{photons cm}^{-2} \text{s}^{-1}, 398 nm) were generated through a modified DLP projector (HP Notebook Projector Companion Projector, model HSTNN-FP091) (frame rate 60 Hz) and were delivered through an inverted microscope objective. All stimuli were programmed using the Psychophysics Toolbox in Matlab (MathWorks, Natick, MA). Stimuli included the following: (i) 120-s, 1-Hz full-field square-wave flash (100% Michelson contrast); (ii) 10-min Gaussian white noise (GWN) flickering checkerboard (pixel size 177 µm), and (iii) 10-min spatially correlated “cloud” stimulus that was generated by low-pass filtering the GWN. The cloud stimulus introduced dark and bright areas of a range of scales within each frame, with the purpose of driving large spatial receptive fields.

The analysis was first performed using custom-written Matlab (MATLAB R2014b) codes; the results later were exported and edited in Adobe Illustrator CS6. For each cell, the PSTH of responses to square-wave flash was calculated using 10-ms bins. Spatial and temporal receptive fields were identified on the basis of noise data using a nonlinear model previously described in detail (58, 03).

Fewer cells were recorded from Atoh7+/Cre,Bax−/− mice compared to the WT and Bax−/−, as the nerve fiber layer (NFL) and retinal vasculature are improperly developed and, thus, provide an insulating layer that needs to be removed in order to obtain high-quality recordings. No cells were recorded from Atoh7+/Cre mice due to the >99% reduction in RGC numbers.

Distal light responses

In adult flat-mounted retinas, the density of RGCs was calculated by obtaining at least four representative images at 40× of 600 μm × 600 μm with 1-μm optical sections. Optical sections were projected together with maximum intensity, including cells only in the retinal layers of interest. Representative images were taken similarly across all retinas with a unique 1-μm depth of the cone-rich outer nuclear layer.
contralateral or ipsilateral eye to the light source. The baseline pupil size of each mouse was first recorded for at least 5 min using an infrared light source, following which the white LED bulb was turned on for at least 30 s. Video recordings were analyzed by creating screenshot images in Joint Photographic Experts Group format (jpg) of the pupil before and during light stimulation using VLC media player (www.videolan.org/vlc/). The pupil area was then quantified in ImageJ (Fiji, RRID-SCR_002285). To determine the relative pupil area, pupil size during the light stimulation was divided by pupil size before light stimulation.

Tissue dissociation for generation of single-cell suspensions

Eyes were enucleated from E14 time-pregnant animals and placed directly into ice-cold 1× PBS. Retinas were dissected in cold 1× PBS and then placed into 200 µl of cold HBSS (Hanks’ balanced salt solution) per two to three retinas. Tissue dissociation was induced through the addition of an equivalent volume of papain solution (1 mg/ml) to 700 µl of reagent grade water, 100 µl of fresh 50 mM l-cysteine (Sigma-Aldrich), 100 µl of 10 mM EDTA, and 10 µl of 60 mM 2-mercaptoethanol (Sigma-Aldrich), with papain added to 1 mg/ml (1:10 dilution of 10 mg/ml papain solution; Worthington). The papain-retina mixture was placed at 37°C for 10 min with slight trituration every 2 to 3 min. Enzymatic dissociation was halted directly into ice-cold 1× PBS. Retinas were dissected in cold 1× PBS and centrifuged for 3 min at 300g in PBS at RT. Cells were then resuspended in 2 to 3 ml of Neurobasal media supplemented with 10% FBS and a mixture of 3′v2 platform (PN-120223) (Pleasanton, CA), followed by 10x Genomics sequencing and analysis to remove cellular aggregates and undissociated debris. DNA from lysed cells was removed through the addition of 600 µl of Neurobasal media and 10% FBS by resuspension in 2 to 3 ml of Neurobasal media supplemented with 1% FBS. The final solution was passed through a 50-µm filter to remove cellular aggregates and undissociated debris.

10x Genomics sequencing and analysis

scRNA-seq of dissociated retinal cells from E14 Atoh7+/−;Bax−/− and Atoh7+/−;Bax−/− was performed using the 10x Genomics Chromium 3′ v2 platform (PN-120223) (Pleasanton, CA), followed by sequencing using the NextSeq 500 platform with default 10x sequencing parameters [R1, 26 base pairs (bp); R2, 98 bp; i7, 8 bp]. Single-cell analysis of the WT E14 developing mouse retina was obtained from previously reported samples obtained from GEO (GSE118614); data obtained using similar isolation protocols are described previously (23).

Gene set usage pattern discovery with scCoGAPS

CoGAPS v.3.5.6 (74, 104) was used to find patterns of gene set usage by neurogenic and retinal ganglion cells. The expression matrix used as input was normalized to 10,000 counts per cell, subsetted down to 5235 most highly variable genes, and log-transformed. The CoGAPS parameters used are as follows: singleCellRUE (RNA expression units), CoGAPS v.3.5.6 (74, 04) was used to find patterns of gene set usage described previously (23). Gene set usage pattern discovery with scCoGAPS (GSE118614); data obtained using similar isolation protocols are described previously (23).

Pseudotime analysis between genotypes

Sc sney v1.4 (72) was first used to assign diffusion pseudotime values (105) to cells in the RGC trajectory. Cell types included in this final dataset were restricted to RGCs, primary RPCs, and neurogenic RPCs. To preprocess the dataset, genes <10 counts were removed, and the expression matrix was normalized to 10,000 counts per cell and log-transformed. Highly variable genes used for ordering were identified using Scanny’s “highly_variable_genes” function with default parameters except flavor “cell_ranger” and n_top_genes = 2000. Fifty principal components were calculated using default PCA (principal components analysis) parameters with random_state = 113456. To compute the neighborhood graph with the batch effect of genotype removed, we used BBKNN with batch_key = “Genotype” and neighbors_within_batch = 106. Ten diffusion components were then computed and used for input to assign diffusion pseudotime values with an RGC cell as root. To find genes differentially expressed between the developmental trajectories of the WT and Atoh7Cre/Cre; Bax−/− genotypes, Monocle’s differential gene test (107, 108) was performed in R, on neurogenic RPCs and RGCs of WT and Atoh7Cre/Cre; Bax−/− null genotypes:

\[
\text{differentialGeneTest(dat[genes expressed in ≥ 10 cells], fullModelFormulaStr = \sim \text{Pseudotime} + \text{genotype} + \text{Total_mRNAs'}, reducedModelFormulaStr = \sim \text{Total_mRNAs'}, cores = 4) }
\]

In situ hybridization

Developing embryos harvested at E14.5 were washed in petri dishes filled with sterile DEPC (diethyl pyrocarbonate)–treated PBS at least three times. The head of the embryo was plunged into OCT and then immediately frozen and stored at −80°C until needed, and the tail was used for genotyping. Sections (20 m) were taken using a cryostat. Sections were allowed to dry on slides for a few hours and then were stored at −80°C until needed. In situ hybridization was performed as previously described (109).

Cut&Run

Five retinas from E14 C57BL6/J embryos were dissected and pooled per biological replicate and processed for Cut&Run as described in (80) with a few modifications. All steps were carried out in 0.2 ml of PCR (polymerase chain reaction) tube strips and 22 µl of BioMag Concanavalin A beads (Polysciences, catalog no. 86057-3) suspended in an additional 100 µl per sample of binding buffer [20 mM Hepes (pH 7.9), 10 mM KCl, 1 mM CaCl2, and 1 mM MnCl2]. After two washes, the beads were resuspended in 10 µl per sample of binding buffer using a magnetic rack. Retinas were dissociated by pipetting and centrifuged for 3 min at 300g in PBS at RT. Cells were then resuspended in 300 µl of 50 mM Na2EDTA (pH 8.0), distributed in 100 µl each well of a 96-well cell culture plate.
antibodies were added to the samples and incubated at 4°C overnight. Supernatant was cleared the next day, and the cell/bead mix was gently resuspended in 200 μl of cold buffer 3 (buffer 1 and 0.1% digitonin). After two washes, cell/bead mix was gently resuspended in 50 μl of cold buffer 3. One microfilter of 50 μl PAG-MNase was added to the cell/bead mix and incubated at RT for 10 min. Cold buffer 3 (200 μl) was added to wash the cell/bead mix twice. Supernatant was discarded, and the cell/bead mix was resuspended in 50 μl cold buffer 3. CaCl2 (100 mM) was added, and the samples were incubated on ice for 30 min. Thirty-three microfilters of stop buffer [340 mM NaCl, 20 mM EDTA, 4 mM EGTA, RNase A (50 μg/ml), and glycogen (50 μg/ml)] were added to the cell/bead mix, and the samples were incubated for 10 min at 37°C. Beads were discarded, and the supernatant was used to extract DNA using the Qiagen nucleotide removal kit as per the manufacturer’s specifications. DNA was eluted in 20 μl elution buffer and sent for library preparation.

Libraries were prepared using the KAPA HyperPrep Kit (Roche) and sequenced using the Illumina HiSeq 4000 sequencing system with 2 × 50 bp of sequencing parameters.

Supplementary materials

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/7/11/eaab4983/DC1

References and Notes

Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. scRNA-seq–processed [expression, gene (featureData), and cell (phenoData)] matrices and raw sequence information (.bam files) are available for direct download through GEO GSE148814. Atoh7 Cut&Run data are available through GEO GSE16756. The mouse developmental scRNA-seq (23) and ATAC-seq datasets were downloaded from GEO118614 and GEO102092, respectively. ATAC-seq samples were realigned to mm10, to conform to scRNA-seq and Cut&Run datasets using the same pipeline as described for Cut&Run samples. Additional data related to this paper may be requested from the authors.

Submitted 25 August 2020
Accepted 29 January 2021
Published 12 March 2021
10.1126/sciadv.abe4983

Atoh7-independent specification of retinal ganglion cell identity
Justin Brodie-Kommit, Brian S. Clark, Qing Shi, Fion Shiau, Dong Won Kim, Jennifer Langel, Catherine Sheely, Philip A. Ruzyczki, Michel Fries, Awais Javed, Michel Cayouette, Tiffany Schmidt, Tudor Badea, Tom Glaser, Haiqing Zhao, Joshua Singer, Seth Blackshaw and Samer Hattar

Sci Adv 7 (11), eabe4983.
DOI: 10.1126/sciadv.eabe4983