
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2007 

The eukaryotic leading and lagging strand DNA polymerases are The eukaryotic leading and lagging strand DNA polymerases are 

loaded onto primer-ends via separate mechanisms but have loaded onto primer-ends via separate mechanisms but have 

comparable processivity in the presence of PCNA comparable processivity in the presence of PCNA 

Olga Chilkova 
Umea University 

Peter Stenlund 
Umea University 

Isabelle Isoz 
Umea University 

Carrie M. Stith 
Washington University School of Medicine in St. Louis 

Pawel Grabowski 
Umea University 

See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Chilkova, Olga; Stenlund, Peter; Isoz, Isabelle; Stith, Carrie M.; Grabowski, Pawel; Lundstrom, Else-Britt; 
Burgers, Peter M.; and Johansson, Erik, "The eukaryotic leading and lagging strand DNA polymerases are 
loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of 
PCNA." Nucleic Acids Research. 35, 19. 6588-6957. (2007). 
https://digitalcommons.wustl.edu/open_access_pubs/151 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/open_access_pubs/151
mailto:vanam@wustl.edu


Authors Authors 
Olga Chilkova, Peter Stenlund, Isabelle Isoz, Carrie M. Stith, Pawel Grabowski, Else-Britt Lundstrom, Peter 
M. Burgers, and Erik Johansson 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/
open_access_pubs/151 

https://digitalcommons.wustl.edu/open_access_pubs/151
https://digitalcommons.wustl.edu/open_access_pubs/151


6588–6597 Nucleic Acids Research, 2007, Vol. 35, No. 19 Published online 28 September 2007
doi:10.1093/nar/gkm741

The eukaryotic leading and lagging strand DNA
polymerases are loaded onto primer-ends via
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processivity in the presence of PCNA
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ABSTRACT

Saccharomyces cerevisiae DNA polymerase d (Pol d)
and DNA polymerase e (Pol e) are replicative DNA
polymerases at the replication fork. Both enzymes
are stimulated by PCNA, although to different levels.
To understand why and to explore the interaction
with PCNA, we compared Pol d and Pol e in physical
interactions with PCNA and nucleic acids (with or
without RPA), and in functional assays measuring
activity and processivity. Using surface plasmon
resonance technique, we show that Pol e has a high
affinity for DNA, but a low affinity for PCNA.
In contrast, Pol d has a low affinity for DNA and a
high affinity for PCNA. The true processivity of Pol d
and Pol e was measured for the first time in the
presence of RPA, PCNA and RFC on single-stranded
DNA. Remarkably, in the presence of PCNA, the
processivity of Pol d and Pol e on RPA-coated DNA
is comparable. Finally, more PCNA molecules were
found on the template after it was replicated by Pol e
when compared to Pol d. We conclude that Pol e and
Pol d exhibit comparable processivity, but are
loaded on the primer-end via different mechanisms.

INTRODUCTION

At least three DNA polymerases are required for
eukaryotic genome replication: DNA polymerase alpha
(Pol a), DNA polymerase delta (Pol d) and DNA
polymerase epsilon (Pol e) (1). Pol a initiates DNA
synthesis on both the leading and lagging strands by

synthesizing a RNA/DNA hybrid primer. The replicative
DNA polymerases, Pol d and Pol e, then extend the DNA
synthesis from the primer. In addition to the three DNA
polymerases, DNA replication requires additional replica-
tion factors: the single-stranded DNA-binding protein
(RPA), the clamp loader (RF-C) and the clamp (PCNA)
(2). At first RPA may appear to have a relatively simple
task in interacting with and stabilizing single-stranded
DNA (ssDNA). However, the ability to interact with
ssDNA places RPA in the middle of several processes that
involve DNA replication and repair (3).

The precise role of Pol e during DNA replication has
been difficult to define. However, genetic analysis and
chromatin immunoprecipitation assays have shown that
Pol e participates at the origins of DNA replication during
the establishment of replication forks (4,5). Furthermore,
chromatin immunoprecipitation assays have demon-
strated that Pol e remains associated with the fork as it
progress from the origin (6,7). This supports a model in
which Pol e is responsible for the replication of one strand
at the replication fork. Other results supporting this one
polymerase-one strand model include the ability of both
Pol d and Pol e to be purified as monomers with regard to
the catalytic subunit (8,9). In vitro DNA replication with
cell-free Xenopus extracts is dependent on Pol e, and
immunodepletion experiments suggest that Pol e and Pol d
have unique functions (10,11). Genetic experiments in
yeast demonstrated that Pol d and Pol e proofread
opposite strands, in agreement with the observed strand
asymmetry in replication fidelity (12–14). Together with
the unique property of Pol d that allows idling to maintain
a ligatable nick, genetic experiments firmly support a
model by which Pol d is solely responsible for the synthesis
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of the lagging strand (15–17). Recently, the first direct
evidence for Pol e to function as the leading strand DNA
polymerase in Saccharomyces cerevisiae was identified
using an altered error signature from a pol2 allele with a
mutation in the active site (18).

There are still unresolved questions regarding the
function of Pol e. While replication fidelity studies in
yeast suggest that Pol e generally replicates the leading
strand (18), studies with POL2 partial deletion mutants
indicate that under conditions of Pol e dysfunction, Pol d
can replicate the leading strand (19). Pol e has also been
suggested to play an important role at late firing origins
(20), and in this model Pol ewould replicate certain regions
of the genome. Pol e has been shown to promote epigenetic
silencing in S. cerevisiae (21,22). In addition to these
functions, Pol e acts as a sensor for the S-phase checkpoint
in S. cerevisiae (23). Pol e interacts with ssDNA, and is
inhibited by ssDNA when RPA is excluded from the
polymerase assay (24). This has been proposed to be one
mechanism by which Pol emay sense DNA damage during
S-phase (25). However, ssDNA is not considered to be
long-lived in vivo as RPA efficiently coats ssDNA. Early
in vitro assays suggested that Pol e may be the leading
strand polymerase based on the measured processivity
(26). However, in vitro studies where Pol e replicated
single-stranded circular DNA templates in the presence of
PCNA showed that Pol ewas much less efficient than Pol d,
potentially due to the presence of ssDNA in the reaction
mix. The high affinity for ssDNA was thought to inhibit
the processivity of Pol e.

The purpose of this study was to clarify differences
between the leading- and lagging-strandDNA polymerases
by challenging the S cerevisiae polymerases in various
assays. As all previous studies have been under conditions
where the loading efficiency at the primer-end has
masked the true processivity, we first assessed the PCNA-
dependent processivity of Pol d and Pol e. Second, we
assessed the influence of RPA on the processivity of Pol e
and Pol d. Finally, we determined whether Pol e interacts
with PCNA, independent of PCNA binding to DNA.
The ability to interact with PCNA off DNA is typical for
proteins that depend on a PCNA interaction motif to be
efficiently loaded onto the primer termini. Here we show
that Pol e and Pol d are loaded onto the primer termini via
distinct mechanisms. Remarkably, we find that Pol e and
Pol d are similarly processive, with surprisingly short
replication products resulting from a single encounter with
the template.

MATERIALS AND METHODS

Proteins and DNA templates

Pol e, Pol d, RPA, RF-C and PCNA were purified as
described previously (9,27–30). Oligonucleotides used in
the surface plasmon resonance analysis and replication
assays were purchased from DNA Technologies Inc.
and Sigma-Proligo. Single-stranded M13mp18 DNA was
primed with a synthetic 60-mer (complementary to
position 6355–6295), and single-stranded pBluescript II

SK(+) was primed with a synthetic 50-mer (complemen-
tary to position 678–628).

Holoenzyme assays

The standard 30 ml reaction contained 40mM Tris–HCl,
pH 7.8, 0.2mg/ml BSA, 1mM DTT, 100 mM each of
dGTP, dATP and dTTP, and 25 mMof dCTP, [a-32P]dCTP
(1mCi, Amersham Bioscience), 8mM MgAc2, 1mM ATP,
125mM NaAc, 100 fmol RFC, 1 pmol PCNA, 40 fmol
of single-primed M13mp18 template or 100 fmol of single-
primed pBluescript II SK(+), 100 fmol of Pol e or Pol d
and RPA as indicated in the figures. The reactions were
incubated at 308C for indicated times. The reactions were
stopped by adding 6 ml of stop solution containing 60mM
EDTA, 1%SDS, 0.1%bromophenol blue and 0.1% xylene
blue, and were subsequently loaded onto a 1% alkaline
agarose gel, containing 30mM NaOH and 2mM EDTA.
The gels were run at 25V for 16 h, neutralized with Tris
pH 7.5, dried, placed on a phosphoimager screen (Fujifilm)
and scanned with a Typhoon 9400 phosphoimager
(GE Healthcare).
For measurements of processivity, [g-32P]ATP labeled

50-mer primer was annealed to pBluescript SKII+, and
[a-32P]dCTP was omitted from the reaction mixture.
In these reactions, 2.4 fmol of Pol d or Pol e was added
to meet the required single-hit conditions (2.4 fmol
polymerase to 80 fmol primer–template). The resulting
products were separated on denaturing 8% polyacryla-
mide gels and 2% alkaline agarose gels. Sequencing ladder
was prepared using Thermo Sequenase sequencing kit
(USB) according to the manufacturer’s instructions.
Results were quantified using ImageQuant TL software
(GE Healthcare).
The loading of PCNA was measured with [g-32P]ATP

as described previously (31). The standard reaction was
scaled up to 500 fmol of single-primed pBluescript II
SK(+), 500 fmol RFC, 13 pmol PCNA, 60 pmol of RPA
and 500 fmol of either Pol d or Pol e. The reactions were
incubated for 7.5min at 308C and stopped by the addition
of EDTA to a final concentration of 50mM. The reactions
were immediately loaded onto a 2ml BiogelA-5m column,
equilibrated in 10mMTris–HCl pH 7.5, 1mMEDTA, 5%
glycerol, 50mM NaCl, 1mM b-mercaptoethanol, 8mM
MgAc2 and 50 mg/ml BSA. Two drops per fraction were
collected, and the amount of PCNA in each fraction
was quantified in a scintillations counter and then plotted.

Preparation of DNA for biomolecular interaction analysis

A 60-mer oligonucleotide with biotin at the 50-end (BIA1)
was used as a template strand and as a ssDNA substrate
(Table 1). A 40-mer complementary to the 30 end of the
template oligonucleotide (BIA2) was annealed to BIA1 to
create a primed substrate. The double-stranded substrate
was created by annealing a complementary 60-mer
oligonucleotide (BIA3) to BIA1. The complementary
oligonucleotides were mixed in 100mM sodium chloride,
incubated at 758C for 5min and cooled to room
temperature. Annealed templates were gel purified by
non-denaturing 10% PAGE.
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Surface plasmon resonance

Interactions of the polymerases with DNA and PCNA
were monitored using a BIAcore 3000 surface plasmon
resonance biosensor instrument. Streptavidin was immo-
bilized on a CM5 chip according to the manufacturer’s
instructions. Biotinylated primed DNA, dsDNA and
ssDNA were individually immobilized onto first, third
and fourth streptavidin surfaces, respectively, of the
streptavidin-coated chip. Approximately 175 RU of
primed and dsDNA templates and 95 RU of ssDNA
template were immobilized, reflecting equal molar
amounts of substrate. The second surface was left under-
ivatized to correct for refractive index changes, non-
specific binding and instrument drift. For the PCNA chip,
�500RU of PCNA were covalently immobilized on the
surface of the dextran chip (CM5) by the amine method,
according to the manufacturer’s instructions.
All interactions were monitored at 208C. Polymerases

were injected at indicated concentrations in running buffer
of 25mM HEPES pH 7.6, 10% glycerol, 200mM sodium
acetate pH 7.8, 8mM magnesium acetate, 1mM dithio-
treitol, 50 mM dGTP, 50 mM dTTP, 0.005% P-20 and
0.2mg/ml BSA, at a flow rate of 50 ml/min for 60 s with a
60 s long dissociation phase. The running buffer was
supplemented with 500 pM RPA when the DNA on the
chip surface was coated with RPA.

RESULTS

Analysis of products formed by Pol e and Pol d
in a holoenzyme assay

Several previous studies have measured the activity of Pol
d and Pol e with and without auxiliary factors, such as
RPA, PCNA or RFC. However, many of these studies
were performed with proteolytic forms of Pol e (32,33)
and direct comparative studies of the two enzymes carried
out under identical experimental conditions are lacking.
With a currently well-established overproduction system
for Pol e, all the required factors from S. cerevisiae can be
over-expressed and purified to homogeneity from a well-
defined source.
We first investigated whether our over-expressed Pol e

showed biochemical properties similar to previously
described in experiments (26,32,34), which were generally
carried out on single-primed ssDNA templates from
M13mp18. In our initial experiments, we added a
sufficiently large molar excess of RPA to coat all ssDNA
in the reaction. We had previously found that the stability
of Pol e was significantly improved during purification
when chloride ions were replaced with acetate ions in

all buffers (9). To maintain the chloride-ion concentration
at a low level, we adjusted the salt concentration in the
reaction mix with 125mM NaAc instead of 66mM NaCl.
Under these conditions, both Pol e and Pol d are
stimulated by the processivity clamp, PCNA, when
replicating the template (32,34). Time-course analysis
showed that Pol d replicated the M13 ssDNA in 2min
(Figure 1A). In contrast, Pol e requires at least 8min to
replicate the entire template (Figure 1A). This was

Table 1. Oligonucleotides used in surface plasmon resonance

experiments

BIA150-Biotin-TGTGGAATTGTGAGCGGAACACCAAACACATA
TAACCCCCATCATCACGAATTCACTGG-30

BIA250-CCAGTGAATTCGTGATGATGGGGGTTATATGTGTTT
GGTG-30

BIA350-CCAGTGAATTCGTGATGATGGGGGTTATATGTGTTTG
GTGTTCCGCTCACAATTCCACA-30

Figure 1. Comparison of the replication efficiency of Pol e and Pol d
when stimulated by PCNA. Polymerase replication was assessed over
time on single-primed circular ssDNA templates, (A) M13mp18 DNA
and (B) pBluescript II SK(+). PCNA and RFC were included in lanes
1–5 and 7–11. No PCNA or RFC was added in lanes 6 and 12.
Products of the reactions were separated by electrophoresis on a 1%
alkaline agarose gel.
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consistent with previous studies of Pol e and Pol d, where
Pol e was incubated for 30min and Pol d for 2–4min
(32,34,35). The single-stranded M13mp18 template can
form many hairpin loops, presenting strong pause sites.
For this reason, we also used single-stranded pBluescript
II SK(+) as a template, which has a lower tendency to
form secondary structures that cause replication pause
sites (Figure 1B). Again, Pol d was approximately four
times faster when replicating the template with the help of
PCNA. Pol d needed �1min to replicate the entire
template (3 kb), while Pol e needed �4min.

Influence of RPA on the holoenzyme assay

Pol e has previously been shown to have affinity for
ssDNA (25). However, ssDNA is not abundant in vivo,
but instead is efficiently coated by RPA. To determine
whether Pol d and Pol e are sensitive to ssDNA partially
coated with RPA, we lowered the RPA concentration in a
holoenzyme assay to a level where only �20% of the
M13mp18 ssDNA was coated with RPA (36) (Figure 2).
Based on the previous experiment, we incubated Pol e for
15min and Pol d for 4min. Under these conditions, the
activity of Pol d was only mildly affected by the presence
of naked ssDNA (Figure 2, lane 5 and 7). In contrast, Pol
e was not able to synthesize sufficient amounts of DNA to
be detected on the alkaline agarose gel (Figure 2, lane 3).
Several explanations are possible as to why Pol e is
inhibited but not Pol d. One possibility is that ssDNA
specifically inhibits the activity of Pol e. Alternatively,
RPA could increase the efficiency of Pol e loading onto the
30-terminus of the primer. A third possibility is that Pol e
processivity depends on RPA to melt secondary structures
on the template. To distinguish between these hypotheses,
we measured the true processivity of Pol e and Pol d in the
presence of the accessory proteins.

Processivity of Pol e and Pol d

Holoenzyme assays discussed above have often been
described as processivity assays. One potential conclusion
is that Pol d is more processive than Pol e when stimulated
by PCNA (Figures 1 and 2). However, in this assay, the
DNA polymerase is added in excess or equimolar amounts
to template. These conditions do not allow the processiv-
ity of the enzyme to be measured due to the occurrence of
multiple binding events. To determine if the processivity
of Pol e is affected by RPA and to measure the true
processivity of Pol d and Pol e, we diluted Pol d and Pol e
to a concentration where single-hit criteria were met (37).
Under these conditions, the DNA polymerase does not
encounter an already extended primer terminus when
recycled to a new primer terminus. We used similar
reaction conditions as described in Figures 1 and 2, but
with 30-fold molar excess of end-labeled primer–template
over Pol d and Pol e to meet the criteria for single-hit
conditions. This was confirmed by quantification of the
replication products at two different time points, followed
by the calculation of the termination probability at a given
nucleotide as described previously (38). The termination
probability at a given nucleotide at both incubation times

was within the variation interval of two independent
experiments.
In the first assay, we added 2.7 pmol RPA to the

reaction prior to adding Pol e or Pol d (lanes 2 and 3 and
lanes 8 and 9, Figure 3A–C). On this ssDNA partially
coated with RPA and in the absence of PCNA, Pol e was
more processive than Pol d and was able to synthesize
64-nt long products where a weak pause site was located.
In contrast, Pol d was unable to synthesize products
longer than 6 nt. Next, we preloaded PCNA with the help
of RFC prior to adding Pol d and Pol e, and found that
the processivity of both Pol d and Pol e was stimulated
by PCNA. Pol e was able to synthesize up to 377-nt long
products with the help of PCNA, while Pol d was able
to synthesize products that were longer than 600 nt.
We analyzed the products on a 2% alkaline agarose gel,
but the amount of products at each length did not allow
detection of any products longer than �550 nt
(Figure 3C). We found that the processivity of Pol e was
stimulated �6-fold by PCNA, while, in comparison,
PCNA stimulated the processivity of Pol d by at least
100-fold; these approximations are an underestimation,
as we were unable to accurately determine the length of
the longest replication products.
These processivity experiments were carried out in the

presence of a low RPA concentration, which has a
significant effect on the activity of Pol e in a regular
holoenzyme assay (Figure 2). To analyze the potential effect

Figure 2. RPA influences the PCNA-dependent stimulation of Pol e
but not Pol d. RPA was added at varying concentrations. Reactions in
lanes 1 and 2 and 5 and 6 contained 10 pmol RPA, and 2 pmol RPA
was added in lanes 3 and 4 and 7 and 8. Reactions with Pol e (lanes
1–4) were incubated for 15min; reactions with Pol d (lanes 5–8)
were incubated for 4min. Products of the reactions were separated by
electrophoresis on a 1% alkaline agarose gel.
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Figure 3. Processivity of Pol e and Pol d. The replication products from a single reaction mix were separated on three different gels:
(A) 8% polyacrylamide gel separating products in the range of 0–300 nt, (B) 8% polyacrylamide gel separating products in the range of 177–600 nt
and (C) a 2% alkaline agarose gel separating products in the range of 100–3000 nt. All gels were dried on a 3MM Whatmann paper, except the 2%
alkaline agarose where the section with the end-labeled 50-mer primer was blotted onto a DE81 paper (as indicated on the left side). Reaction times
are indicated above each lane. An end-labeled oligonucleotide was annealed to Bluescript II SK(+) ssDNA (lane 1) and 80 fmol primer–template was
added in all reactions. RPA (2.7 pmol) was added to the reactions in lanes 2–5 and 8–11. RPA (21 pmol) was added to reactions in lanes 6 and 7 and
12 and 13. Pol e (2.4 fmol) was added to lanes 2–7 and Pol d (2.4 fmol) was added to lanes 8–13. RFC and PCNA were added in lanes 4–7 and 10–13.
Lane 14 of gel (C) contains 100 fmol of Pol d to demonstrate where the full-length template is migrating. A sequencing ladder with the identical
template was used as a molecular weight marker to the right of gel (A) and (B). A 100 bp molecular weight marker was used on the 2% alkaline
agarose gel and stained with ethidium bromide. The migration of each band is indicated to the right of gel (C).
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of saturating levels of RPA on processivity, we assessed
activity in the presence of higher levels (21 pmol) of RPA
and found that a higher concentration of RPA modestly
stimulated the processivity of both Pol d and Pol e.
Distribution of products synthesized by Pol e changed more
significantly than distribution of products synthesized by Pol
d; for example, the 150nt products disappeared and several
additional pause sites at high molecular mass appeared in
lanes 6 and 7. However, the maximal processivity of Pol e or
Pol dwas not significantly affected. For example, the longest
detectable products (which are barely visible in Figure 3B,
but with a 2-fold intensity over background level when
quantified) synthesized by Pol e increased from 377 to
�550nt. No replication products 3 kb in length were
detected on the alkaline agarose gel (Figure 3C). From
these results we conclude that RPA only has a modest effect
on the processivity of Pol e in the presence of PCNA.

Affinity between the DNA polymerases and DNA

To study the physical interaction between the poly-
merases and nucleic acids, we used the surface plasmon
resonance technique. We captured biotin-labeled ssDNA,

double-stranded DNA or primed DNA onto a streptavi-
din-coated chip in a Biacore 3000. The fourth channel
only exposed a streptavidin-coated chip as a reference
surface. Pol d or Pol e was injected at 10 or 20 nM
concentrations and we measured the interactions with the
various surfaces (Figure 4). We found that, at these
concentrations, Pol d did not interact with any of the
surfaces. In contrast, we detected a high affinity of Pol e
for ssDNA, primed DNA, as well as double-stranded
DNA (Figure 4). Pol e affinity for primed DNA was
slightly higher than for dsDNA, while its affinity for
ssDNA was about one-third of its affinity for primed
DNA. It was not possible to determine the dissociation
constant, as the interaction with DNA is complex and the
association and dissociation curves cannot be fitted to a
1:1 (Langmuir)-binding model. We next chose to saturate
the DNA on the chip with RPA to determine the potential
effect of RPA on the interaction between Pol e and the
nucleic acids (Figure 4). Under these conditions, the
affinity of Pol e for ssDNA decreased, the affinity for
dsDNA was unchanged, and the affinity for the primed
DNA increased. This data suggests that the presence of

Figure 4. Measurement of the affinity between DNA and Pol d or Pol e. DNA affinity was analyzed using surface plasmon resonance. Approximately 175
RU of primed and dsDNA templates and 95 RU of ssDNA template were immobilized, reflecting equal molar amounts of substrate. Pol d or Pol e was
injected at a concentration of 20 and 10 nM. Each injection was repeated twice. After each injection, 0.5M sodium chloride was injected for 5 s, followed by
a buffer blank injection. The top row illustrates the interactions between Pol e and primed DNA, double-stranded DNA, and single-stranded DNA.
The middle row illustrates the interactions between Pol d and primed DNA, double-stranded DNA and single-stranded DNA. The bottom row illustrates
the interactions between Pol e and primed DNA, double-stranded DNA and single-stranded DNA when the DNA was saturated with RPA.
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RPA on ssDNA could inhibit Pol e from binding non-
specifically to ssDNA and promote binding to template–
primer junctions.

Affinity between the DNA polymerases and PCNA

Extensive studies on the interaction between Pol d and
PCNA have shown that Pol d is dependent on different
types of interactions with PCNA. A conserved PCNA
interaction motif at the extreme C-terminus of the
smallest subunit of Pol d is essential for the binary
interaction between PCNA and Pol d, i.e. in the absence of
template–primer (35). Such a motif has been found in the
primary sequence of the catalytic subunit of Pol e (39),
however, the motif was centrally located in the polypep-
tide and not at the C-terminus or N-terminus as found
in all other known PCNA-binding partners. We then used
immobilized PCNA on the chip to determine whether
Pol e has a high affinity for PCNA in the absence of a
template–primer, and confirmed Pol d’s interaction with
PCNA as previously described (35). In contrast, we found
that Pol e was unable to interact with PCNA at the same
concentrations (Figure 5), suggesting that the mechanism
by which Pol e functionally interacts with PCNA is
distinct to that of Pol d.

Efficiency by which PCNA is loaded on the primer–template

The RFC clamp-loader binds to the 30-end of the primer
and loads the PCNA clamp. Pol e has a high affinity for
the primer, and the cryo-EM structure of Pol e suggested
that a specific domain of Pol e binds to the primer,
thus possibly blocking the 30-end of the primer (24,40).
This led us to ask whether the efficiency by which PCNA is

loaded onto the primer could be suppressed in the
presence of excess Pol e, thus resulting in a lower
replication efficiency when compared to Pol d.

To test this hypothesis, we first measured the amount of
PCNA molecules loaded onto a circular ssDNA template
when either Pol d or Pol e replicated single-stranded
pBluescript II SK(+) template (same conditions as in
Figure 1B). We generated a tagged version of PCNA and
32P-labeled the purified protein. The labeled PCNA was
added to replication reactions and incubated for 7.5min at
308C, allowing for full replication of the entire circular
template. The reactions were subsequently loaded onto a
BiogelA-5m gel filtration column to separate free PCNA
from PCNA loaded on the circular template (3200 bp)
(Figure 6A). We found that, on average, �4.3 PCNA
molecules were loaded onto the template when Pol e
replicated the circular template (Figure 6B). In contrast,
only �2.4 PCNA molecules were loaded on the template
when Pol d replicated the circular template, and in the
absence of polymerase, 1.3 PCNA molecules were loaded
on the template. Together, this indicated that more PCNA
molecules were loaded onto the template during Pol e
replication compared to Pol d. We considered the
possibility that PCNA could slide off the primers onto
the ssDNA. To inhibit this, we repeated the experiment
with a primer labeled with a biotin at the 50-end. The
addition of streptavidin blocked the ability of PCNA to
slide off the dsDNA onto ssDNA and prevented its
dissociation from the circular template. The observed
trend under these modified conditions was similar, with
6.1 PCNA molecules per template when Pol e was added,
2.7 PCNA molecules per template when Pol d was added,
and 1.6 PCNA molecules per template when no poly-
merase was added (Figure 6B).

We next determined if the loading of PCNA was the
rate-limiting step in replication assays with Pol e.
To address this possibility, we added a 2-fold molar
excess of Pol e over template to the replication assay and
assembled a series of reactions using varying concentra-
tions of PCNA, while keeping RFC at a constant level.
We found that increasing the amount of PCNA resulted in
increased polymerase activity. We next asked if there was
a shift in the PCNA response curve when the level of RFC
was varied (Figure 7). No changes were detected,
indicating that PCNA loading by RFC is not the rate-
limiting step in the reaction. Both experiments demon-
strated that the tail domain does not interfere with RFC’s
capability to load PCNA. Instead, it appears that Pol e
has a slow on-rate allowing RFC to load one or several
PCNA molecules when Pol e is disassociated from the
primer terminus. Pol d exhibits a fast on-rate via the PIP-
box and the ability to interact with PCNA off DNA,
restricting the accessibility for RFC to load multiple
PCNA molecules on a single template (Figure 6).

DISCUSSION

PCNA interacts with a large number of proteins involved
in both DNA repair and DNA replication. In these
interactions, PCNA functions as a docking platform to

Figure 5. Interaction between Pol e and PCNA in solution. Pol d or Pol e,
at concentrations of 11.5, 23 and 46 nM, were injected onto PCNA
immobilized on the surface of the dextran chip (CM5) (�500 RU). Each
injection was repeated twice, and after each injection, 0.5M sodium
chloride was injected for 5 s, followed by a buffer blank injection.
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position the enzymes where they should be active, while
simultaneously stimulating the activity of the enzymes.
PCNA is also a processivity factor for both Pol d and
Pol Z in yeast, functioning analogous to clamps in other
organisms and viruses (31). However, the role of PCNA as
a processivity factor for Pol e has not been completely
clear, due to poor stimulation of Pol e in holoenzyme
assays with single-primed M13mp18 ssDNA, and genetic
experiments where mutations in the putative PCNA
interaction motif did not result in lethality (33).

The side-by-side comparisons in our replication assays
clearly showed that S. cerevisiae Pol e is not as efficient as
Pol d when replicating M13mp18 ssDNA, and several
possibilities could explain the decreased efficiency of Pol e.
One hypothesis is that Pol d is much more processive than
Pol e when stimulated by PCNA. Alternatively, Pol e may
be inhibited by the presence of ssDNA in the assay, or has
difficulty functioning when secondary structures are
formed on the template. In this study, we measured the
true processivity of Pol d and Pol e in the presence of
RPA, PCNA and RFC using steady-state kinetics.
Our analyses revealed that Pol d is only slightly more

processive than Pol e. Remarkably, the processivity does
not appear to differ >2-fold, and neither polymerase
synthesizes significant amounts of replication products
longer than 600 nt (Figure 3B and C). From these
observations, we can make the following conclusions.
First, the processivity of Pol e, which is comparable to
that of Pol d, cannot explain the relative low overall
synthetic capacity of Pol e (Figures 3 and 1). Second, the
addition of RPA does not significantly affect the
processivity of the PCNA–Pol e ternary complex
(Figure 3). Thus, allows us to exclude secondary structures
of the ssDNA as being a critical factor. There is still a
possibility that ssDNA uncoated by RPA could inhibit the
enzymatic activity of Pol e. Our surface plasmon
resonance experiments clearly showed that Pol e has a
high affinity for ssDNA and that the affinity decreased
when the ssDNA was coated with RPA (Figure 4).
In contrast, Pol d has a much lower affinity for ssDNA.
This is consistent with the results from replication assays
showing that Pol d is less sensitive than Pol e to
ssDNA (Figure 2). However, in normal holoenzyme
assays, the excess RPA coats all available ssDNA, thus

Figure 6. Loading of PCNA on a single-primed circular template. 32P-labeled PCNA was added to a holoenzyme assay with Pol e, Pol d or in the
absence of polymerase. The reaction with single-primed pBluescript II SK(+) was carried out for 7min at 308C, stopped and the PCNA molecules
loaded onto the circular template were separated from free PCNA molecules over a BiogelA-5m column. (A) Elution profiles of reactions where Pol
e or Pol d was added or the polymerase was omitted. (B) The amount of PCNA loaded onto 0.5 pmol of primed template.
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excluding the inhibition of uncoated ssDNA to be a major
factor in the decreased efficiency of Pol e compared to Pol
d (Figure1).
The assembly of a Pol e–PCNA ternary complex

involves the clamp-loader (RFC), the clamp (PCNA)
and Pol e. RFC must first recognize the 30-terminus of
the primer, followed by the loading of PCNA onto the
primer, Finally, the polymerase binds both PCNA and the
30- terminus of the primer. The detected high affinity of
Pol e for dsDNA, coupled with the structural analysis of
Pol e interacting with the dsDNA of the primer, suggested
that Pol e could interfere with RFC’s capability to bind to
the primer [Figure 4, (24,40)]. This suggests that the rate-
limiting step could be the loading of PCNA, not allowing
PCNA to be sufficiently loaded. However, we have shown
that even adding substoichiometric amounts of RFC in
the holoenzyme assay does not alter the ability of PCNA
to stimulate Pol e (Figure 7). In agreement with this, we
found that even more PCNA was loaded onto a circular
template when Pol e was replicating the template when
compared to Pol d (Figure 6). Again this suggests that Pol
e is not blocking the 30-termini for RFC, leading to the
conclusion that the rate-limiting step is not the loading of
RFC or the processivity of Pol e, but most likely the
mechanism by which Pol e is loaded onto the PCNA–
primer–template junction. Pol d is much more efficiently
loaded and will rapidly replicate long templates in in vitro
replication assays, while a slower mechanism of Pol e
loading onto the primer terminus would allow RFC to
load multiple PCNA molecules.
PCNA-binding partners are known to carry a PCNA

interaction motif, or the PIP-box. Pol d was previously
demonstrated to contain two separate surfaces that
interact with PCNA (35). The conserved PCNA interac-
tion motif that is essential for the interaction in solution
has been proposed to play a role in localizing the enzyme,
while the second interaction region is important in
stimulating the enzymatic activity on the DNA. We have

shown that Pol e does not have a high affinity for PCNA
in solution. This may be significant for the efficiency by
which Pol e is loaded on the primer terminus, as well as
tethering Pol e to the template, if Pol e loses contact with
the template. In addition, point mutations in the putative
PIP-box in the Pol e catalytic subunit did not affect DNA
replication in vivo, although the mutant was somewhat
sensitive to DNA damage (33). Whether this motif or
additional motifs are responsible for the observed
stimulation of Pol e by PCNA requires further
investigation.

Pol e has two small subunits that interact with dsDNA,
and which may be important for the epigenetic silencing of
telomeres (21,22,24). The identification of a unique
structural dsDNA-interacting domain (40) may explain
how Pol e is localized to sites where it should replicate
DNA. At the same time, Pol d depends on PCNA to be
localized to sites where Pol d replicates DNA, and this
allows the two replicative DNA polymerases to function
with limited competition at the replication fork.
In addition, Pol e is loaded at the origins of DNA
replication prior to Pol d (4,6). It is possible that the high
affinity of Pol e for dsDNA allows its independent binding
to origins, while Pol dmust wait until PCNA is loaded after
the first primer is synthesized by Pol a. Pol d is responsible
for the synthesis of Okazaki fragments on the lagging
strand, which requires efficient loading of Pol d, possibly
via the PIP-box, by a mechanism which might be shared
with other enzymes on the lagging strand, e.g. the flap-
endonuclease, FEN-1, and DNA ligase I. Pol e has been
shown to participate in the leading strand synthesis (18).
It is possible that the loading of a leading strand
polymerase could occur via a PIP-box-independent
mechanism, such as with other factors that assist or
stabilize Pol e at the origins allowing sufficient time for
loading Pol e onto the PCNA processivity clamp, including
Sld2, Sld3, Dpb11 or the GINS complex (4,41–43)
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