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ABSTRACT

Accurate duplication of chromosomal DNA is es-
sential for the transmission of genetic information.
The DNA replication fork encounters template le-
sions, physical barriers, transcriptional machinery,
and topological barriers that challenge the faithful
completion of the replication process. The flexibil-
ity of replisomes coupled with tolerance and repair
mechanisms counteract these replication fork obsta-
cles. The cell possesses several universal mecha-
nisms that may be activated in response to various
replication fork impediments, but it has also evolved
ways to counter specific obstacles. In this review, we
will discuss these general and specific strategies to
counteract different forms of replication associated
damage to maintain genomic stability.

INTRODUCTION

The efficient duplication of genetic information demands
the unimpeded progression of the replication fork. DNA le-
sions and physical barriers pose great threats to the faithful
completion of replication. Thus, the cell has developed over-
lapping DNA damage repair and tolerance mechanisms to
ensure that these obstructions do not result in genomic in-
stability.

In most cases, lesions are not absolute impediments to
replication fork progression. Replisomes can replicate over
them, switch template strands, switch polymerases (Pols),
reprime, or pause to give more time for repair. Moreover,
replisome components are flexible, where functional uncou-
pling can occur between helicases and Pols, as well as lead-
ing and lagging strand Pols (1,2). Such dynamics built into
the replication machinery represent the earliest tolerance
mechanisms for template damage. However, due to the high

number of challenges to replication, the eventual collapsing
of the fork, defined as losing the capacity to continue DNA
synthesis, is inevitable. This is where multiple DNA repair
pathways are engaged based on the type of damage.

Some of the common types of lesions encountered
by replication forks are ribonucleotides, base lesions, cy-
clobutene pyrimidine dimers (CPDs), interstrand crosslinks
(ICLs), DNA–protein crosslinks (DPCs), and R-loops.
These impediments represent a serious problem, particu-
larly during replication, due to two reasons. First, although
repair pathways may still remove the damage during repli-
cation, their uncontrolled action could be detrimental, since
the DNA in the vicinity of replication fork is single-stranded
DNA (ssDNA). Excising the lesion from ssDNA, as would
be the case in base excision repair (BER), nucleotide ex-
cision repair (NER), and ribonucleotide excision repair
(RER), would result in a DNA break and fork collapse. Sec-
ond, the replication machinery itself potentially transforms
the latent DNA damage into a more deleterious form. For
example, ssDNA breaks are converted to double-stranded
breaks (DSBs) upon encountering the progressing fork (3),
and the collisions of replication machinery with trapped
topoisomerases generates DSBs by ‘replication run-off’ (4).
These replication-associated DSBs are single ended, requir-
ing recombination for their repair.

The dynamics of replication, coupled with lesion skip-
ping, translesion synthesis (TLS), template switching (TS),
and fork reversal are shared strategies to avoid much of the
replication associated DNA damage, ranging from small
base lesion to large DPCs (Figure 1). Although these shared
strategies are enough to counter most replication associ-
ated damage, specific types of damage still require further
processing. In this review, we will first describe the general
strategies to deal with established forms of replication as-
sociated damage. Then, specific requirements to deal with
genomic ribonucleotides, R-loops, DPCs and ICLs during
replication will be considered in greater detail.
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Figure 1. General strategies to bypass and repair DNA damage during replication. (A) A DNA lesion (black triangle) on the leading strand stops replication
fork movement. (B) The DNA damage leads to the functional uncoupling of DNA polymerases and the replicative helicase, since the helicase can bypass
the lesion without association with the polymerase. Several pathways are employed to bypass or repair the damage through (C) lesion skipping, where
repriming occurs downstream the lesion; (D) template switching, where the newly synthesized DNA strand is used as the template; (E) fork reversal, where
the nascent strands reanneal, giving the chance for DNA repair pathways to remove the damage without collapsing the replication fork; (F) or translesion
synthesis, where specialized TLS polymerases temporarily replace the replicative polymerases to bypass the lesion.

COMMON STRATEGIES TO DEAL WITH REPLICA-
TION BLOCKS

Replisome-intrinsic features

The presence of lesions on leading and lagging strands have
different consequences for replication. In general, damage
in the lagging-strand template is more tolerable due to the
frequently initiated Okazaki fragments that delay the pro-
cessing of the damage, leaving gaps behind that can be filled
in post-replication (2,5). On the other hand, damage in the
leading strand is more problematic because of its continu-
ous nature of replication. This raises a question of how the
cell coordinates between leading and lagging strand synthe-
sis during repair occurring in one strand. It has been as-
sumed that DNA synthesis on both strands must be coor-
dinated to avoid strand uncoupling and ssDNA accumu-
lation, yet this dogma has been recently challenged. Inves-
tigation of Escherichia coli DNA replication has revealed
that polymerases act fully independently, and such coordi-
nation is absent (1). Similarly, human DNA polymerases
have also been shown to function independently in vivo. Af-
ter reducing the rate of lagging strand synthesis, cells sustain
persistent levels of strand uncoupling and ssDNA accumu-
lation without activation of replication checkpoint signal-

ing (6). Therefore, this independent and stochastic behavior
suggests that at any given time the leading strand synthesis
could be slower or faster than the lagging-strand synthe-
sis. Although the mechanisms behind this are not yet clear,
these studies highlight the unexpected flexibility of the repli-
cation machinery to tolerate DNA damage.

In addition to leading-lagging polymerase uncoupling,
leading strand lesions cause the replicative CMG (CDC45-
MCM-GINS) helicase and DNA synthesis to become func-
tionally uncoupled, because CMG can bypass the damage
while the polymerase is paused. This event generates ss-
DNA as the leading-strand template is exposed (7–9) (Fig-
ure 1A and B). During polymerase pausing, DNA unwind-
ing continues but at markedly reduced rate (∼20% of nor-
mal), preventing CMG helicase from running far away from
the polymerase and generating excessive ssDNA. This fail-
safe mechanism is called the ‘dead man’s switch’ (1). Con-
sistently, a recent report has suggested that the act of lead-
ing strand polymerization by itself increases template un-
winding rate by CMG (10). While the underlying mecha-
nism is unknown, the nascent leading strand may prevent
backtracking of the CMG. This provides an additional fail-
safe to the ‘dead man’s switch’ to limit excessive uncoupling
that can lead to significant ssDNA accumulation.
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Polymerase repriming, template switching, and fork reversal

After induction of polymerase-stalling damage such as UV-
induced thymine dimers, discontinuous DNA synthesis oc-
curs on both the leading and lagging strands in Saccha-
romyces cerevisiae, suggesting that repriming downstream
of the lesions is a commonly used option during replica-
tion (7). The new primer allows DNA synthesis to resume,
leaving behind a ssDNA gap (Figure 1C). Escherichia coli
reinitiates leading strand synthesis downstream of the dam-
age via DnaG-dependent repriming (11,12), while in meta-
zoans, the repriming at the leading strand preferentially uses
a specialized primase called PrimPol (13–16). The mecha-
nisms responsible for activation of repriming are largely un-
known, although a recent report has found that cells adapt
to repeated cisplatin exposure by increased expression of
PrimPol under certain conditions (16). PrimPol interacts
directly with RPA, and it is possible that increased RPA-
coated DNA, which would signal the presence of markedly
damaged template, is the primary trigger to recruit Primpol
(17,18). An alternative mechanism of avoiding a damaged
DNA template is template switching (TS). This is an error-
free mode of DNA synthesis that allows the stalled replica-
tion fork to use the newly synthesized strand as the template
to avoid the lesion. TS activity is regulated by ubiquitina-
tion and SUMOylation of PCNA, and involves recombina-
tion between the nascent sister strands (19,20). Upon initi-
ation of template switching, a DNA Pol extends the stalled
nascent DNA along the nascent sister strands (Figure 1D).
The paired nascent strands can be resolved by a dissolution
mechanism akin to termination of homologous recombina-
tion (21). In budding yeast, it has been demonstrated that
replicative helicase-coupled repriming by Pol�/Primase fa-
cilitates TS. As a result, defects in Pol�/Primase cause de-
fects in strand annealing and reversed fork formation (22).

Another mechanism to deal with common template ob-
structions is fork reversal. Fork reversal results in reanneal-
ing of the nascent strands without further DNA Pol activ-
ity, leading to the formation of a ‘chicken foot’ structure
(Figure 1E). Replication fork reversal (i) allows additional
time for repair, (ii) protects ssDNA at the stalled fork, (iii)
could serve as a mechanism of TS and (iv) avoids the col-
lision of replication machinery with DNA lesions present
ahead of the fork (23). It is estimated that about 15–30%
of the forks are reversed after treatment with various geno-
toxic agents. This suggests that fork reversal is a global
response to replication stress (24). Fork reversal is medi-
ated by several proteins including ZRANB3, SMARCAL1,
HLTF, FBH1, WRN, RAD54, FANCM, as well as RAD51
(25,26). It is largely unknown if they act in coordination
with each other, or independently in different regions of the
genome, or in different damage contexts. Once a reversed
fork is formed, it creates a DSB that needs to be protected
from nucleases, such as MRE11 and DNA2, which degrade
and collapse the reversed fork. This protection is generally
thought to be RAD51-dependent (27–29).

Besides its role in fork protection, RAD51 promotes
fork reversal (24,29), and mediates the restart of stalled or
collapsed forks (30). Surprisingly, a recent study demon-
strated that RAD51 DNA binding activity alone is suffi-
cient for both replication fork reversal and protection, and

only the strand exchange enzymatic activity is required for
replication fork restart (31). These roles of RAD51 at the
fork could be positively or negatively regulated, and many
of the canonical factors involved in Rad51-mediated ho-
mologous recombination (HR) are also involved in fork
protection. For example, BRCA2 functions during HR
by displacing the single-stranded DNA-binding protein,
RPA, with RAD51 to promote the strand exchange re-
action (32). Moreover, BRCA2 protects stalled replication
forks from extensive nucleolytic degradation through sta-
bilization of the RAD51 filament (28). Besides BRCA1
and BRCA2, which promote RAD51 recruitment, RAD51
paralogs, MMS22L–TONSL, and BOD1L also positively
support RAD51 function in fork protection (33–35). The
BRCA1 antagonist, 53BP1, has also been reported to play a
role in fork protection, although this was not observed con-
sistently between various groups (36–39). Recently, this con-
tradiction was resolved by showing that the role of 53BP1
in fork protection is dependent on the chronic versus acute
inactivation of 53BP1 (40). This suggested that distinct
molecular pathways may exist for fork protection; indeed,
the requirement of fork protection proteins depends on
the pathway used in fork remodeling. Specifically, BRCA2,
FANCD2, and ABRO1 protect forks generated by SMAR-
CAL1, ZRANB3, and HLTF, whereas 53BP1, FANCA,
FANCC, FANCG, BOD1L and VHL protect forks re-
modeled by FBH1 (40). Other proteins, including RADX,
FBH1 and RAD52 prevent excessive fork reversal by neg-
atively regulating RAD51 activity (41–43). This illustrates
the importance of restricting RAD51 activity at forks, be-
cause RAD51 overexpression promotes excessive fork re-
versal, leading to fork degradation and DSBs (42,44).

In addition to the nucleases that degrade nascent DNA
strands during fork reversal, other structure-specific nucle-
ases may process stressed forks following prolonged stalling
(45). Therefore, the requirement for the fork protection
from nucleases is not limited to fork reversal. For exam-
ple, cancer cells with microsatellite instability are syntheti-
cally lethal with defects in WRN helicase (46,47). Recently,
Nussenzweig and colleagues have revealed that the TA re-
peats form secondary structures that stall replication forks
and require unwinding by the WRN helicase. In the ab-
sence of WRN, the TA-dinucleotide repeats are cleaved by
MUS81 nuclease, leading to double strand breaks, DNA
end resection, RPA exhaustion, and cell death (48).

Translesion synthesis (TLS)

When replication forks stall, low fidelity TLS Pols tran-
siently replace the replicative Pols to help bypass the lesion
(Figure 1F). Mammalian cells have at least seven enzymes
with TLS activity, including four Y-family Pols (�, �, � and
REV1), one B-family Pol (� ), and two A-family Pols (� and
�). In general, TLS Pols have larger catalytic pockets that al-
low them to accommodate templates lesions. Furthermore,
TLS Pols lack 3′-5′ proofreading domains (49). Therefore,
TLS Pols confer damage tolerance at the cost of reduced
replication accuracy. Although TLS Pols are inherently er-
ror prone, certain TLS Pols can mediate error-free repair of
specific lesions. For example, TLS Pol� accurately bypasses
UV-induced CPD lesions (50). Accordingly, mutations in
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the gene encoding Pol� result in a genetic predisposition
to skin cancer (51). Other TLS Pols, such as Pol�, Pol�,
Pol� and Pol� make errors while replicating UV-induced le-
sions (49). Due to the mutagenic potential of Pol�, it was
suggested to contribute to skin-cancer development. Sur-
prisingly, Prakash and colleagues have found that Pol� plays
a protective role against skin cancer caused by UV. This is
attributed to the role of Pol� in promoting replication fork
progression in response to UV, which counteracts the for-
mation of DSBs and genome rearrangements. This suggests
that both error-prone and error-free TLS Pols may act as
effective barriers to genomic instability and tumorigenesis
(52). Similar to the mechanisms described above, PCNA
monoubiquitination appears to be a key component reg-
ulating TLS polymerase recruitment (53), yet how the cell
‘chooses’ which TLS Pol is activated at any specific time is
largely unclear.

How lesion skipping, TLS, TS and fork reversal are regu-
lated, and how a replisome activates one mechanism over
another when encountering a particular type of lesion is
still largely unknown. Recent evidence suggests that fork re-
versal and repriming may be mutually exclusive pathways
(16,54). In support of this, UV damage induces an increase
in RAD51 loading onto chromatin in PrimPol depleted cells
(13), whereas the same type of damage induces excessive
elongation of nascent DNA by PrimPol in RAD51-depleted
cells (55). More recently, HLTF has been shown to activate
replication fork reversal and to prevent alternative tolerance
mechanisms. Interestingly, while the loss of HLTF makes
the cells rely on the PrimPol for unrestrained replication,
defect in the HLTF DNA binding HIRAN domain makes
cells rely on translesion synthesis (54). RAD52 could also
play a role in regulating the switch between fork reversal and
repriming (43) Together, these data strongly suggest an an-
tagonistic interplay between the pathways involved in main-
taining replication fork dynamics during damage.

Replication fork restart

Dormant origins are licensed origins (i.e. have loaded
MCM helicase) that are not activated during replication.
They serve as an important backup to restore replication
when forks are stalled. The high number of dormant ori-
gins in mammalian cells reduces the necessity of replica-
tion fork restart (56). Moreover, a reversed fork could just
simply merge with a converging fork. Nevertheless, fork
restart does occur in mammalian cells. This restart could
be achieved by repriming (discussed above), helicases, or
break-induced replication (BIR).

Specific helicases, such as RECQ1, WRN and BLM, have
important roles in reversed fork restart. RECQ1 promotes
fork reversal restart, an activity that is negatively regu-
lated by PARP1 to prevent unscheduled fork reversal restart
to give more time for repair (23). Moreover, WRN and
DNA2 induce the resection of regressed arms, leading to
fork restart (57).

Alternatively, if a fork encounters a ssDNA break or
other type of damaged template that collapses the fork,
BIR, a unique type of HR mechanism, can be employed.
Similar to other HR mechanisms, BIR requires extensive
end processing to generate a 3′ ssDNA end that allows

RAD51-ssDNA filament formation. RAD51 invades the
homologous template to generate a displacement loop (D-
loop) that allows replisome assembly and DNA synthe-
sis. Unlike HR, which typically involves small regions of
DNA synthesis, BIR engages in extensive DNA replica-
tion for many kilobases of DNA until the end of the chro-
mosome (58). There are many differences between canon-
ical replication forks and those established during BIR.
First, unlike canonical replication, BIR involves a single
ended DNA that acts independently, and progresses via a
migrating bubble or D-loop (58). Second, BIR synthesis
is asynchronous; the leading strand is synthesized as ss-
DNA, then the lagging strand uses the leading strand as the
template (59–61). Third, BIR assembles a modified repli-
some, where an additional Pol	 subunit, human POLD3,
is added, and the DNA helicase PIF1 activity is required
(60–62). In yeast, the Srs2 helicase is also required to pre-
vent the formation of toxic structures during the invasion
of leading strand into the DNA template (63). Fourth, com-
pared to canonical DNA replication, BIR is associated with
loss-of-heterozygosity, high mutation rates, and chromoso-
mal rearrangements (58). This mutagenic synthesis is due
at least in part to frequent dissociations of modified Pol	
from the template (58,64,65), and the reduced efficiency
of mismatch repair during BIR (66). BIR synthesis is ei-
ther rescued by a replication fork coming from the op-
posite direction or terminated by MUS81 cleavage of the
recombination intermediate (31,67,68). Although canoni-
cal BIR is RAD51-dependent, RAD51-independent BIR
has also been identified. The exact mechanism of RAD51-
independent BIR is unknown, and the relative contribu-
tions of RAD51-dependent and independent BIR to repli-
cation restart are currently unclear (58).

The above tolerance and repair strategies can be deployed
to deal with virtually all types of DNA damage during repli-
cation. Yet, these are insufficient to maintain genome sta-
bility. In the next section, we will discuss the additional re-
quirements to deal with specific types of damage during
replication, which are commonly encountered during nor-
mal replication or during the presence of certain genotoxins.

GENOMIC RIBONUCLEOTIDES AND R-LOOPS

Ribonucleotide triphosphates (rNTPs) and deoxyribonu-
cleotides triphosphates (dNTPs) are the precursors for
RNA and DNA, respectively. The extra 2′-OH group in the
ribose makes RNA relatively unstable, because it can po-
tentially mediate nucleophilic attack of the sugar-phosphate
backbone, generating a break. RNA is frequently embed-
ded or annealed to genomic DNA, where it interferes with
replication, inducing DNA damage and genomic instabil-
ity. Paradoxically, DNA replication is the main source of
genomic ribonucleotides, and ribonucleotide incorporation
is the largest fraction of all endogenous DNA ‘lesions’ (Fig-
ure 2).

Ribonucleotide bypass by replicative and TLS polymerases

A major issue with ribonucleotides in DNA is that replica-
tive Pols in yeast and human are inefficient at bypassing
them when they are present in the template strand. More-
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Figure 2. Genomic ribonucleotide repair and bypass during replication. (A) DNA polymerases incorporate ribonucleotides (blue ‘R’) during replication
which can be bypassed, removed by ribonucleotide excision repair (RER), or processed by topoisomerase I (TOP1). (B) Left unrepaired, a replication fork
would encounter a ribonucleotide in the template strand. The replicative DNA polymerases are inefficient in bypassing template ribonucleotides, leading
to replication stress. In this case, translesion synthesis (TLS) or template switching (TS) are activated to bypass the ribonucleotides to complete replication.
(C) During RER, RNase H2 incises 5′ to the embedded ribonucleotide, DNA polymerase 	 generates a flap which is nucleolytically processed by FEN1,
followed by ligation, leading to error-free repair. (D) In the absence of RER, TOP1 mediates the removal of genomic ribonucleotides. TOP1 incises 3′
to the embedded ribonucleotide. Then, nucleophilic attack by the 2′-OH group on the ribose generates a 2′,3′-cyclic phosphate and releases TOP1. The
2′,3′-cyclic phosphate can be reversed by TOP1 or removed by a second TOP1 cleavage, or by various nucleases. Alternatively, the trapped TOP1 can be
removed in a manner which may lead to a small deletion, or via TDP1 in an error-free manner.

over, the bypassing capability decreases as the number of
consecutive template ribonucleotides increases. For exam-
ple, the efficiency decreases from 70% to 35% for Pol	 and
from 66% to 3% for Polε as the number of ribonucleotides
increases from 1 to 3 (69–71). Similarly, physiological lev-
els of rNTPs inhibit mtDNA synthesis by Pol
 (72). There-
fore, genomic ribonucleotide accumulation induces replica-
tion stress, leading to DNA breaks and genomic instabil-
ity, which has been observed in yeast and human cells (73–
79). The replication stress could also be induced indirectly
by DNA breaks generated by spontaneous hydrolysis or by
TOP1-mediated ribonucleotide cleavage, which will be de-
scribed below.

TLS and TS are important means of bypassing tem-
plate ribonucleotides (Figure 2) and are activated in RNase
H1/2 depleted cells (74,76). The TLS polymerase Pol�
can bypass ribonucleotide-containing DNA and efficiently
copies DNA templates containing four consecutive ribonu-

cleotides (76). Moreover, oxidized ribonucleotides, like 8-
oxorG, in DNA could be more problematic for replication,
because they strongly block primer extension by Pol�. Inter-
estingly, TLS pol� can bypasses both undamaged and dam-
aged ribonucleotides (80). These results suggest that TLS
Pols may act as genomic ribonucleotide tolerance mecha-
nisms. On the other hand, TLS Pols can use rNTPs as a
substrate to bypass certain lesions. Pol� was reported to by-
pass abasic sites and 8-oxo-G lesions using rNTPs as sub-
strates (81). Moreover, under limited dNTP pools triggered
by hydroxyurea (HU), robust ribonucleotide incorporation
is mediated by human TLS Pol�during TLS of CPD, 8-oxo-
G, 8-met-G and a cisplatin intrastrand guanine crosslink.
These results suggest that Pol� can contribute to the accu-
mulation of genomic ribonucleotides (82,83). In the pres-
ence of RNase H, this may be an acceptable compromise.
However, in the absence of RNase H activity, Pol� activity
becomes increasingly cytotoxic. Consistently, the deletion
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pathways of repair are antagonistic. Similar to DSB path-
way regulation, it is likely that post-translational modifi-
cations are in play which function to favor one pathway
over another. Yet, beyond PCNA monoubiquitination ver-
sus polyubiquitination, or TRAIP-mediated ubiquitination
of CMG, how the cell selects one particular pathway over
another is far from clear. Second, it is not clear why the cell
developed multiple pathways to fix the same or very simi-
lar types of damage during replication. The extreme case is
the presence of largely redundant DPC proteases. It is pos-
sible that different types of DPCs require their presence, or
different chromatin contexts may require specific pathways.
Third, how the cell avoids the excision of ssDNA in the
vicinity of the replication fork by excision repair pathways
(e.g. RER or BER) during replication is an unanswered
question. One strategy is the bypassing of the damage by
TLS or TS to allocate the lesion in the context of a double-
stranded template, which would allow the faithful action of
the incision step. Another strategy involves fork reversal,
which also helps maintain the lesion in a double-stranded
context. In virtually all of these examples, the precise regu-
latory steps are also almost completely unexplored. Future
work will undoubtedly shed light on these key aspects of
repair during DNA replication.
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