SARS-CoV-2 variants and convalescent plasma: Reality, fallacies, and opportunities

Arturo Casadevall
Jeffrey P Henderson
Michael J Joyner
Liise-Anne Pirofski

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
In recent months, genomic characterization of pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates identified viral variants that are less susceptible to neutralization by convalescent plasma (CP), vaccine-elicted plasma/sera, or SARS-CoV-2 monoclonal antibodies (mAbs) than earlier SARS-CoV-2 strains. The emergence and spread of SARS-CoV-2 variants that evade vaccine immunity would be a cataclysmic development for a world expecting relief from the pandemic and a return to normality, since these could cause new cycles of infection in vaccinated individuals and those who recovered from coronavirus disease 2019 (COVID-19). Some media reports have suggested that SARS-CoV-2 variants emerged as a consequence of CP use for COVID-19 (1, 2). This hypothesis followed a report that CP treatment in an immunosuppressed patient with COVID-19 was associated with the emergence of new SARS-CoV-2 variant populations in that patient, some of which exhibited reduced susceptibility to antibody neutralization (3). This observation was confirmed in the laboratory, where serial passage of virus in the presence of CP selected for antibody-resistant SARS-CoV-2 variants, including the E484K mutation associated with vaccine resistance (4). These findings established that CP could select for antibody-resistant variants, although this should not be regarded as a surprising result. As a powerful antiviral agent, CP is expected to exert selective pressure on viral populations in these types of in vitro evolution experiments. In […]
SARS-CoV-2 variants and convalescent plasma: reality, fallacies, and opportunities

Arturo Casadevall, Jeffrey P. Henderson, Michael J. Joyner, and Liise-anne Pirofski

In recent months, genomic characterization of pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates identified viral variants that are less susceptible to neutralization by convalescent plasma (CP), vaccine-elicited plasma/sera, or SARS-CoV-2 monoclonal antibodies (mAbs) than earlier SARS-CoV-2 strains. The emergence and spread of SARS-CoV-2 variants that evade vaccine immunity would be a catalytic development for a world expecting relief from the pandemic and a return to normalcy, since these could cause new cycles of infection in vaccinated individuals and those who recovered from coronavirus disease 2019 (COVID-19).

Some media reports have suggested that SARS-CoV-2 variants emerged as a consequence of CP use for COVID-19 (1, 2). This hypothesis followed a report that CP treatment in an immunosuppressed patient with COVID-19 was associated with the emergence of new SARS-CoV-2 variant populations in that patient, some of which exhibited reduced susceptibility to antibody neutralization (3). This observation was confirmed in the laboratory, where serial passage of virus in the presence of CP selected for antibody-resistant SARS-CoV-2 variants, including the E484K mutation associated with vaccine resistance (4). These findings established that CP could select for antibody-resistant variants, although this should not be regarded as a

RNA viruses exist in quasi-species populations including variants that may predominate under selective pressure from the host’s immune system, including both endogenous and passively administered specific antibodies. Specific mAbs may exert pressure that is even more consequential than that of polyclonal preparations such as CP. This is because only a few amino acid changes are necessary to abrogate mAb binding to a single viral determinant (5). For example, exposure to the respiratory syncytial virus-specific (RSV-specific) mAb palivizumab was associated with the emergence of variant viruses during experimental infection of rats (6, 7) as well as during treatment of human infants (8). However, administration of mAb combinations (oligoclonal “cocktails”) can abrogate the emergence of resistant viruses, as demonstrated for SARS-CoV-2 mAbs (9). Nevertheless, the broader array of immune system functions also influences the outcome of host-virus interactions.

Variant drug and/or antibody-resistant viruses are more likely to arise with or without augmentation by specific antibodies (CP or mAbs) in immunocompromised patients, because their generally high viral burdens provide greater opportunity for variant selection. Incidentally, mAbs are theoretically more likely to select for antibody-resistant variants simply because as influenza, for which oseltamivir-resistant influenza viruses were more likely to be identified in immunocompromised individuals (10).

We are now presented with news of globally emergent, antibody-resistant SARS-CoV-2 variants alongside new laboratory evidence that CP can select for SARS-CoV-2 antibody-resistant variants in immunocompromised individuals. We must be wary of drawing fallacious, causative relationships between these new facts. SARS-CoV-2 variants associated with higher transmissibility emerged during a surge in the United Kingdom (11). During that time, CP use was limited to hospitalized patients who either ultimately died or resolved their infection. For CP to have been responsible for the observed SARS-CoV-2 variant, it would have had to emerge in patients who subsequently transmitted it to the community. This is possible but extremely unlikely within the larger pandemic. A more likely explanation is that variants are emerging from the vast pool of replicating viruses that is presently passing through hundreds of millions of infected humans (Figure 1). This explanation posits that variants emerge spontaneously during viral replication and that some variants that are resistant to antibody-mediated neutralization are then selected by the developing immune response because
The Journal of Clinical Investigation

p 533

Figure 1. Schema for the emergence of SARS-CoV-2 variants in individuals and populations. (A) Within an immunocompetent individual, SARS-CoV-2 infection elicits an antibody response to multiple viral determinants. While these antibodies have the capacity to reduce the viral load, ongoing SARS-CoV-2 replication can result in new viral variants that may or may not be susceptible to existing antibodies. In some individuals, especially those with an impaired ability to produce a robust antibody response, viral variants that escape the antibody (and/or other elements of the immune) response may emerge. On the other hand, variants that emerge in an immunocompetent individual can elicit new antibodies to which the variant is susceptible. Thus, plasma containing antibodies produced by such individuals constitutes an immediately available antiviral agent for emerging variants. (B) Viral variants emerge at the population level. New viral variants emerge as a result of chance mutations in individuals who are competent for transmission and replication in populations. Deleterious mutations of the virus are eliminated, while neutral or more fit variants spread in the population when transmission is uninterrupted. While individuals infected with these variants may clear them, widespread transmission will continue when the transmission rate exceeds the rate at which individual immune responses achieve virologic control.

Only a very small proportion of all individuals who have been infected with SARS-CoV-2 have received CP or mAbs for COVID-19 therapy. In contrast, more than 100 million people have been infected with SARS-CoV-2, and the majority of these individuals have made antibodies similar to those found in CP or mAb preparations. Among these are neutralizing antibodies that put selective pressure on infecting virus to evade antibody-mediated neutralization and maintain a replicating population within the host. Each person who is infected and mounts an antibody response...
advantage in a human population that is increasingly immune to the founder SARS-
CoV-2 strains.

Within these emerging circumstances, important new opportunities for CP use arise. Although SARS-CoV-2 variants may elude antibodies elicited by earlier, ancestr
al SARS-CoV-2 strains, individuals who recover from variant COVID-19 are likely to generate CP capable of neutralizing variants. Hence, variant CP could be a potential antidote for variant SARS-CoV-2. As variant SARS-CoV-2 strains spread in human popu-
lations, recently donated CP units will be especially efficacious for patients with vari-
ant COVID-19. Thus, strategies to deploy CP could be tailored to align with currently circulating virus strains. This provides an additional rationale for surveillance of virus strains, which is necessary to follow SARS-
CoV-2 evolution, just as it is for influenza.

As we move toward a hopeful, but increasingly uncertain, second quarter of 2021, every effort should be made to conduct real-time viral surveillance with increased sequencing capacity designed to identify the emergence, type, and prevalence of variant SARS-CoV-2 strains. The resulting knowledge should inform CP characterization by determining each unit’s ability to neutralize relevant circulating viral variants. Going forward, matching CP characteristics to each patient’s virus type may become a useful precision medicine approach at the front lines of the pandemic.

Acknowledgments

AC is supported in part by the NIH (AI052733, AI15207, and HLO59842). JH is supported in part by the NIH (DK111930) and The Longer Life Foundation. MJ is supported in part by the National Heart, Lung, and Blood Institute (NHL-
BI), NIH (5R35HL139854). LP is funded in part by the Mathers Foundation, the NIH (RO1AI23654 and RO1AI43433), and the National Center for Advancing Translational Sciences (NCATS), NIH (3UL1TR002556-04SI).

Address correspondence to: Arturo Casad
davill, Department of Molecular Micro-
biology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Room ES132, Baltimore, Maryland 21205, USA. Phone: 410.955.3457; Email: acasadevill@jhu.edu.

2. Walker M. Did convalescent plasma for COVID-
ease/covid19/91088.

org/10.1038/s41586-021-03291-y.

9. Baum A, et al. Antibody cocktail to SARS-
10. Kossyvakis A, et al. Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under pro-
12. Masecola JR, et al. SARS-CoV-2 viral vari-
ants-tackling a moving target [published on Feb-

13. Weinreich DM, et al. REGN-COVID, a neutraliz-
ing antibody cocktail, in outpatients with Covid-
gational-covid-19-convalescent-plasma.
15. Senefeld JW, et al. Therapeutic use of convales-
cent plasma in COVID-19 patients with immu-
nodeficiency [preprint]. https://doi.org/10.11