Outlook Magazine, Fall 2002

Follow this and additional works at: https://digitalcommons.wustl.edu/outlook

Part of the Medicine and Health Sciences Commons

Recommended Citation

This Article is brought to you for free and open access by the Washington University Publications at Digital Commons@Becker. It has been accepted for inclusion in Outlook Magazine by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
White Coat Welcome First-year medical students
Daniel Liu, Guy Bizek, Terri McMillan and Amy Sheldahl exchange handshakes and hellos following the annual White Coat Ceremony held on August 16, 2002, at the Eric P. Newman Education Center. The yearly event, during which members of the incoming medical school class don their symbolic white “doctor” coats and together take an oath of professionalism, caps a week of orientation activities.
Guaranteed INCOME for Life
The Washington University Charitable Gift Annuity
See page 36

Class Notes Update Yourself!
Your classmates would like to hear what you've been doing. Please take a moment to complete the postage-paid reply card on page 36.
Seeking Fixed Income?
See page 36

Washington University in St. Louis
SCHOOL OF MEDICINE

Class Notes Update Yourself!
See the postage-paid reply card on page 36.

Washington University in St. Louis
SCHOOL OF MEDICINE
Outlook
Washington University School of Medicine
VOLUME XXXIX • NUMBER 3 • FALL 2002

COVER Michael P. Whyte, MD, professor of medicine, pediatrics and genetics, with young patient Brianna Seay. Whyte directs the Center for Metabolic Bone Disease and Molecular Research at Shriners Hospitals for Children-St. Louis and is one of more than 60 School of Medicine physicians and surgeons who provide care at Shriners. For more on this story, please turn to page 8. Photo by Robert Boston.

FEATURES

8 Skeleton Crew BY GILA Z. RECKESS
Children with rare metabolic bone disorders receive first-rate clinical care while participating in and benefiting from research into their often difficult orthopaedic cases.

13 Healing Body & Soul BY CANDACE O'CONNOR
The Siteman Cancer Center makes outreach a priority—offering many programs to St. Louisans in need and forging a strong relationship with the local community.

17 Hospitalist in the House BY DANIEL SIEGEL
Hospitalist physicians provide around-the-clock, comprehensive care for hospital inpatients. This new breed of specialist benefits patients and referring primary care physicians alike.

20 Continuing Medical Education BY BETSY ROGERS
Medical technologies and treatments are ever-changing. The School of Medicine's CME program keeps physicians and other allied health professionals current in their fields.

DEPARTMENTS

2 Pulse

24 Personal Outlook

26 Alumni & Development
 26 Honorable Continuum
 28 Profile
 29 News
 32 Class Notes

17 Hospitalists at Washington University Medical Center are trained to meet the needs of the inpatient population.
AMERICAN TOP DOCTORS, published by Castle Connolly Medical Ltd., includes 88 Washington University physicians at Barnes-Jewish and St. Louis Children's hospitals.

After extensive research, interviews and correspondence, 4,254 physicians were selected from more than 2,000 candidates.

Molecular imaging center opens

A FIVE-YEAR, $9.4 MILLION GRANT from the National Cancer Institute has been awarded to David R. Piwnica-Worms, MD, PhD, professor of radiology and of molecular biology and pharmacology, to establish a molecular imaging center at the School of Medicine.

Molecular imaging, a newly emerging area of medicine, is an outgrowth of the field of radiology. Whereas radiology is the imaging of tissues, organs or the entire body to detect disease, molecular imaging works at the level of cells, genes and proteins by detecting changes in how proteins or other molecules are processed, or metabolized, by cells.

“The goal of the School of Medicine's molecular imaging center is to translate the knowledge gained from molecular and genome research into improved care for cancer patients,” says Piwnica-Worms, who will direct the center.

“We want to combine the latest imaging technologies with the power of molecular biology.”

Investigators involved in the new molecular imaging center will come from a variety of medical disciplines, including molecular biology, molecular imaging, chemistry and clinical science.

Johnston, Wilson to lead department of genetics, genome sequencing center

NEW LEADERSHIP has been announced for the Department of Genetics and the Genome Sequencing Center at the School of Medicine.

Mark Johnston, PhD, professor of genetics, has been named interim head of the Department of Genetics, and Richard K. Wilson, PhD, associate professor of genetics and of molecular microbiology, has been named director of the Genome Sequencing Center. Both succeed Robert H. Waterston, MD, PhD, who is leaving the university in January 2003 to head the Department of Genome Sciences at the University of Washington School of Medicine in Seattle.

Under Waterston’s leadership, the medical school's Genome Sequencing Center has become one of the world’s leading DNA sequencing centers. The group also has played a key role in the Human Genome Project.

Johnston joined the faculty in 1983 as an assistant professor of genetics. In 1996, he led a team of Washington University investigators as part of an international effort to decipher the genetic structure, or genome, of baker's yeast. The work was done in collaboration with the medical school's Genome Sequencing Center and was the largest sequencing project up to that time.

Wilson, a co-director of the Genome Sequencing Center, joined the university in 1990. He has played a significant role in the mapping and sequencing of both the human and mouse genomes and also led the team that sequenced and mapped the genome for the bacterium Salmonella typhimurium, a leading cause of food poisoning.

In addition, Wilson led the Washington University team in the Arabidopsis Genome Initiative, an international multicenter effort to decipher the DNA structure of the flowering mustard, Arabidopsis thaliana, the first plant genome to be mapped.
Ludmerer among elite group elected to American Academy of Arts & Sciences

As a newly elected fellow of the American Academy of Arts & Sciences, Kenneth M. Ludmerer, MD, joins a distinguished group of some 4,000 individuals nationwide who have been recognized for their outstanding contributions to science, scholarship, public affairs and the arts.

His latest book, Time to Heal: American Medical Education from the Turn of the Century to the Era of Managed Care, published in 1999, expands on the topic, examining further the history of American medical education. Both books were nominated for the Pulitzer Prize.

Ludmerer currently practices and teaches internal medicine. In April 2002, he was elected president of the American Association for the History of Medicine.

CANCER ETIOLOGY

Cell phone use not a likely cause of brain or other cancers

Radiation from cell phones doesn't appear to cause cancer in rats, according to a study by investigators at the School of Medicine.

In research that is the first of its kind, the Washington University team exposed rats to the two most common types of cell phone radiation for four hours a day, five days a week over a two-year period.

"We tried to mimic a high level of exposure that humans might experience," says study leader Joseph L. Roti Roti, PhD, professor of radiation oncology, biochemistry and molecular biophysics, and of cell biology and physiology. "We found no statistically significant increases in any tumor type, including brain, liver, lung or kidney, compared to a control group."

For more than a decade, a public debate has raged as to whether cell phone radiation causes cancer, particularly brain cancer. Roti Roti's long-term, industry-funded study was undertaken to address that question. The research examined whether chronic exposure to radio frequency (RF) radiation at two common cell phone signals caused brain tumors in rats.

The study used 480 male and female rats. One third of the animals were exposed to an analog cell phone frequency, one third to a digital frequency, and the remaining rats served as controls, receiving no radiation.

After two years and a total of 505 days of exposure, the brain, spinal cord and other organs from each animal were studied microscopically for signs of cancer.

"We looked specifically for brain and spinal cord tumors," says Marie C. La Regina, DVM, a veterinary pathologist with the university's division of comparative medicine and lead author on the study. "We examined 20 to 25 sections from each brain microscopically, which is more than is usually done when studying potential cancer-causing agents. We didn't want to miss anything."

The investigators also looked for tumors in nearly 30 other tissues. They found no statistically significant increases in any tumor type. They also found no differences in weight or mortality between exposed and control animals over the course of the experiments.

The study builds on research begun by Roti Roti in 1995. In his earlier work, he exposed laboratory-grown cells to cell phone radiation and studied the cells for genetic damage, gene expression and neoplastic transformation. Those experiments also showed no effect from the exposure.

"As far as I can tell from the work so far," says Roti Roti, "the greatest hazard with cell phones is driving a car while talking on one."
Center for Aging partners with local group to study needs of older Americans

The University's Center for Aging is naturally evolved into retirement communities, collaborating with the Jewish Federation of St. Louis to investigate naturally occurring retirement communities.

The Jewish Federation received $1.3 million from the Department of Health and Human Services for the pilot project, the largest of five grants awarded nationally for this type of research.

The program's mission is to find ways to help aging Americans spend their senior years in their own homes with the help of support services such as transportation, health and human services, and home modifications. Many apartment buildings and neighborhoods have

IMMUNOLOGY

Researchers discover how herpes "tricks" the immune system

Herpes viruses enter the body and then hide away in cells, often re-emerging later to cause illnesses such as shingles, genital herpes and cancer. Just how these viruses evade the immune system remains poorly understood, but researchers at the School of Medicine have discovered that a mouse herpes virus uses molecules that mimic a cell's own proteins to help thwart an immune attack.

The findings also suggest that a branch of the immune system known as the complement system may play a more important role in controlling herpes virus infections than previously thought. The study is published in the August issue of the journal Immunity.

"These findings reveal another molecular mechanism by which viruses evade the immune system," says study leader Herbert W. Virgin, MD, PhD, professor of pathology and immunology and of molecular microbiology. "By targeting this viral protein or by manipulating the complement system, perhaps someday we can develop better treatments for herpes virus infections."

Herpes viruses evade the immune system and evade destruction by complement. In addition, the RCA mimic proteins help the virus only during acute infection.

In the study, the team engineered a mutant strain of the gHV68 mouse virus that lacked the RCA mimic protein. They compared the effects of the normal virus and the mutant virus on normal mice versus mice that lacked a key complement protein, C3.

The findings also suggest that a branch of the immune system known as the complement system may play a more important role in controlling herpes virus infections than previously thought. The study is published in the August issue of the journal Immunity.

"These findings reveal another molecular mechanism by which viruses evade the immune system," says study leader Herbert W. Virgin, MD, PhD, professor of pathology and immunology and of molecular microbiology. "By targeting this viral protein or by manipulating the complement system, perhaps someday we can develop better treatments for herpes virus infections."

A herpes virus, imaged here in red, lurks within the cellular membranes surrounding the brain of a mouse.

The complement system consists of about 20 proteins that are transported in the bloodstream. When activated by certain disease-causing organisms, the proteins unite to kill viruses and virus-infected cells. To prevent the inadvertent and dangerous triggering of the complement reaction, healthy cells produce molecules known as regulators of complement activation (RCA).

Virgin's team found that one type of herpes virus in mice, gamma-herpes virus 68 (gHV68), makes its own version of RCA to trick the immune system and evade destruction by complement. In addition, the RCA mimic proteins help the virus only during acute infection.

In the study, the team engineered a mutant strain of the gHV68 mouse virus that lacked the RCA mimic protein. They compared the effects of the normal virus and the mutant virus on normal mice versus mice that lacked a key complement protein, C3.

The researchers found that viruses lacking an RCA mimic were far less virulent than the normal virus. The mutant virus also grew more slowly than normal, and it failed to spread to other organs during acute infection, showing that the RCA mimic proteins were necessary for the virus to thrive.

Next, the researchers tested the mutant virus in mice lacking C3. In this case, the mutant virus was just as virulent as normal viruses in normal mice. Without C3 in the infected animal, the virus did not need to disguise itself with RCA in order to thrive, implying that in normal mice, the mimic protein enabled the virus to escape detection by the complement system.
Gray is associate dean for faculty affairs

DIANA L. GRAY, MD, associate professor of obstetrics and gynecology and of radiology, has been named associate dean for faculty affairs.

In her new position, Gray will collaborate with department heads and faculty to achieve a consistent, supportive working environment and to assure equitable compensation and promotion policies to sustain outstanding researchers, clinicians and teachers.

By overseeing annual reviews, Gray will ensure that junior faculty receive the appropriate mentoring essential for long-term professional development. She also will maintain and distribute policies to faculty and represent the School of Medicine at relevant committees and conferences.

Galvin receives three awards

THREE AWARDS HAVE BEEN BESTOWED on James E. Galvin, MD, assistant professor of neurology, in recognition of his research on Lewy body dementia, the second most common form of dementia after Alzheimer’s disease.

Galvin received the Alene and Meyer Kopelow Award from the Barnes-Jewish Hospital Foundation in recognition of exemplary achievement in geriatrics by junior faculty or trainees.

Galvin also was awarded the Paul Beeson Physician Faculty Scholars in Aging Research Award, which provides $450,000 over three years to young physician-scientists. The program is administered by the American Federation for Aging Research and the Alliance for Aging Research, and is dedicated to encouraging outstanding young clinicians to continue aging research, patient care and teaching.

In addition, Galvin received a three-year, $450,000 Mentored Clinical Scientist Development Award from the National Institutes of Health to investigate the clinical and pathological features of Lewy body dementia.
Learning at the bench Chrystal Jenkins, who recently earned a bachelor’s degree in biology in Arts & Sciences at Washington University, worked in the laboratory of Brian P. Hackett, MD, PhD, associate professor of pediatrics, over the summer break. Jenkins is one of 16 budding scientists from the university and area high schools who spent their vacations learning the fundamentals of basic science research in the Department of Pediatrics’ Developmental Biology Research Unit.

Faculty Practice Plan issues statement of mission, vision and core values

A new mission, clinical vision and core values statement has been approved by the Faculty Practice Plan (FPP) board of directors. Effective July 11, 2002, the revised statement reflects changes in the clinical environment and in the standing of the School of Medicine’s clinical practice.

The statement is intended to provide School of Medicine physicians and staff with an enduring framework to guide daily actions and future decision making. The FPP’s clinical vision includes the goal of setting “a new standard for delivering compassionate, respectful and responsive patient care,” and it also contains a list of core values, including quality, respect, integrity, discovery, education, partnership and professionalism.

A full version of the new FPP statement is available on the Web at wuphysicians.wustl.edu/missionstatement.

Waksman named Vagelos Professor

Gabriel Waksman, PhD, has been named the first Roy and Diana Vagelos Professor of Biochemistry and Molecular Biophysics at the School of Medicine.

The professorship was established by P. Roy Vagelos, MD, and his wife, Diana, in honor of William H. Danforth, MD, chancellor emeritus and vice-chairman of the Board of Trustees of Washington University and his wife, Elizabeth.

Vagelos headed the Department of Biological Chemistry, now the Department of Biochemistry and Molecular Biophysics, from 1966 through 1975. He also founded the Division of Biology and Biomedical Sciences, a doctoral program that encourages interdisciplinary faculty interactions and provides educational opportunities in the biological sciences that span the School of Medicine and Hilltop campuses. Diana Touliatou Vagelos is a former trustee of Barnard College and an overseer at the University of Pennsylvania Museum.

Internationally known for his work in X-ray crystallography, a technique used to obtain 3-D structures of proteins, Waksman is particularly interested in protein interactions and how they affect protein conformation.

Waksman heads the protein structure and macromolecular graphics core for the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine. He also is the co-principal investigator for the Midwest Center for Structural Genomics.

New program for women with HIV

“Faith in Action” is the latest service for HIV-infected women offered by the School of Medicine’s Helena Hatch Special Care Center. The new program pairs volunteers from community churches with women who have AIDS to assist them with household chores, errands, transportation and other tasks. The volunteers also provide encouragement and support through regular visits and telephone calls.

“We are extremely pleased to be part of the Faith in Action network and to offer this help,” says Linda M. Mundy, MD, assistant professor of medicine and director of the Helena Hatch Special Care Center.
Fly study provides insight into how the body tells time

You may feel different at 4 a.m. than you do at 4 p.m. Now researchers might understand why. A new School of Medicine study explains how genes dictate our biological clock.

Most living things have a natural rhythm that influences behavior and physiology. This rhythm typically is "circadian," following a near 24-hour cycle. Driven by an internal clock, a creature's natural rhythm is synchronized to the outside world by external cues, like the sun.

To date, eight genes have been discovered to be essential to the operations of this clock. Scientists believe that these genes also influence the expression of other genes throughout the body in order to control the timing of behaviors like sleep and wakefulness.

Researchers at the School of Medicine, in collaboration with Affymetrix, have identified 22 genes (including the eight core clock components) that appear to be rhythmically regulated by the internal clock of the fruit fly Drosophila melanogaster. They also found hundreds of additional genes that are regulated by both light and the internal clock. The study appears in the June 24, 2002 issue of the Proceedings of the National Academy of Sciences.

In the research, DNA microarrays—comprehensive lists of all active genes in a tissue sample—were used to measure expression levels of nearly 14,000 genes at various time-points in the heads of normal flies and in flies missing one of the clock genes, called period.

Between 72 and 200 of Drosophila's 14,000 genes showed significant rhythms of gene expression in normal flies living in a daily light-dark cycle. Of these genes, 22 continued to fluctuate when flies were collected after three days of complete darkness. This implies that these 22 genes are driven by the internal, circadian clock, not by external cues such as light.

Flies lacking the period gene showed 18 genes with persistent, rhythmic oscillations, demonstrating that light and dark can drive rhythmic gene expression.

The remaining oscillating genes only fluctuated rhythmically in animals that still had the period gene and that were exposed to light and dark conditions. The biologic functions of most of these oscillating genes are unknown.

One of the most surprising results of the study was the discovery of hundreds of genes with levels that did not fluctuate with time of day, but responded drastically to different lighting conditions or to the presence or absence of a circadian clock.

"The fly's ability to regulate a large fraction of its genes depending on a combination of day length and the circadian clock gives us an attractive model for understanding seasonal timekeeping," says study co-author Russell N. Van Gelder, MD, PhD, assistant professor of ophthalmology and visual sciences.

"Defects in seasonal timekeeping are thought to be related to seasonal affective disorder (SAD), in which individuals experience recurrent depression during the short days of winter."
Michael P. Whyte, MD, examines patient Bryan Stearns.
THERE WAS NO REASON FOR CONCERN when Michelle Hall arrived at the first neonatal checkup for her seemingly healthy newborn daughter, Brooke Bowen. But the pediatrician was puzzled: Despite Brooke’s healthy appetite, she was inexplicably losing weight. The infant was rushed from the family’s hometown of Dry Ridge KY to Children’s Hospital in Cincinnati OH. After a week of tests and diagnostic research, the Ohio doctors reached an alarming conclusion: Brooke had a rare—and so far, untreatable—metabolic bone disease called hypophosphatasia.

Much is now known about hypophosphatasia, a disorder that affects bone development and mineralization. The Cincinnati doctors decided to contact researcher Michael P. Whyte, MD—a leader in the field of bone and mineral disease—who’s name appeared on the publications they referenced spanning the past 25 years. Whyte, professor of medicine, pediatrics and genetics at the School of Medicine, is affiliated with Shriners Hospitals for Children-St. Louis, an institution dedicated to caring for the special needs of children with skeletal disease. Soon, Whyte was consulting regularly with Brooke’s doctors about her condition.

Whyte is the medical-scientific director of the Center for Metabolic Bone Disease and Molecular Research at Shriners. He is one of more than 60 School of Medicine physicians and surgeons who provide clinical care at Shriners. The Washington University staff’s surgical and medical expertise, coupled with the Shriners organization’s commitment to providing free care to children with orthopaedic deformities and diseases, has built the reputation of Shriners Hospitals for Children-St. Louis as one of the leading facilities of its kind—particularly for unusual, difficult cases like Brooke’s.
advancing care for kids

Shriners Hospitals for Children is the official philanthropy of the Shrine of North America, an international fraternity of approximately 500,000 members. The 22 Shriners Hospitals for Children located throughout North America, funded entirely by the Shriners and heavily reliant on volunteer efforts of individual Shrine members, are dedicated to the care of children with bone diseases, burn traumas and spinal cord injuries. Shriners Hospitals for Children-St. Louis, once located on what is now part of the School of Medicine campus, specializes in orthopaedic surgery, serving Missouri and eight surrounding states.

"Shriners Hospital and Washington University share a similar mission—to provide the highest quality care in a compassionate way," says Carolyn Golden, administrator for Shriners Hospitals for Children-St. Louis. "Our common commitment to state-of-the-art care and research is what has made the bond between the two institutions so tight for nearly 80 years."

Washington University physicians have been the primary source of medical care at Shriners Hospitals for Children-St. Louis since its inception in 1924 and have been formally in charge of staffing the facility since 1976.

"St. Louis' Shriners Hospital is a major provider of pediatric orthopaedic care in the central Midwest and, without a doubt, is a leader in the advancement of care for kids with a variety of conditions," says Perry L. Schoenecker, MD, Shriners' chief of staff and School of Medicine professor of orthopaedic surgery. According to Schoenecker, who also is acting head of pediatric orthopaedics at St. Louis Children's Hospital, Shriners is an acknowledged pioneer in pediatric orthopaedic care.

Shriners also has long recognized the importance of research. Because its staff treats unusual and often difficult skeletal disorders, it serves as a unique resource for Washington University physicians and surgeons to investigate innovative solutions to childhood bone disorders.

In 1981, the late Louis V. Avioli, MD, former director of the division of bone and mineral diseases and founder of the American Society for Bone and Mineral Research, convinced the Shrine's board of directors to dedicate an entire hospital wing to the pursuit of researching rare, heritable bone metabolism disorders.

Whyte then designed the Center for Metabolic Bone Disease and Molecular Research, which has developed an international reputation, attracting patients from 43 states and from countries as far away as Kuwait, Albania and Australia. The center is the only inpatient facility in the United States exclusively dedicated to diagnosing, treating and researching pediatric metabolic bone diseases and skeletal dysplasias.

That means that children like Brooke Bowen with any of more than 100 rare metabolic bone disorders can participate in and benefit from research done at the center. Brooke and others under Shriners' care periodically visit St. Louis for as long as a week so that researchers can monitor their progress and collect data in a precisely controlled environment.

"The dedication of Drs. Whyte and Avioli to the science of bone biology and to bench-to-bedside research engenders the community support and national recognition that permit the development of this truly unique research, training and clinical resource in St. Louis," says Dwight A. Towler, MD, PhD, director of the division of bone and mineral diseases and associate professor of medicine and of molecular biology and pharmacology. "Ongoing support provided by Shriners Hospital, the Barnes-Jewish Hospital Foundation, the Department of Medicine and the National Institutes of Health ensures that our division can remain true to this mission of improving skeletal health."
Juvenile Paget's disease: a “flip side” of hypophosphatasia

Whereas hypophosphatasia is characterized by abnormally low levels of alkaline phosphatase, children with hyperphosphatasia, or juvenile Paget's disease (JPD), have too much of the enzyme in their bodies.

Only about 40 children worldwide have been diagnosed with JPD, a painful skeletal disease characterized by abnormally fast formation and breakdown of bone throughout the body.

By separately tackling genetic, patient-oriented studies and cellular research, two School of Medicine research teams have discovered—almost simultaneously—two distinct causes of JPD.

In the clinically motivated study, published in the July 18, 2002 issue of the New England Journal of Medicine, Michael P. Whyte, MD, Steven Mumm, PhD, and colleagues identified the first genetic cause of JPD.

The researchers found that two seemingly unrelated Navajo Americans with juvenile Paget's disease were completely missing the gene for a recently discovered protein called osteoprotegerin, known to protect bone.

Using information from the Human Genome Project, the team also was able to pinpoint exactly where DNA had broken off in both patients. The results were identical for the two patients studied.

In a separate animal study led by F. Patrick Ross, PhD, research professor of pathology and immunology, researchers discovered a mouse model of JPD. Those results appear in the September 2002 issue of Nature Medicine.

Mice engineered to lack the gene for SHIP (Src homology 2-containing inositol-5-phosphatase) have abnormally high numbers of macrophages, a type of immune cell. Because macrophages can develop into osteoclasts (cells that break down bone), the team hypothesized that mice lacking SHIP may eventually develop symptoms similar to JPD.

They were right. The mice had twice as many osteoclasts as normal mice, and the cells were much larger than normal. When the team examined cell samples in petri dishes, macrophages from mice lacking SHIP not only rapidly developed more osteoclasts than normal, the osteoclasts also lived longer. Moreover, they broke down bone much faster than normal osteoclasts. In other words, these cells looked suspiciously similar to osteoclasts in people with JPD.

In summary, absence of either osteoprotegerin or SHIP leads to enhancement of the same signaling pathway, which is central to the formation and function of osteoclasts. These findings suggest that a common mechanism may mediate several forms of a devastating bone disease.

The two groups believe their complementary findings provide valuable insights into the process of bone formation and breakdown, and that these lines of research may ultimately lead to new treatments for a variety of metabolic bone diseases.

Steven L. Teitelbaum, MD, the Wilma and Roswell Messing Professor of pathology and immunology, says: “These two studies highlight the successful marriage between clinical and basic science in bone research groups at Washington University School of Medicine.”
looking for root causes

While Whyte currently monitors Brooke, now 9, treating any complications and gathering data on her disease, researchers at the Center for Metabolic Bone Disease and Molecular Research have identified the underlying cause of this rare disorder. Since 1985, in collaboration with molecular biologists, the precise genetic cause of hypophosphatasia has become understood.

Hypophosphatasia is characterized by abnormally low levels of alkaline phosphatase in blood and bone cells. A deficiency of alkaline phosphatase causes poorly mineralized bones and skeletal deformities. It also can lead to the accumulation of phosphates, calcium and other chemicals in the bloodstream and kidneys, sometimes resulting in renal failure.

The most severe form of hypophosphatasia affects about one in every 100,000 newborns, half of whom die from the condition within six months. The disease's milder forms, such as Brooke has, are more common. Different mutations in the gene that encodes alkaline phosphatase explain some of the disorder's variability.

Separately, in the mid-1980s, Whyte and colleagues including those at Shriners discovered that patients with hypophosphatasia have abnormally high levels of vitamin B6.

"We took advantage of that discovery to gain a better understanding of how alkaline phosphatase works," explains Whyte. "Now we can translate that knowledge to devising medical treatment."

His Shriners team now is testing a way of elevating alkaline phosphatase levels in Brooke and other patients with hypophosphatasia by adjusting their dietary phosphate levels.

Because hypophosphatasia and most other diseases under investigation at the center are hereditary, other exciting information comes from genetic research.

Thanks to the Human Genome Project (accomplished in part at the School of Medicine) and the efforts of the center's molecular biologist, Steven Mumm, PhD, research assistant professor of medicine, Whyte's team already has identified genetic mutations responsible for a number of bone metabolism diseases.

Studying Brooke's genes could prove particularly interesting in light of the most perplexing thing about her condition: Her 6-year-old sister, Cierra, has the exact same molecular defect and the same levels of blood alkaline phosphatase as Brooke. But, while Brooke has a wobbly, stiff-legged walk and skeletal deformities in her skull, Cierra barely shows any symptoms.

The difference between sisters suggests that something more than the already identified molecular and metabolic defects accounts for the variable severity of hypophosphatasia. Mumm, Whyte and Towler plan to scrutinize other aspects of the girls' DNA to determine just what this might be.

Their dedication is what mom Michelle Hall appreciates the most: it's wonderful to know the doctors are looking for treatments and may one day find a cure for children like Brooke."
IN MAY 2001, Deborah Dixon of Shiloh IL, saw a television report about a new Daily Lives Planner, available free to Metro East women. Intrigued, she ordered one—and before long it had changed her life. With its artwork from the Jackie Joyner-Kersee Boys and Girls Club and “power passages” from the Eugene B. Redmond Writers Club of East St. Louis, it was appealing, colorful; it also was packed with information about breast cancer screening and prevention.

Dixon had already had a personal brush with cancer: Her daughter, Montrice, died of leukemia in 1992, just before her 21st birthday. Reading the planner now reminded Dixon that she herself had not had a physical since Montrice was born, 30 years before.

BY CANDACE O'CONNOR
So Dixon went to see a doctor, who was stunned when he heard how long it had been. “He said, ‘We’re going to give you the presidential physical, and check everything out,’” she recalls. “It was the first breast exam I had ever had in my life.” Luckily, that exam was normal. But Dixon has since become a “health evangelist,” sending planners out to all her friends. “And I know that I will never, ever, not be under the care of a doctor again,” she says.

That’s the kind of testimonial M. Katherine Jahnige, MD, MPH, assistant professor of obstetrics and gynecology, likes to hear. In collaboration with a community advisory board and the St. Louis University School of Public Health, she developed and published the planner, with funding from the Susan G. Komen Breast Cancer Foundation. It is one of several promising new programs recently undertaken by the Alvin J. Siteman Cancer Center of the School of Medicine and Barnes-Jewish Hospital that target underserved and uninsured patients, mostly from the African-American community.

As Siteman’s first community outreach coordinator, hired in 2000, Jahnige stands at the center of this effort in a job that cuts both ways. On the Siteman side, she is working with medical faculty and staff to improve access to screening and treatment for needy patients; on the community side, she is forging relationships, building trust, urging people to take advantage of Siteman’s cancer-related resources. Sometimes that means confronting barriers, such as cultural beliefs about breast cancer: “It’s a death sentence.” “It’s all in God’s hands.” It also means dealing with deep-seated suspicions of any hospital that was part of the segregated era of health care.

“People carry a lot of painful memories from the past,” says Jahnige, who received her medical degree from Harvard and a master’s in public health from Yale University, both in 1994. “They also complain about medical researchers who have come out when they had a grant, then left when the money ran out. So there is some concern about whether this is a place that has a sustained commitment to the community.”

During the two years she spent at Grace Hill Neighborhood Health Center in north St. Louis after finishing her residency, Jahnige heard such concerns firsthand. But she also found that when she approached Siteman about establishing a referral channel for Grace Hill patients with abnormal mammograms and breast lumps, Shirley Johnson, director of oncology services, was instantly ready to help.

And when she discussed a possible position at Siteman with Timothy J. Eberlein, MD, director of the Siteman Cancer Center, she also...
was impressed by his conviction. "I heard in Dr. Eberlein a person who meant it when he said to me: 'It is the mission of a comprehensive cancer center to reduce the burden of cancer in the region, and that means everybody.' I thought then that we really had an opportunity to reframe public perceptions, to improve our relations with the community," she says.

Indeed, says Eberlein, outreach programs are a critical focus of the Siteman Cancer Center. "They help us fulfill one of our most important missions — that of being a resource to our entire community," says Eberlein, who is also the Spencer T. and Ann W. Olin Distinguished Professor at the School of Medicine. "Through the many programs under Dr. Jahnige's fabulous leadership, we can bring our cutting-edge interventions in education, screening, early diagnosis and treatment to all the citizens of this region."

And this commitment is institution-wide, Jahnige has discovered. She now meets regularly with James P. Crane, MD, associate vice chancellor for clinical affairs at the School of Medicine and chief executive officer of Washington University Physicians, and Steven B. Miller, MD, chief medical officer for Barnes-Jewish Hospital (BJH). In June 2002, she gave a presentation on cancer screening outreach to the BJH board. After her talk, Steven H. Lipstein, BJC president and chief executive officer, made an impassioned speech about the medical center's role in public health.

Already, Siteman Cancer Center provides several million dollars per year in charity care. And long before Siteman was established, the Barnard Free Skin and Cancer Hospital, founded in 1905, offered free help to people with cancer. Today, Barnard funds still support inpatient and outpatient treatment of cancer, as well as free mammograms, prescriptions, nutritional supplements, home medical supplies, lodging and transportation to and from the hospital.

"Building on this rich tradition, the Siteman Cancer Center now reaches thousands of St. Louisans each year through community lectures and cancer screenings," says Shirley Johnson, RN, MS, MBA. "Reaching out to individuals who did not have previous access to such services..."
and support has resulted in many being diagnosed and treated who otherwise might not have received care."

But the need is acute — and growing, Jahnige says. Each year, some 29,000 Missourians are diagnosed with cancer and 12,000 die; on the local, state and national levels, African Americans consistently show higher-than-average cancer mortality rates. Yet screening efforts do not always reach those who would benefit.

"Where are the women who are not getting regular mammograms?" asks Jahnige, who lost her own father to cancer when she was 9 years old. "They are right here in the city of St. Louis, where our screening rates are in the bottom half for the state."

When she began her new job at Siteman, Jahnige knew she would focus on one of the four forms of cancer that have the greatest population impact: breast, colorectal, lung and prostate. Her own medical background nudged her toward breast cancer, as did Siteman’s history of interest in this area. Since 1999, Siteman has been an annual sponsor of the Susan G. Komen “Race for the Cure” in St. Louis with support from the St. Louis Men’s Group Against Cancer; prostate, in collaboration with various community partners, such as the American Cancer Society, black fraternity chapters and the Minority Leadership Committee; and cervical, through a weekend pap smear program in the Hispanic community, co-sponsored by the Jewish Hospital College of Nursing. In the future, Jahnige wants to increase access to genetic counseling for high-risk minority families and better communicate the need for African-American participation in research studies.

Jahnige is constantly amazed by the support she has received from around the Medical Center. When she schedules a Saturday prostate screening, for example, she contacts the Department of Urology to let them know that blood samples will be coming in for testing. "I just e-mail them and somebody always says: ‘Sure, I’ll work this weekend to do that.’"

Just as important is the support given so generously by community partners. Jahnige spends many hours a month meeting with groups around the area to make sure that she, and the Siteman Cancer Center, are moving in the right direction. "It’s so important not to ride in and say: ‘Here’s what we are going to do for you.’ Instead, we want to come to people and ask: ‘How can we be helpful?’"
"Is there a HOSPITALIST in the house?"

A new breed of specialist is revolutionizing hospital care, benefiting patients and their primary care physicians. By Daniel Siegel

Mark S. Thoelke, MD, clinical director of the division of hospitalist medicine, talks with patient Willie E. Cox.
A few years ago, the word “hospitalist” was not in common usage. Today, the term has emerged in the medical vernacular and in dialogues across the country. Hospitalists — physicians who specialize in inpatient care — are practicing in hospitals nationwide and have found a home at the School of Medicine.

Created in August 2000, the division of hospitalist medicine at Washington University has grown from a staff of five physicians to 11. Increasing demand for their services, as well as an expanding role at the university, has sparked the division’s rapid growth.

Washington University’s hospitalist physicians render many services at Barnes-Jewish Hospital (BJH): They monitor inpatients who don’t have primary care physicians, act as attending physicians on the oncology service, and provide a hospital-wide consult service to fellow physicians.

But, primarily, hospitalists treat patients referred to the BJH hospitalist service by their primary care physicians. Doing so allows referring physicians to leave their hospitalized patients in the care of knowledgeable doctors familiar with the hospital who can be reached 24 hours a day.

Relatively new in the United States, the hospitalist trend has its roots in the United Kingdom and Canada. The need for hospitalists in the United States has arisen from changes in medical practice over the past few decades.

In the mid-1970s, an average physician had about 10 hospitalized patients at any given time and spent about 30 to 40 percent of the day...
visiting those inpatients. In today's era of managed care, physicians have fewer inpatients and therefore spend less time at the hospital.

According to Mark S. Thoelke, MD, clinical director of the hospitalist service and assistant professor of medicine, today's physicians are refocused away from the hospital and into the outpatient clinic. Consequently, commuting to and from the hospital has become less cost- and time-efficient. As primary care physicians spend less time visiting hospital patients, the demand for inpatient physicians has increased.

Because hospitalist physicians do not maintain an outpatient practice, they spend 100 percent of their time in the hospital setting, where they treat a wide range of patient populations and are equipped to provide the best possible hospital care. Says Thoelke: "A hospitalist who spends all of his or her time in the hospital would seem to be ideally suited for the unique needs of an acutely ill inpatient."

HOSPITALISTS' AROUND-THE-CLOCK CARE comforts patients with the knowledge that a physician will be available for them when needed. Furthermore, because hospitalists are familiar with each patient's case, they can provide continuous updates to concerned family members.

By serving as an easily accessible, centralized resource for information and patient care, hospitalists manage, in some cases, to reduce length of inpatient stay and, at the same time, improve quality of treatment.

Referring physicians also benefit. The hospitalist service allows a patient's primary care physician to concentrate on the needs of outpatients, secure in the knowledge that a qualified physician is caring for his inpatients. This does not mean, however, that there is a loss of communication between referring doctors and their patients. One of a hospitalist's responsibilities is to ensure continuity of care by keeping patients' primary care physicians informed of any changes in their conditions.

Although at first skeptical about the merits of the hospitalist program, internist Melvin J. Butler, MD, instructor of clinical medicine, now regularly refers patients to the BJH hospitalist service.

"I cannot praise the hospitalist program enough," Butler says. "Its wonderful service manages to increase hospital efficiency while at the same time improve the quality of care. The program is certainly a benefit to anyone who uses it."

According to Thoelke, patients and physicians using the service for the first time are soon won over by the program's benefits.

"We have had extremely positive feedback from patients and their families," he says. "We also have surveyed the physicians who refer to our service and their responses have been equally strong."

ASIDE FROM INPATIENT CARE, hospitalist physicians also are dedicated to research and teaching. Patient-based clinical trials they conduct are aimed at improving the quality of care provided within the hospital system.

For example, national studies have shown that the ineffectiveness of diagnosing and treating osteoporosis in elderly patients is a problem that exists in hospitals throughout the country, according to Thoelke. But, he says, recent research done by hospitalists at Washington University and Barnes-Jewish Hospital has shown that hospitalists do a better job in such areas where quality is lacking.

The university's hospitalists also play an important teaching role. Whether on an inpatient ward, medical oncology service, or providing advice elsewhere in the hospital, hospitalist physicians work closely with medical students and residents.

"Because we are so involved with students, we have attracted a faculty that is very interested in teaching," says Thoelke. "Teaching the next generation of doctors keeps us up to date on what's new in hospital medicine. That, in turn, helps us provide the best possible care for our patients."
THREE WEEKS AFTER ANTHRAX-LADEN LETTERS contaminated U.S. media and government offices last October, the School of Medicine's Office of Continuing Medical Education rolled out a new course on bioterrorism and public health.

Infectious disease experts discussed spotting infectious agents. Carol S. North, MD, associate professor of psychiatry and an authority on post-traumatic stress disorder following major disasters, outlined the psychological impacts and ways to deal with them. A Muslim professor from the Hilltop campus explained the social costs of the current cultural tensions. Other experts addressed issues of hospital preparedness.

Examples of CME-Online's many course offerings surround these pages.
"We want to respond quickly to physicians' educational needs," explains Gail M. Goodenow, director of continuing medical education (CME) at Washington University.

To get word out about the bioterrorism course, the department used e-mails and facsimiles to complement traditional brochures. Nearly 300 physicians attended.

The bioterrorism program exemplifies the changes taking place in continuing medical education. New topics, new formats and new ways of reaching physicians with them are developing at an accelerating pace, mirroring the dramatic changes within the medical profession itself.

BY BETSY ROGERS
In an environment where new discoveries, technologies and treatments revolutionize medical care on a daily basis, ongoing education becomes ever more critical. Doctors require continuing education credits for their annual licensing, but much more importantly, they need up-to-the-minute information to deliver the best care to their patients.

To keep abreast of these changes in medical knowledge, the CME staff depend on medical school faculty who, Goodenow says, are eager to share their knowledge. "They see it as part of their role as educators to do undergraduate, graduate and continuing education, part of their mission as academicians," she explains. "Our faculty initiate and develop content for CME programs—we facilitate the planning and accreditation."

Physicians know what's new in medicine. "In many cases, our faculty are doing the research," Goodenow says. "Faculty experts know what research should be translated into continuing education and they communicate that expertise in CME courses."

And they do it prolifically. Last year, the CME office presented 275 programs—137 courses and 138 rounds or in-house conferences. These offerings added up to nearly 7,500 hours of instruction and 109,100 credit hours granted.

Lining up teachers, then, is only part of the challenge. How to deliver information in a manner that is most useful and accessible to physician-learners is an equally important aspect of CME.

"Contemporary approaches to CME must be available to the health professional at the teachable moment. To be most effective, the learner needs to access information whenever a question arises," says W. Edwin Dodson, MD, associate vice chancellor for continuing medical education and associate dean for medical school admissions. "With ever-increasing time demands on physicians, CME-Online will become all the more important to practicing physicians."

Not surprisingly, Web-based learning has proved to be one of the most effective new methods for delivering CME instruction. CME-Online has shown steady growth since its introduction in 1999. Recently the office began promoting CME-Online through the Washington University Medical Center Alumni Association (WUMCAA), whose members are one of CME's major constituencies. "The response has been great," Goodenow says. "We have nearly 400 new participants since April."

WUMCAA was instrumental in the development of the majority of CME-Online courses via its educational funding. With the help of alumni, the number of available courses has grown steadily over the past year. "The Alumni Association's support has allowed us to extend the scope and reach of our educational programs for physicians in practice," says Dodson. "As a result, physicians anywhere have ready access to educational material crafted by our faculty."

Most CME-Online programs are developed from an earlier didactic lecture edited for online presentation. The advantages for participating physicians are numerous: They can study the material at any time of day or night, at their own pace; instructors make themselves available for questions and discussion via e-mail, and participants can test repeatedly until they feel comfortable with the new knowledge. Authors of CME-Online courses review and update their courses as necessary, so online material is as current as the latest discovery.

And even as CME Online is taking off—current course topics range from osteoporosis to sleep apnea, from prostate cancer to heart disease—CME staff continue to explore alternative methods for delivering medical information to physicians, such as DVD or CD-ROM.
IN TODAY'S RAPIDLY CHANGING HEALTH CARE ENVIRONMENT, primary care providers are expected to do more and more, and they may need to perform procedures in their offices. For them, traditional didactic teaching methods are often utilized. One of these programs may include, for example, hypertension, coronary artery disease, cholesterol and lipids under the broader category of cardiac health. Other CME programs deal with a category of patient care, such as women's health.

“We also do programs that are overviews of best practices,” Goodenow says. “These can be multispecialty-oriented programs. Presentations may include multiple illnesses, assessment and diagnosis, and a literature review to present a treatment plan based on evidence our faculty have researched.”

This kind of training relieves the practicing physician of the need to investigate numerous treatment protocols to discover the most effective.

Other CME courses provide traditional hands-on opportunities for physicians to acquire new skills and techniques while taking advantage of new educational technologies. For example, in a current offering on urologic laparoscopic techniques, participants attend lectures, view videotapes and actually practice procedures in the laboratory. They also watch the faculty perform operations via two-way audio/video broadcasts that connect the operating room and the conference room, a setup that allows spontaneous exchange and faculty-learner interaction.

With all of these offerings, the CME program reaches out to a diverse audience. Enrollees are primarily physicians, physicians-in-training, residents and fellows. Nearly half of the CME credits given last year were to School of Medicine and local referring physicians participating in ongoing rounds. But with national accreditation, course offerings also draw physicians from across the nation and around the world.

With the help of faculty and alumni, the continuing medical education team works hard to keep its offerings complete with leading-edge medical discoveries offered through a variety of educational formats.

The quality of instruction at the School of Medicine, coupled with multiple learning options offered by the CME program, keeps Washington University among the most comprehensive resources for practicing physicians. Since its debut, CME-Online has proved popular and it should continue to grow, perhaps as the most practical and convenient of these many options.

“The goal of CME is to move the latest information from the academic setting into the medical community,” says Dodson, “where physicians put it into practice—helping people now.”

CME director Gail M. Goodenow with Philip E. Korenblat, MD, professor of clinical medicine, who says “the best way to learn is to teach.”

"CME-Online offers convenient, well-structured courses with appropriate graphics."

Dennis P. Owens, MD, PhD '82, Psychiatry Associates of Kansas City, has earned 22 credits online.
WHEN LEE FETTER LEFT HIS POSITION at Washington University School of Medicine after 20 years of service, he declined a big going-away party. Because he was crossing the street to St. Louis Children’s Hospital, he thought it was incongruous to say goodbye to friends over cake and punch on Monday and begin business meetings with many of the same people on Tuesday.

In an unanticipated change of career direction that Fetter describes as “fairly dramatic” but that preserves an association with the school, he assumed the position of president of St. Louis Children’s Hospital and senior executive officer of BJC HealthCare on July 1, 2002.

“I first started thinking about some kind of change two years ago,” Fetter says. “I was coming up on 50; I would have been at the School of Medicine for 20 years, and Bill, (executive vice chancellor and dean of the medical school, William A. Peck, MD) with whom I worked closely for 14 years, would be announcing his impending retirement as dean. It seemed like an opportune time.”

Having served most recently as the chief operating officer of the school and also of Washington University Physicians, the faculty practice plan of the school, Fetter did not initially consider hospital management as a direction. However, an unexpected stint successfully running the jointly owned (WU/BJC) Health Partners HMO just prior to its sale exposed him to broader possibilities.

Then Ted Frey, the previous president of St. Louis Children’s Hospital and a colleague with whom Fetter had worked closely, announced his retirement. That coincidence caught Fetter’s attention, and as he weighed possibilities, including opportunities within Washington University, the job at Children’s began to feel more and more like the right choice.

In some ways, the change to hospital management is “not as new as it may seem,” he says. “Before I joined the university, I was executive director of the Missouri Health and Education Facilities Authority. In that role, I helped arrange the $80 million bond issue that built the new
Lee Fetter

"I'm a 'mission-driven' individual... Here, the pursuit of mission is the most focused I've ever experienced."

St. Louis Children's Hospital at One Children's Place. And, because I was in charge of the medical school's business operations, I've always worked closely with hospital administrators. In some ways, it's like coming full circle," he says.

To the question of whether such a big job produces anxiety, Fetter says: "Yes, it is a daunting challenge. But because of the strong management team in place here and at BJC, I feel confident." He calls his colleagues in administration a blessing, "thanks to Ted Frey and Steve Lipstein (CEO of BJC HealthCare), who have recruited well." Other positives include a newly refurbished facility architecturally attuned to serve its patients and a fiscally sound operation.

The new job has its surprises. At the medical school, Fetter says the size and energy of the place always stimulated him. But that energy often went in many directions. Because of his broad administrative responsibilities, he never had the luxury of adopting any single one. "At St. Louis Children's Hospital, all 2,500 people focus on one goal — do what's right for kids. The resulting power is palpable," he says.

Another difference: the immense emotional impact of caring for critically ill children. Fetter acknowledges having been brought to tears on one early occasion. Helping to lead a small tour through the bone marrow transplant unit, he was overwhelmed by the poignant stories of the children, their families and their caregivers. Later that day, he met Kenny Jackson, a 21-year hospital employee legendary for his constant good cheer and sincere concern for the people he calls "visitors." It's the commitment and heart embodied by Jackson that drives Fetter. "I'm a 'mission-driven' individual — motivated by the commitment of others to a great cause," he says. "Here, the pursuit of mission is the most focused I've ever experienced."

As the father of five boys, Fetter knows firsthand the extent to which families rely on him and the people he works with. "There was one point in our years of child rearing when my wife, Barb, and I referred to this hospital as the 'St. Louis Children's Hilton,'" he says, when several hospitalizations hit at once. "I've told my family that they may have been largely responsible for getting me this job. Barb's strong family values have had a big influence on my orientation. At a minimum, I think the search committee recognized our status as good customers."

Fetter is working with clinical leaders to refine a vision for the hospital. He promises that the future will include an even closer relationship with the School of Medicine, perhaps with developmental biology and genomics endeavors that could mean so much to revolutionizing pediatric health care in general. "I've been emphatic that one way to take St. Louis Children's Hospital to the next level is to strengthen its relationship with Washington University School of Medicine," he says. "We intend to be full partners." He is meeting with medical school department heads to lend assistance in recruiting new pediatric specialists. "My experience at Washington University and with Bill Peck taught me the importance of setting our expectations very high," he says.

Another early goal is to meet as many Children's employees as possible. He's been holding meetings to introduce himself and field questions. Fetter says the meetings serve as one more way to close the circle and bring everyone into the loop so that their energy can be most effectively focused on their task: to do what's right for kids.

Outlook Fall 2002

Personal Outlook 25
Alumnus’ novel discovery influences cancer research

MICHAEL B. KASTAN, MD, PHD, is one of the 20 most-cited (and, thus, most influential) scientists of the 1990s, with more than 7,800 citations of seven papers that he authored.

The first of these papers, “Participation of p53 protein in the cellular response to DNA damage,” discussed a concept so new that its significance was not immediately understood, and the first journal to which he submitted it did not publish his findings. At the time, he was a second-year faculty member at The Johns Hopkins University School of Medicine and a relative newcomer to publishing. Subsequently, Cancer Research published the paper, reporting his seminal discovery that the p53 protein is induced by DNA damage and is a major determinant of cellular responses to DNA damage. This discovery has influence in many fields, among them tumor suppressor genes, radiation biology, cell-cycle control, carcinogenesis and tumor biology, and it also has clinical implications for tumor development and for therapy. Kastan went on to link the gene product mutated in Ataxia-telangiectasia (now known as ATM) to the p53 response.

Now chairman of the department of hematology/oncology and co-director of the molecular oncology program at St. Jude Children’s Research Hospital in Memphis, Kastan is also professor of pediatrics and chief of the division of pediatric hematology/oncology at the University of Tennessee there. Along with administrative and clinical duties, he continues to direct a basic science laboratory investigating cellular responses to DNA damage.

Kastan went to St. Jude in 1998 after nine years on the faculty at Johns Hopkins. After graduation from Washington University’s Medical Scientist Training Program, he completed a residency in pediatrics at The Johns Hopkins Hospital and then spent three years there as a clinical and research fellow in pediatric hematology/oncology. He joined the faculty as an assistant professor of oncology and pediatrics in 1989 and started his own laboratory, investigating cell cycle control and molecular controls of DNA damage responses. Soon promoted to associate professor, then full professor, he directed the division of pharmacology and experimental therapeutics at Johns Hopkins Oncology Center in addition to his research and clinical work.

Kastan’s publications now number nearly 200, and he has given invited lectures throughout the United States and Europe, as well as in China and Japan. He serves on a number of editorial boards and the scientific boards of several organizations and cancer centers. He chairs the Board of Scientific Counselors for the National Cancer Institute and recently completed a term on the Board of Directors of the American Association for Cancer Research.

Kastan is married to Kathryn Goldstein Kastan, a family therapist who holds master’s degrees in social work and education from Washington University’s George Warren Brown School of Social Work. The Kastans have three sons, Ben, Nathaniel and Jonathan. In his limited spare time, Kastan “tries to make it to a reasonable fraction of my kids’ extracurricular activities” and plays basketball whenever he can.
Nice guy finishes first, gains honors along the way

When al (albert l.) rhoton jr. graduated from Washington University School of Medicine at the head of his class in 1959, he began an illustrious career for which he has been garnering honors ever since.

Rhoton is the recipient of the highest honors given by the top neurosurgical societies: in 2001, the Medal of Honor from the World Federation of Neurosurgical Societies and the Medal of Honor from the Neurosurgical Society of America; in 1998, the Cushing Medal from the American Association of Neurological Surgeons, and in 1993, the designation as Honored Guest of the Congress of Neurological Surgeons. Rhoton has served as president of the latter two societies and others including the Society of Neurological Surgeons, the International Interdisciplinary Congress on Craniofacial and Skull Base Surgery, and the International Society for Neurosurgical Technology and Instrument Invention.

Rhoton is R.D. Keene Family Professor of Neurological Surgery and chairman emeritus of the department of neurological surgery at the University of Florida College of Medicine in Gainesville, which this year gave him a Lifetime Achievement Award, made him a Wall of Fame Honoree, and elected him an Honorary Alumnus. In 1984, the Washington University Medical Center Alumni Association gave him an Alumni Achievement Award.

His many honors haven't changed Rhoton who, by all accounts, remains the same modest, generous and soft-spoken person he was in medical school. His classmates remember his unselfish sharing of knowledge. Occupational therapy students struggling in the human anatomy course remember him explaining fetal circulation to them in a library corridor. One of them was Joyce Moldenhauer, who married Rhoton while they were still in school. Now 45 years later, they have four children — three are physicians and one is a nurse. Al and Joyce jog together every day and delight in playing with their 12 grandchildren.

After completing neurosurgical training, Rhoton spent six years at the Mayo Clinic in Rochester MN. In 1972, he became professor and chair of the fledgling department of neurological surgery at the University of Florida. He built it into one of the world's premier departments and was the force behind establishing the university's Brain Institute, completed in 1998. All the while he was pioneering the use of the surgical microscope in brain surgery, revolutionizing surgical techniques and transforming the lives of thousands of patients.

Regarded worldwide as a father of microneurosurgery, Rhoton developed extraordinary detailed maps of brain anatomy and designed miniaturized instruments that enable surgeons to operate with greater success and safety.

He has trained thousands of neurosurgeons in microsurgery, here and abroad. When he stepped down as department head in 1998, former students, colleagues, patients and friends contributed $2 million to establish the Albert Rhoton M.D. Chairman's Professorship in Neurosurgery. Matched by state funds, the gifts resulted in a $4 million endowment that continues to grow.

Rhoton's publications include more than 350 scientific papers. The international journal Neurosurgery has published two unprecedented collections of his papers with hundreds of full-color brain illustrations: the "Millennium Supplement" on the posterior cranial fossa in 2000 and the "Twenty-fifth Anniversary Supplement" on the cerebrum this year.

With all his experience, Rhoton has never lost the fascination and awe for the brain that led him to choose neurosurgery. He still applies his scalpel with reverence and wonder to the organ through which, he says, "we become aware of our own soul."
CARL HAMANN BELIEVED in helping people realize their potential. Feeling that people with mental illness were unable to do that for lack of treatment, he chose psychiatry as his specialty. It was a profession far removed from his boyhood days on a Canton MO farm.

Hamann earned an undergraduate degree at Culver Stockton College in Canton, and then chose Washington University's School of Medicine for his medical degree because two local physicians, both family friends, were alumni. After graduation in 1935, he was commissioned a 1st Lieutenant in the U.S. Army Medical Corps, serving on active duty in the cavalry for a time and in the reserves until 1941. He completed postgraduate training at Yale, Northwestern University and the University of Minnesota, then went to Tulane University in New Orleans as an assistant professor of psychiatry.

In 1941, Hamann moved to Rockford IL, to direct the Elmlawn Sanatorium, a mental hospital. He also became the primary psychiatric consultant to the state's attorney in Winnebago County and developed a reputation as an expert witness in criminal competency cases throughout Illinois.

Hamann was active in professional and community affairs and was an enthusiastic member of the Masonic Lodge. His favorite photo of himself wearing a cowboy hat hung in his room when physical impairments confined him to a nursing home during the last four years of his life. It was a reminder of the many treasured times he had worn Western garb and ridden his chestnut horse in the Tebala Shrine Horse Patrol in Rockford. Hamann was a charter member of the Patrol, formed in 1950, and an active rider in hundreds of its parades and competitions for more than 20 years.

He continued to enjoy the social activities of the Patrol when he no longer rode, and friends from the Patrol were among the most faithful of those who visited and cared for him in the nursing home. (His son from a brief marriage died in 1997, leaving him with no immediate relatives.) Hamann's physical limitations did not blunt his astute observation of human behavior and he was known, on occasion, to counsel nursing home staff members. In February 2000, his friends staged a gala 89th birthday celebration for him at the nursing home. He died there the following November.

Remembering his medical school days with pride in the quality of his education and pleasure in the camaraderie he had shared with classmates, Hamann left a significant bequest to the School of Medicine for unrestricted use by the Department of Psychiatry.

Charles F. Zoromski, MD, the Samuel B. Guze Professor and chair of the department, says, "The Department of Psychiatry will benefit greatly from Dr. Hamann's generosity. Unrestricted gifts such as his provide tremendous needed flexibility for developing new and innovative lines of research. These gifts also help greatly in fostering the careers of young scientists, particularly clinician-scientists." Hamann is still helping people realize their potential.
You make all the difference!

The School of Medicine's annual fund drive—the yearly solicitation of support for the school—ended at the close of June. A total of $2,137,302 was raised for fiscal year 2002 from medical, health care administration, occupational therapy, physical therapy and nursing alumni, former house staff, and friends.

Through generous annual fund support, the School of Medicine is able to recruit and retain talented researchers such as the eight Alumni Endowed Professors and to attract medical students of the high caliber exemplified by the current Distinguished Alumni Scholarship Program (DASP) awardees. Student projects such as Students Teaching AIDS to Students (STATS), the Perinatal Project, the Forum for International Health and Tropical Medicine (FIHTM), the Saturday Neighborhood Health Center and the Pediatric Outreach Program also benefit from the generosity of the School of Medicine's alumni and friends.

Alumni Endowed Professors
Established by the Washington University Medical Center Alumni Association (WUMCAA) in 1978, this program is unique in that unrestricted gifts from alumni, former house staff, and friends are combined with designated gifts from donors to fund endowment of permanent alumni professorships. Endowed professorships not only provide resources in perpetuity, they are among the highest honors in academic medicine.

ANATOMY AND NEUROBIOLOGY
Joshua R. Sanes, PhD

BIOCHEMISTRY AND MOLECULAR BIOPHYSICS
Elliott L. Edson, PhD

CELL BIOLOGY AND PHYSIOLOGY
Robert P. Macham, PhD

MOLECULAR MICROBIOLOGY
Douglas E. Berg, PhD

MOLECULAR BIOLOGY AND PHARMACOLOGY
Jeanne M. Nerbonne, PhD
David M. Drutz, MD, PhD

PATHOLOGY AND IMMUNOLOGY
Robert D. Schreiber, PhD

PEDIATRICS
J. Julio Pérez-Fontán, MD

Alumni Results by Program
PERCENT PARTICIPATION JULY 1, 2001–JUNE 30, 2002
MD-Alumni 41%
Former House Staff 19%
Health Administration 29%
Occupational Therapy 25%
Physical Therapy 33%
Nursing 28%

Two Annual Fund Challengers in FY '02
Through the generous Annual Fund challenges launched by W. Edward Lansche, MD '52, and Lawrence Pakula, MD '57, medical alumni participation reached 41.3 percent in fiscal year 2002.

The Lansche Century Club Challenge matched all MD, nursing and former house staff $100 Century Club gifts one-for-one between December 1, 2001, and June 30, 2002. Five hundred twenty-five donors responded to the Century Club Challenge, raising nearly $55,000.

The Pakula Eliot Society Challenge matched two-for-one all new $1,000 Eliot Society gifts made by MD, house staff, nursing, occupational therapy, physical therapy and health administration alumni between April 1, 2002, and June 30, 2002. Forty-two new donors joined the Eliot Society, raising more than $52,000. A total of 718 Eliot Society members can be counted for the medical school in fiscal year 2002, with 149 new members and 569 renewals.

The reunion gift program experienced another great year with overall reunion class participation exceeding 53.8 percent and raising nearly $215,000 in unrestricted support. The Class of 1977 established a class scholarship, and the Class of 1972 continued support of its class scholarships.
Medical students obtained hands-on training, young patients got a chance to laugh, citizens of Bangladesh learned to prevent disease—all as a result of decisions made by the Washington University Medical Center Alumni Association during the past year. J. William Campbell, MD, president of WUMCAA's Executive Council for 2001–02, reported the year’s accomplishments to alumni gathered in May for Reunion 2002.

The Executive Council, representing medical alumni and former hospital house staff, allocated funding to primary care preceptorships and other projects to enhance medical education for students. Council members also supported student organizations that “clown around” with hospitalized children, raise HIV/AIDS awareness or travel down the street or across the globe to educate people about health issues.

Of the more than $272,000 distributed by the Executive Council during the 2001–02 fiscal year, nearly $43,000 went to student-initiated community service projects. Funding also supported academic and honor societies, new computer systems for students and other activities. During his presentation, Campbell reported that funding for these projects came from gifts made by alumni and former house staff to the medical teaching fund.

More than half of this year's funding was designated for Distinguished Alumni Scholarships (DASP), which will support four incoming students throughout their medical school careers. The funding continues support of 12 DASP scholars in the second, third and fourth years of their medical education. Each scholarship is named for a distinguished alumnus or alumna chosen by the Executive Council. This year’s honorees were paired with students entering in fall 2002.

Thanks to previous funding allocated to CME online, alumni once again were offered free continuing medical education credits at cme.wustl.edu.

New Executive Council officers and members were elected at the meeting and took office July 1, 2002.
Paying a debt of loyalty New WUMCAA President

CARLTON S. PEARSE, MD, the new president of the Washington University Medical Center Alumni Association (WUMCAA), has one simple reason for accepting the post: “I feel a great deal of loyalty to the university.”

That loyalty has motivated Pearse to take on the WUMCAA presidency despite the time constraints of being chief of obstetrics and gynecology at St. Luke’s Hospital in Chesterfield MO and keeping up with his busy obstetrics/gynecology practice, Women’s Health Care, Inc.

“The school has tremendous tradition,” Pearse says. “I’d like to maintain the tradition of academic excellence and personal commitment to students and alumni, and to facilitate communication, so those of us who have made it through can help others with the difficult task of succeeding in medical school.”

A native of Denver CO, Pearse earned a bachelor’s degree in chemical engineering from the University of Colorado in 1973. But the transition to medical school was not all he had dreamed it would be.

“I had a very difficult time in the early part of medical school and the institution was there to support me,” Pearse says. “Coming from a state school in Colorado, as an engineering student, I was used to being a big fish in a relatively small pond. I found it hard to matriculate with my classmates — some of the brightest people I’ve ever met — many of whom came from prestigious East-coast or West-coast institutions.”

When classmates said they had already studied much of the material as undergraduates, Pearse remembers thinking, “I didn’t think medical school was a review course!”

Crediting then-head of student affairs John C. Herweg, MD, with “bending over backwards to be accommodating,” Pearse says the School of Medicine was committed to helping him succeed.

“”I would like to try to maintain the connection between alumni scattered around the country and the current student body. Medicine should be a continuum of experience.”

“Thata was a distinguishing characteristic of the school,” he says. “They didn’t need me to fill a chair in a classroom — they were one of the top medical schools in the country. But they made a commitment to me on a personal level, and it made all the difference.”

Pearse graduated with honors from the School of Medicine in 1978 before completing an internship in internal medicine at Case Western Reserve University. He then returned to St. Louis for a residency in obstetrics and gynecology at the School of Medicine. A fellowship in advanced gynecological surgery at the University of Kansas rounded out his training.

After working in a private obstetrics/gynecology practice in the St. Louis area for more than 10 years, he returned to Washington University, this time to work on a master’s of business administration, which he completed in 1993. He served as corporate president of

Generations Health Care, Inc., for nearly three years before returning to his current practice.

He attributes his success to two sources: his wife of 27 years, Mary Pearse, GR ’81, and his partner and mentor Theodore M. Meiners, MD ’48.

Pearse believes that active alumni can have a profound impact on the school, so he plans to help keep the ties strong.

“”I would like to try to maintain the connection between alumni scattered around the country and the current student body,” he says. “Medicine should be a continuum of experience, where learning never stops. Hopefully those of us in practice have something to offer beyond just our contributions to the annual fund.”

CARLTON S. PEARSE, MD

BY ANNE ENRIGHT SHEPHERD
30s
Irving L. Berger, MD ’39, writes that he is still busy, doing his artwork and active at the Middle East Think Tank at Florida Atlantic University. Berger, a psychiatrist, lives in Delray Beach.

H. Glenn Kellogg, MD ’47, teaches each fall at the University of California at San Diego medical school in the first-year students’ doctor/patient relationship course. He is an assistant professor of pediatrics there.

John R. Fischer, MD ’49, recently authored Prairie Doctor, an autobiography of his life as a country doctor in Blooming Prairie MN, during the mid-20th century. Published by Fischer, the book chronicles his many experiences in medicine and recounts incidents and personalities of his patients over the years. Fully retired from medicine, Fischer and his wife, Elinor Dunn Fischer, NU ’48, live in Hermann MO. Copies of Prairie Doctor are available for $20 and can be obtained by contacting John Fischer at P.O. Box 283, Hermann, MO 65041-0283.

Edward Pinney, MD ’49, says he “lives semi-retired in an oceanfront apartment 13 stories above the Atlantic and quietly waits?” A psychiatrist, he does occasional locum tenens work in Houston or New Zealand. He lives in Luquillo, Puerto Rico.

Robert E. Neu, MD ’52, writes that he and his wife of 51 years are living comfortably and “now enjoy their three lovely daughters and three granddaughters, and spend our time surfing the Net, reading, gardening, playing sax and clarinet for the amusement of our two little Chihuahua dogs and three cats.” Each year for more than 30 years, they spent a month traveling, and have visited all the continents of the world. Before retiring from surgical practice in 1989, Neu was chief of staff and chief of surgery at the Medical Center of Garden Grove CA, a faculty member at the University of California at Irvine, and president of the Orange County CA Surgical Society. Mrs. Neu was his office nurse. His autobiography—genealogy, Always Neu is available in the public libraries in St. Louis and Belleville IL, the Library of Congress, the Mormon Family History Library in Salt Lake City, and the Washington University library.

40s
Olga Sarar Smith, OT ’55, has officially retired from Christian Hospital Northwest, but still does occasional part-time work there. She is very active in community affairs in Florissant MO. She would like to hear from classmates.

Wade C. Henry, HA ’58, has retired from the Public Health Service. He lives in Anchorage AK, and serves as state coordinator for Volunteers for Alaska Baptists.

50s
Frank A. Riddick Jr., MD, HS ’61, retired recently as chief executive officer of the Alton Ochsner Medical Foundation in New Orleans. The Ochsner Clinic Foundation’s board honored his many years of service with a dinner in November, 2001. In March 2002, the Jefferson Parish Medical Department for their restoration activities. They plan to spend time working at the property and doing “extensive self-study to learn more botany and entomology, as well as more about the investigative methods of field biology.” They also will involve students from the local elementary, middle and high schools in projects, as well as students from the University of Wisconsin at Whitewater, 10 miles away. If there is any time left after that, Penny says: “There’s that big stack of books and the piano that I will finally find time to play again. And Gary is really looking forward to photography.”

Thomas M. Houston, MD ’75, was named chief of St. Luke’s Hospital Medical Staff in Maumee OH, in March 2002. He completed his postgraduate training in orthopaedic surgery at the University of Michigan and joined the West Side Orthopedic Group, Inc., in 1980, when he became an active member of the St. Luke’s medical staff. Phyllis L. Borgardt, OT ’76, recently became a member of the National Registry of Rehabilitation Technology Suppliers and serves the California Central coast area in durable medical equipment. She is the owner of a Medicare Certified Clinic for
Rehabilitation Services in Fresno and also coordinates the San Luis Obispo County ALS Support Group.

Randall E. Dalton, MD '76, was appointed by Health and Human Services Secretary Tommy G. Thompson to serve on the National Advisory Research Resources Council of the National Institutes of Health for a four-year term that began February 1, 2002. A major responsibility of the council is to review and make recommendations regarding grant applications to support biomedical research and research training activities. Dalton is an otolaryngologist/head and neck surgeon in private practice in Richmond VA. He serves on the board of directors of Virginia Commonwealth University Health System Authority, Richmond Eye and Ear Hospital, and the Robert E. Lee Council of the Boy Scouts of America. He is current president of the medical staff of Bon Secours Richmond Community Hospital and president-elect of the Old Dominion Medical Society.

Cathy J. Lazarus, MD '81, recently has been recognized with two teaching awards at Tulane University. The first, a Teaching Scholar Award, is the highest faculty honor for teaching given by the health sciences center. Recipients of the annual award receive a distinctive medallion, plaque and lapel pin, a permanent salary increase, and a stipend to fund future or ongoing educational projects. The second honor, the Gloria P. Walsh Award for Teaching Excellence, was given at the diploma ceremony for the Tulane University School of Medicine. It is given annually by the medical student body in honor of Gloria Walsh, the late wife of Dr. John J. Walsh, chancellor emeritus of the Tulane University Health Sciences Center. Lazarus, who has been at Tulane since 1994, became a full professor of medicine on July 1, 2002. She has...
created courses and curricula at every level of medical education, has been an advocate for students, and has been a principal or co-principal investigator on several educational innovation and enhancement projects.

David A. Lubarsky, MD '84, MBA, has joined the University of Miami School of Medicine as professor and chairman of the Department of Anesthesiology, Perioperative Medicine and Pain Management. He had been a tenured professor, vice chairman of anesthesiology, and chief of the division of general, vascular, transplant anesthesia and critical care medicine at Duke University Medical Center. In 1999, he earned an MBA from Duke's Fuqua School of Business, where he also later taught MBA students about the role of information systems and the Internet in health care. Lubarsky's research has centered on valuing health care and the use of information systems to provide better patient access to operating rooms, and he has written several widely cited articles in those fields. He chairs the editorial board of AnesthesiaWeb, the largest anesthesia e-magazine in the world.

Ellen M. Reynolds, MD '89, received the 2001 Robert L. Miller "Consultant of the Year" award from the Idaho Emergency Physicians (IEP) at Saint Alphonsus Medical Center in Boise. She was honored in January at the IEP winter reception for the Saint Alphonsus medical staff. The award is given to a consultant who excels in quality of patient care, accessibility and collegiality. Reynolds is one of only two pediatric surgeons in Idaho. She is married and has two children, ages 4 and 8.

Michelle Rast Miller, OT '94, and her husband, Wesley, announce the arrival of twins, Kendall Michelle and Luke Wesley, on February 21, 2002. Miller is coordinator for Genesis Healthcare System Medical Occupational Therapy for two hospitals in Zanesville OH.

Scott R. Gregg, PT '96, and Sara B. (Nyhuis) Gregg, PT '96, announce the birth of Kendra Madison Gregg on February 8, 2002. The Greggs live in Colorado Springs CO.

Gayle Allenback, OT '98, married William Stenger III on December 23, 2001. They live in Las Vegas NV, with their golden retriever, Casey. Stenger is a former accountant, now studying comprehensive medical imaging.

Allenback works for the Clark County School District as an occupational therapist and is in the process of becoming a certified provider of biofeedback therapy.

Bryce Helgerson, HA '96, is director for the department of neurological surgery in the Oregon Health and Science University's School of Medicine in Portland OR.

James McCarter, MD, PhD '98, is one of 20 young executives named to the 2002 class of Henry Crown Fellows by Aspen Institute's Henry Crown Fellowship Program. The fellows undertake a two-year program of approximately 24 days of advanced leadership seminars and individual community leadership projects under the direction of experienced Aspen Institute moderators and senior mentors. McCarter is founder, president and chief scientific officer of Divergence, Inc., and a research instructor in genetics at Washington University. He is one of a handful of people worldwide applying genomics to parasitic diseases. At Divergence, McCarter and his staff of 14 are researching ways to interrupt the life cycle of parasites such as hookworms or heartworms without adverse side effects to the host, whether a human, animal or plant. Their work could lead to new environmentally safe pesticides, the development of new drugs for animals and humans, and the development of plants with nematode resistance.

McCarter demonstrated his commitment to community service as a student when, in 1991, he was a founder of the Young Scientist Program, which provides training in the sciences to disadvantaged youth. He was also a co-founder in 1995 of the Mad Scientist Network, an online resource where scientists answer students' questions. The site, originally created as a resource for the St. Louis Public School District, now has 500 scientists participating worldwide.

Wanda Mahoney, OT '96, recently moved from New Orleans to New Mexico "to work with kids with special needs at a school on the Navajo reservation."

Angela Wong, MD '99, and her husband, Lawrence Cheung, MD, moved back to St. Louis in June, 2002, where he began a dermatology residency at Washington University and she joined St. Louis Children's Hospital as a hospitalist.

IN MEMORY

Sarah Barnes, OT '28, died on May 20, 2002, in St. Louis at the age of 97. She and her twin sister, Susan, and a younger sister, Harriet Barnes Berg, who preceded her in death, were among the early graduates of Washington University's program, then called the St. Louis School of Occupational Therapy. Sarah worked for a time at the Curative Workshop operated by the Junior League of St. Louis, later known as the Occupational Therapy Workshop of St. Louis, and then took a position at St. Louis City Hospital, where she served as chief of occupational therapy for 45 years. Among her survivors are a daughter and two grandchildren. The family asks that memorials be sent to the Washington University Program in Occupational Therapy for a scholarship in her honor.
Pauline L. (Kimmel) King, NU ’33, died on April 25, 2002, in Massachusetts, at the age of 89. She served in the Army Nurse Corps for a short time during WWII. After the death of her husband, John T. King, in 1953, she resumed her career in nursing. She is survived by her sons, John Jr., David H. King, AS ’67, and Paul, as well as nine grandchildren and five great-grandchildren.

Edward H. Lyman, MD ’37, died June 24, 2002, in St. Louis at the age of 89. He had been an ear, nose and throat specialist for more than 40 years. During World War II he served in the Army Air Force and returned home in 1946 to join his father’s practice. He was on the staffs of Barnes, Missouri Baptist, St. Lukes, St. Mary’s, St. John’s and Faith hospitals and was active in the Ear, Nose and Throat Club of St. Louis. Among survivors are his wife of 60 years, Caroline Harley Lyman, one son and one daughter, seven grandchildren and one great-grandchild.

Jack W. Cole, MD ’44, died June 17, 2002, in Camden ME, at the age of 81. He was Emeritus Ensign Professor of Surgery at Yale University School of Medicine, where he had chaired the Department of Surgery and directed the division of oncology and the Yale Comprehensive Cancer Center. Prior to moving to Yale in 1966, he was professor of surgery at Western Reserve University and professor and chair of the Department of Surgery at Hahnemann Medical College and Hospital. During World War II he interrupted his residency to serve in the Army Medical Corps, including a stint as chief of surgery service at the 120th Hospital in Bayreuth, Germany. His postgraduate training included an Eleanor Roosevelt International Cancer Research Fellowship in London, where he was elected president of St. Mark’s Association. He was active in many professional societies and had been president of the New England Cancer Society and chairman of the Council of Academic Societies of the American Association of Medical Colleges. Cole was the recipient of many honors during his career, among them a Distinguished Alumni Award at Washington University’s Founders Day in 1971 and an honorary Master of Arts degree from Yale in 1966. Survivors include his wife, Ruth Kraft Cole, and three children, Deborah Cole, Douglas Cole, MD, and John Cole. One daughter, Tracy Cole Lawler, died of cancer in 1986.

Harold L. Boyer, MD, HS ’47, died January 18, 2002. He had been a dermatologist in Las Vegas NV.

Bruce T. Forsyth, MD ’47, a retired rheumatologist, died in St. Louis on April 19, 2002, of complications from pneumonia. He was 77. He served as a captain in the Army during the Korean War. Among his survivors are his wife, Suzanne, and five sons. Memorials may be made to the Mid-County branch of the St. Louis County Library.

Warren Locker Felton II, MD ’49, died at his home in Nichols Hills OK, on April 28, 2002, at the age of 76. He had been on the clinical faculty in the department of surgery of the University of Oklahoma College of Medicine in Oklahoma City since 1958. A longtime staff member at Baptist Medical Center, he also had chaired the Department of Surgery and the Department of Cardiovascular Thoracic Surgery there. From 1943 to 1946 he served in the U.S. Naval Reserve; from 1956 to 1958 he was a captain in the U.S. Army Reserve, heading the surgical service at Valley Forge Army Hospital in Pennsylvania. Felton was active in many professional and civic organizations and was a past-president of the Oklahoma Chapter of the American Academy of Surgery and of the Oklahoma Surgical Association. He had been involved in Nichols Hills municipal government in various capacities since 1985, and served as mayor from 1993-94. In 1995, he was a delegate to the White House Conference on Aging. He is survived by his wife, Judith Ann, and five children, two of whom are physicians.

Gerald Newport, MD ’53, of Creve Coeur MO, died August 8, 2002, of respiratory failure at the age of 74. He had practiced in the St. Louis area for 44 years and had brought thousands of babies into the world, sometimes delivering three generations of the same family. A former chief of obstetrics and gynecology at Christian Hospital Northwest, he had offices in Bridgeton and Chesterfield at the time of his death. During World War II he served in the U.S. Navy. Survivors include his wife of nearly 53 years, Dolores “Dolly” Bickoff Newport, and three daughters.

Frederick Harvey Taylor, MD, HS ’54, died April 1, 2002, at St. Simons Island GA, at the age of 81. Before his retirement, he practiced cardiothoracic surgery in Charlotte NC for many years. During World War II he served in the U.S. Navy. He was a past president of a number of professional societies, among them the Southern Thoracic Surgical Association, the North Carolina Surgical Association and the American Association of Thoracic Surgery. He founded the Children’s Heart Clinic in Charlotte and was a member of the board of trustees of Mercy Hospital there. Taylor performed the first successful open heart surgery in Charlotte in 1957 and was one of the developers of an artificial Oron artery still used in heart surgeries. He also was known for his research in tuberculosis. An active golfer, he was a founding member of the Sea Island Golf Club.

Among his survivors are his wife of 20 years, Kathryn L. Taylor, one daughter and two sons, and five grandchildren. One son preceded him in death.
Seeking fixed income?
Try a Washington University
Gift Annuity. Here's how...

As you review your personal financial plan, you may find that a Washington University Charitable Gift Annuity can be helpful to you if you are age 60 or older. Here's one way you can receive guaranteed income for life and make an enduring gift to the University.

If you are age 72 and create a $10,000 Gift Annuity with cash, you will receive the following benefits:

Rate of return	7.4%
Guaranteed annual income for life	$740
Tax-free portion	$423
Taxable portion	$317

(The entire amount becomes taxable income after the first 14.5 years.)

Immediate federal income tax deduction $3,875
(amount of charitable deduction may vary slightly)

You may also fund a gift annuity with appreciated securities.

Sample Rates of Return

<table>
<thead>
<tr>
<th>Single life</th>
<th>Double life</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>rate</td>
</tr>
<tr>
<td>60</td>
<td>6.4%</td>
</tr>
<tr>
<td>65</td>
<td>6.7%</td>
</tr>
<tr>
<td>70</td>
<td>7.2%</td>
</tr>
<tr>
<td>75</td>
<td>7.9%</td>
</tr>
<tr>
<td>80</td>
<td>8.9%</td>
</tr>
<tr>
<td>90</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

For further information or to request a personalized example, please call 1-314-935-5848 or 1-800-835-3503, complete the attached reply card, or e-mail us at plannedgiving@aismail.wustl.edu. Visit us at our Web site at http://aisweb.wustl.edu/Alumni/PlannedG.nsf.

Washington University in St. Louis
SCHOOL OF MEDICINE

Seek advice from your tax or legal advisor when considering a Charitable Gift Annuity.

Design by Jeffrey St. Pierre '01/Create Studio at Washington University
Washington University in St. Louis
SCHOOL OF MEDICINE

☐ Washington University is already included in my estate plans—I would like to become a Robert S. Brookings "Partner."

☐ I am age 60 or over. Please send me a personalized, confidential calculation using the following birthdate(s) to illustrate the very attractive benefits that I will receive from a Washington University Charitable Gift Annuity.

☐ I would like a calculation based on a theoretical gift of:

$________________________ (minimum $5,000)

☐ Cash ☐ Securities

$________________________ (Cost Basis) (Acquisition Date)

First Beneficiary
Birthdate ______ Relationship _____

Second Beneficiary
Birthdate ______ Relationship _____

☐ Please send me your booklet on Charitable Gift Annuities.

☐ Please send me your booklet on other Life Income Plans at Washington University.

☐ Please send me information on making a bequest to Washington University School of Medicine.

☐ Please have Paul Schoon, Lynnette Sodha or Steven Rosenblum from the Washington University Planned Giving Office call me.

Name __
Address __________________________ City/State/Zip ______

Daytime Phone ____________

Use this postage-paid card to let us know what's new with you.
Share your news about awards and honors, promotions, community activities and more. Contact Kim Donermeier at (314) 286-0031 or e-mail Ruth Bebermeyer at ruthab@onemain.com.
Or update your information online: medicine.wustl.edu/alumni

Use this postage-paid card to let us know what’s new with you.

Update Yourself!

Name __
Address __________________________ City/State/Zip ______

Specialty __________________________ Class/HS Year ______

E-mail __________________________ (May we list your e-mail address in our web page directory?) ☐ Yes ☐ No

Signature __________________________ Daytime phone ____________

The University reserves the right to contact contributors to verify entries.
MEDICAL ALUMNI
REUNION

MAY 8-10
2003

Mark your calendars now and plan to meet your classmates in St. Louis at Reunion 2003!

Find information on the web at: medicine.wustl.edu/alumni

Registration materials will be mailed in February.

MD CLASSES OF:
'43 '43
MARCH DECEMBER
'48 '53 '58
'63 '68 '73
'78 '83
'88 '93
Stealth Virus The herpes virus enters the body and then hides away in cells—often re-emerging years later to cause serious illness. Researchers at the School of Medicine are studying ways in which the virus manages to evade the immune system. For more on this story, please turn to page 4.