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Interphotoreceptor Retinoid-Binding Protein as the
Physiologically Relevant Carrier of 11-cis-Retinol
in the Cone Visual Cycle

Ryan Parker,! Jin-Shan Wang,* Vladimir J. Kefalov,> and Rosalie K. Crouch?
Departments of 'Neurosciences and 20phthalmology, Medical University of South Carolina, Charleston, South Carolina 29403, and *Department of
Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110

Cones function in constant light and are responsible for mediating daytime human vision. Like rods, cones use the photosensitive
molecule 11-cis-retinal to detect light, and in constant illumination, a continuous supply of 11-cis-retinal is needed. A retina visual cycle
is thought to provide a privileged supply of 11-cis-retinal to cones by using 11-cis-retinol generated in Miiller cells. In the cycle, 11-cis-
retinolis transported from Miiller cells to cone inner segments, where it is oxidized to 11-cis-retinal. This oxidation step is only performed
in cones, thus rendering the cycle cone-specific. Interphotoreceptor retinoid-binding protein (IRBP) is a retinoid-binding protein in the
subretinal space that binds 11-cis-retinol endogenously. Cones in Irbp ~'~ mice are retinoid-deficient under photopic conditions, and it
is possible that 11-cis-retinol supplies are disrupted in the absence of IRBP. We tested the hypothesis that IRBP facilitates the delivery of
11-cis-retinol to cones by preserving the isomeric state of 11-cis-retinol in light. With electrophysiology, we show that the cone-like
photoreceptors of Nrl ~'~ mice use the cone visual cycle similarly to wild-type cones. Then, using oxidation assays in isolated Nrl '~ Rpe65 '~
retinas, we show that IRBP delivers 11-cis-retinol for oxidation in cones and improves the efficiency of the oxidation reaction. Finally, we
show that IRBP protects the isomeric state of 11-cis-retinol in the presence of light. Together, these findings suggest that IRBP plays an

important role in the delivery of 11-cis-retinol to cones and can facilitate cone function in the presence of light.

Introduction

Photoreceptors depend on 11-cis-retinal to detect light. Within
photoreceptor outer segments, 11-cis-retinal is bound to opsins
to form visual pigments (Wald, 1935). When light strikes a visual
pigment molecule, 11-cis-retinal is isomerized to all-trans-
retinal, the opsin is activated, and phototransduction begins.
Each photon is detected at the expense of a molecule of 11-cis-
retinal, and new 11-cis-retinal must be regenerated from the all-
trans-retinal photoproduct for continued photoreceptor
function. The classical visual cycle regenerates 11-cis-retinal from
all-trans-retinal through reactions occurring in the photorecep-
tors and retinal pigment epithelium (RPE), but a second, cone-
specific visual cycle exists in the retina (Wang and Kefalov, 2009;
Wang et al., 2009). Like the classical visual cycle, the cone visual
cycle begins with the reduction of all-trans-retinal, but after leav-
ing the outer segment, all-frans-retinol is transported to Miiller
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cells and converted to 11-cis-retinol (Mata et al., 2002, 2005).
11-cis-Retinol from Miiller cells is transported to cones and oxi-
dized to 11-cis-retinal (Jones et al., 1989; Wang et al., 2009). This
final step is critical to the cycle’s cone-specific nature, as only
cones can oxidize 11-cis-retinol to 11-cis-retinal (Jones et al.,
1989; Ala-Laurila et al., 2009).

The interphotoreceptor retinoid-binding protein (IRBP) is
the most abundant soluble protein in the subretinal space
(Gonzalez-Fernandez, 2003), and in vitro data suggest that IRBP
facilitates the classical visual cycle by directing the flow of all-
trans-retinol to the RPE (Okajima et al., 1994; Wu et al., 2007;
Ala-Laurila et al., 2009), facilitating the return of 11-cis-retinal to
photoreceptors (Jones et al., 1989; Edwards and Adler, 2000), and
preserving the isomeric state of retinoids traversing the subretinal
space (Crouch et al., 1992). While multiple studies using dark
adaptation have shown that the classical visual cycle functions
normally in Irbp ~'~ mice (Palczewski et al., 1999; Ripps et al.,
2000), cones in Irbp '~ mice are retinoid-deficient under pho-
topic conditions (Parker et al., 2009) and undergo degeneration
in some Irbp '~ models (Jin et al., 2009). IRBP binds 11-cis-
retinol endogenously (Saari et al., 1985), and under photopic
conditions IRBP is present at the outer limiting membrane where
Miiller cell processes and cone inner segments meet (Uehara et
al., 1990). Thus, it is possible that IRBP facilitates cone function
by transferring 11-cis-retinol from Miiller cells to cones under
photopic conditions.

The goal of the present study is to determine whether IRBP
facilitates the delivery of 11-cis-retinol in the cone visual cycle. To
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indicate SEM; n = 3. C, Post-bleach recovery of Nrl ~/~ cone sensitivity was accelerated by exogenous 11-cis-retinol. Cone
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address this question, we first show that the cone-like photore-
ceptors of NrI~/~ mice use the cone visual cycle for visual pig-
ment regeneration. Then, using oxidation assays in isolated
retinas from Nrl ™/ “Rpe65 ~/~ mice, we show that 11-cis-retinal is
produced from 11-cis-retinol, that IRBP improves the efficiency of
11-cis-retinal production, and that IRBP helps preserve the iso-
meric state of 11-cis-retinol in light.

Materials and Methods

Animals. Experimental procedures and animal care protocols adhered
to the Association for Research in Vision and Ophthalmology
(ARVO) Statement for the Use of Animals in Ophthalmic and Vision
Research and were approved by the Institutional Animal Care and Use
Committee of the Medical University of South Carolina and of Washing-
ton University in Saint Louis. Mice lacking either the Nrl transcription
factor (N7l /) (Mears et al., 2001) or the rod transducin subunit o
(Tra~'7) (Calvert et al., 2000) were used to analyze the cone visual cycle
function in isolated retina electroretinograms (ERGs). Oxidation assays
used Nrl~/~Rpe65 '~ mice between postnatal day 17 (P17) and P22
unless otherwise noted. Both male and female littermates were used.
Isolated retina ERGs. In vitro trans-retinal ERGs were recorded as de-
scribed previously (Wang and Kefalov, 2009; Wang et al., 2009). Briefly,
eyes of dark-adapted mice were enucleated under dim red light. Under
infrared light, the eyeballs were hemisected and the retinas were placed in
oxygenated L-15 medium. The retina was exposed to 40 s bright light
(95% bleach) and put in darkness with or without 11-cis-retinol. At
different time points after bleaching a piece of retina was transferred on
nitrocellulose filter paper to a recording chamber and photoreceptor
light responses were recorded with electrodes placed under and above the
retina. The retina was perfused with Ringer solution at 37°C containing a
mixture of synaptic inhibitors: 2 mm r-aspartate, pH 7.4, and 5 umL-(+)-

130 NaCl, 5 KCl, 0.5 MgCl,, 2 CaCl,, 25
hemisodium-HEPES, 5 glucose, pH = 7.40).
Retinas were suspended in 450 ul of Ringer’s
and 50 ul of carrier (IRBP or BSA, as noted)
plus retinoids were added to achieve the final
concentrations noted for each experiment.
Samples were incubated at 37°C in the dark for
the periods described for each experiment. Fol-
lowing incubation, retinas were washed five
times with 1 ml of ice-cold PBS and retinoids
were extracted.

Retinoid extraction and HPLC analysis. Un-
der dim red light, retinoids were extracted with
modifications of a previously described
method (Fan et al., 2003). Retinas (n = 6) were homogenized in PBS
buffer (200 ul) in a micro-tissue grinder. Methanol (300 ul) and hydrox-
ylamine (60 ul, 1 M in PBS, pH 7.4) were added, and samples were
vortexed (30 s). After 5 min, samples were mixed with methylene chlo-
ride (300 ul) and centrifuged (16,000 X g, 1 min). The lower phase was
dried under argon. Samples were dissolved in the HPLC mobile phase
(91.8% hexane/6.6% ethyl acetate/0.8% dioxane/0.8% octanol), and reti-
noids were separated by using a Lichrosphere SI-60, 5 wm column (Alltech
Associates). Retinals were identified by comparison with pure isomeric stan-
dards and quantified by adding syn- and anti-peaks measured at 360 nm.

11-cis-Retinol protection assay. Fixed amounts of 11-cis-retinol (10
uM) in 300 ul of medium were used under all experimental conditions.
For non-IRBP samples, 1 wl of 3 mMm 11-cis-retinol (in ethanol) was
added to 30 ul of medium, mixed, and transferred into 270 ul of medium
(300 pul of 10 um 11-cis-retinol). For IRBP-containing samples, 1 ul of 3
mM 11-cis-retinol (in ethanol) was added to 30 ul of 150 um IRBP, mixed,
and transferred into 270 ul of medium (300 ul of 10 uMm 11-cis-retinol
and 15 uMIRBP). Dark samples were incubated in an ERG ganzfeld in the
absence of light for 30 s. Light-treated samples were exposed to UV light
(10 cd/m?; 360 nm) for 30 s in the ganzfeld. After the treatment period,
retinoids were extracted with methanol and methylene chloride as de-
scribed above and analyzed using the same HPLC protocol. The area
under the 11-cis-retinol curve at 320 nm for each sample was calculated
and compared with the 11-cis-retinol extracted from 1 ul of stock 3 mm
11-cis-retinol. Results were expressed as the percentage of 11-cis-retinol
extracted (sample/stock).

Results

The cone visual cycle is functional in the Nrl ~/~ mouse retina
Mice lacking the Nrl transcription factor (N7l /) contain a ho-
mogenous population of photoreceptors with many cone-like
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characteristics (Mears et al., 2001; Daniele et al., 2005; Nikonov et
al., 2005), and the retinas of these animals represent a useful tool
for biochemical studies of cone-specific reactions, including the
cone visual cycle. Physiological studies from wild-type (WT) and
Tra ™'~ mice show the robust function of a cone visual cycle in
the mouse retina that promotes pigment regeneration and dark
adaptation selectively in cones (Wang and Kefalov, 2009; Wang et
al., 2009). However, previous studies form N7/~ mice have
suggested that their retinas have no functional visual cycle and
that their cones cannot undergo pigment regeneration without
the help of the pigment epithelium (Wenzel et al., 2007; Feathers
etal., 2008). Thus, we first performed electrophysiological exper-
iments to determine whether the N7/~ retina is able to promote
cone pigment regeneration independent of the RPE. We used the
a-wave response from in vitro ERG recordings to measure the
sensitivity of WT and Nrl '~ cones in darkness and then at dif-
ferent time points following exposure to bright light that
bleached most of their pigment. For convenience, WT cone func-
tion was assessed using rod Tra /™. The deletion of Tra renders
rods unable to respond to light but does not affect the morphol-
ogy or functional properties of cones (Nikonov et al., 2006).

In contrast to the rapid recovery of WT cones in the isolated
retina (Wang and Kefalov, 2009), Nrl ™'~ cones did not show
detectable recovery within the first 0.5 h following the bleach.
However, they did recover gradually over the time course of 4 h
(Fig. 1A). The WT cone recovery could be described by a single
exponential function with a time-constant of 4.5 min. The time
constant of Nrl ~'~ cone recovery was 84 min, ~20-fold slower
than that of WT cones. Notably, however, the final level of recov-
ery of sensitivity in Nrl ~/~ cones (41 * 1.2%, n = 3) was com-
parable to that of cones from Tra '~ retinas (48 = 8.1%, n = 6)
(Fig. 1B). Thus, the Nri-deficient retina could promote the pig-
ment regeneration and dark adaptation of cones similar to WT
retina. To understand the slower recovery of Nrl /" cones, we
applied exogenous 11-cis-retinol immediately following the
bleach (Fig. 1B,C) to bypass the need for recycling of chro-
mophore by the retina visual cycle. This greatly accelerated the
recovery of Nrl =/~ cones so that their sensitivity returned to 45 +
2.1% (n = 3) of its dark-adapted level within 30 min following
the bleach. Thus, chromophore recycling through the retina vi-
sual cycle was the rate-limiting step for cone dark-adaptation in
N#l~'~ retina. The functional cone visual cycle in the Nrl ~/~ retina
allowed us to perform cone-specific biochemical studies with these
animals to investigate the role of IRBP in the retina visual cycle.

11-cis-Retinol is oxidized in Nrl '~ Rpe65 ~'~ retinas

Cones are uniquely able to oxidize 11-cis-retinol to 11-cis-retinal
(Jones et al., 1989; Ala-Laurila et al., 2009). To demonstrate
IRBP’s efficacy as a vehicle for 11-cis-retinol delivery to cones,
isolated retinas from Nrl~/~Rpe65 '~ mice were treated with
IRBP (24 um) and 11-cis-retinol (24 uM), and HPLC analysis of
extracted retinoids was used to follow the formation of 11-cis-
retinal. Nrl~/"Rpe65~'~ retinas were essentially devoid of
endogenous 11-cis-retinal, but after treatment with IRBP and
11-cis-retinol, 11-cis-retinal was detectable (Fig. 2A). The retina
contains multiple retinol dehydrogenases (RDHs) capable of ox-
idizing 11-cis-retinol to 11-cis-retinal. To determine whether ox-
idation takes place in the photoreceptors, which degenerate in
aging Nrl ™/ “Rpe65 '~ mice (Kunchithapautham et al., 2009),
retinas from Nrl ~’~Rpe65 '~ mice at increasing ages were incu-
bated with IRBP (15 uMm) and 11-cis-retinol (10 wm) for 60 min,
and 11-cis-retinal production was analyzed. Figure 2 B shows
that 11-cis-retinal production declined sharply when older
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Figure2. 11-cis-Retinolis oxidizedin Nr/ ~/~Rpe65 ~/~ retinas. A, HPLC traces of retinoids

extracted from six Nl '~ Rpe65 '~ (P17) retinas. After incubating (60 min) with IRBP (24 wum)
alone, 11-cis-retinal (11-cRAL) was essentially absent. After treating with IRBP (24 puv) and 11-cis-
retinol (11-cROL) (24 pum), 11-cis-retinal was generated in the retinas. B, 11-cis-Retinal productionin
isolated retinas from Nrl ~'~ Rpe65 '~ mice of increasing age. The decline in 11-cis-retinal produc-
tion corresponds to the loss of photoreceptors seen in N/ ~/~Rpe65 '~ mice, suggesting that
11-cis-retinal production occurred in the photoreceptors. Data points represent mean values of 11-cis-
retinal per retina obtained from three samples with four retinas used per sample.

retinas were used, suggesting that oxidation occurred in the
photoreceptors.

11-cis-Retinol is the preferred substrate for oxidation in
isolated retinas

In rod-dominant retinas under photopic conditions, all-trans-
retinol is the major retinoid present in the subretinal space and
the major retinoid bound to IRBP (Saari et al., 1982). For a cone
visual cycle to function effectively, 11-cis-retinol must be the pre-
ferred substrate for oxidation. To determine whether retinas are able
to preferentially oxidize 11-cis-retinol over all-trans-retinol, IRBP
(24 M) was used to deliver all-trans-retinol or 11-cis-retinol (10
uM) to isolated retinas from Nrl “Rpe65 ~/~ mice, and the gener-
ation of all-trans-retinal or 11-cis-retinal, respectively, was analyzed.
Compared with control samples (IRBP treated), all-trans-retinal lev-
els were unchanged when all-trans-retinol is delivered with IRBP
(IRBP, 1.98 = 0.45; IRBP:all-trans-retinol, 2.28 * 0.27 pmol all-
trans-retinal/retina; n = 4; p = 0.52). However, the use of IRBP to
deliver 11-cis-retinol resulted in a significant increase in 11-cis-
retinal levels (IRBP, 0.39 =+ 0.08; IRBP:11-cis-retinol, 2.36 = 0.39
pmol 11-cis-retinal/retina; n = 4; p = 0.001) (Fig. 3). Thus,
11-cis-retinol was the preferred substrate for oxidation in iso-
lated Nrl '~ Rpe65 '~ retinas.
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11-cis-retinol (n = 4). After 60 min, retinoids were extracted and levels of all-trans-retinal or
11-cis-retinal were measured by HPLC. The use of IRBP to deliver all-trans-retinol did not result
inanincrease in all-trans-retinal ( p = 0.52). However, the use of IRBP to deliver 11-cis-retinol
resulted in a significant increase in 11-cis-retinal ( p = 0.0071).

IRBP improves the efficiency of 11-cis-retinol oxidation
11-cis-Retinol is inherently unstable, and its preservation is lim-
ited in the aqueous environment of the subretinal space at 37°C.
Preserving the isomeric state of 11-cis-retinol is critical for an
effective cone visual cycle. To determine whether IRBP is effective
at preserving the isomeric state of 11-cis-retinol, isolated retinas
were treated with 11-cis-retinol (5 uMm) using either IRBP or BSA
(15 uM) as a carrier. After 60 min at 37°C, retinoids were ex-
tracted and analyzed by HPLC, and 11-cis-retinal production was
analyzed as a percentage of total retinoids. BSA-treated retinas
contained 35 * 3.1% 11-cis-retinal, while IRBP-treated retinas
contained 62 = 2.1% (n = 4; p < 0.001). In addition to decreased
11-cis-retinal levels in the BSA-treated retinas, all-trans-retinol
levels were elevated (BSA, 44 = 0.73%; IRBP, 25 = 1.3%; n = 4;
p = 0.01) (Fig. 4), suggesting that 11-cis-retinol was less stable in
the presence of BSA. Thus, IRBP effectively preserved the iso-
meric state of 11-cis-retinol and increased the efficiency of 11-cis-
retinal production.

IRBP protects 11-cis-retinol from photoisomerization

Of critical importance to a functioning cone visual cycle is the
ability to generate new visual pigment under photopic condi-
tions. IRBP protects the isomeric state of 11-cis-retinal (Crouch
et al., 1992) and may also help protect 11-cis-retinol under pho-
topic conditions. To test the ability of IRBP to protect 11-cis-
retinol, we exposed fixed concentrations of 11-cis-retinol (10 um
in medium) to light in the presence and absence of IRBP (Fig. 5).
Under control conditions (no carrier, dark), 57 * 8.3% of the
11-cis-retinol added was recovered. When 11-cis-retinol under
these conditions (no carrier) was incubated in light, only 7 =
1.2% of the 11-cis-retinol was recovered. Thus, the presence of
light resulted in a significant loss of 11-cis-retinol in the absence
of IRBP (1 = 4; p = 0.008). The effect of light on 11-cis-retinol
was dramatically different in the presence of IRBP (15 um). Un-
der dark conditions, 54 * 4.1% of the 11-cis-retinol was recov-
ered. Similarly, 56 & 2.4% of 11-cis-retinol was recovered when
11-cis-retinol was exposed to light in the presence of IRBP (n = 4;
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p = 0.59). Thus, IRBP has the ability to preserve the isomeric state
of 11-cis-retinol in light, in addition to its ability to deliver 11-cis-
retinol to cones.

Discussion

Importance of the oxidation reaction to the cone visual cycle
Cone dysfunction in Irbp ~/~ mice is evident through reduced
photopic ERGs (Ripps et al., 2000; Parker et al., 2009), and the
improvement of cone responses to WT levels after treatment with
exogenous 9-cis-retinal suggests that the cones are chromophore-
deficient under photopic conditions (Parker et al., 2009). A cone
visual cycle is thought to provide cones with a unique source of
chromophore to facilitate the high demand for 11-cis-retinal
under photopic conditions. The aspect of the cone visual cycle
responsible for its cone-specific nature is the supply of 11-cis-
retinol to cone inner segments, as only cones have the ability to
oxidize 11-cis-retinol to 11-cis-retinal. The source of 11-cis-
retinol is proposed to be Miiller cells, and multiple studies have
shown that Miiller cells have the ability to generate 11-cis-retinol
from all-trans-retinol (Mata et al., 2002, 2005). IRBP is known to
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bind 11-cis-retinol endogenously, and under photopic condi-
tions IRBP is localized to the outer limiting membrane where the
microvilli of Miiller cells are in close proximity to cone inner
segments (Uehara et al., 1990). As such, IRBP is located in the
appropriate area to facilitate the transport of 11-cis-retinol from
Miiller cells to cones.

Oxidation of 11-cis-retinol in NrI ™'~ photoreceptors
Studying the cone visual cycle in Nr/ '~ mice is potentially ad-
vantageous, as the large number of cone-like photoreceptors in-
creases the sensitivity of assays. However, a fundamental question
that must be addressed before using the model is whether the
cone-like photoreceptors in Nrl '~ mice function as cones in the
retina visual cycle. Here, we have shown that Nrl /™ retinas, like
WT retinas, can recover both response amplitude and sensitivity
in cones following a bleach (Fig. 1). Furthermore, we have shown
that isolated retinas from NI/~ Rpe65 '~ mice can oxidize 11-
cis-retinol into 11-cis-retinal (Fig. 2A). Reduced 11-cis-retinal
production as photoreceptors degenerate with age suggests that
this reaction occurs within the photoreceptors and not within
other cells containing RDH enzymes (Farjo et al., 2009; Parker
and Crouch, 2010b) (Fig. 2 B). While cones in isolated Nrl /'~
retinas recover their sensitivity and response amplitude, the time
course of this recovery is slower than that seen in WT retinas. This
delay may be due to the fact that Nrl ~/~ photoreceptors are more
numerous than cones in WT mice, and more time is required to
regenerate the full complement of pigment needed to restore
their dark-adapted state. With exogenous 11-cis-retinol, how-
ever, the time course for recovery is rapid and comparable in
kinetics to that in WT retinas. Thus, the generation of 11-cis-
retinol is likely the rate-limiting step of the cone visual cycle in
Nrl ™'~ retinas.

Characterization of the oxidation reaction in cones

The cone visual cycle depends on a relatively small amount of
11-cis-retinol reaching the cone inner segments in the presence of
an overwhelming amount of all-trans-retinol (Saari et al., 1982).
One characteristic of intact retinas that facilitates the cone visual
cycle is the preference for 11-cis-retinol in oxidation reactions.
IRBP binds both all-trans-retinol and 11-cis-retinol under pho-
topic conditions (Adler and Spencer, 1991). If all-trans-retinol
were readily delivered to cones, its oxidation to all-trans-retinal
could interfere with oxidation of 11-cis-retinol. While IRBP read-
ily binds all-trans-retinol, promotes its release from both rods
and cones, and effectively delivers all-trans-retinol to the RPE, we
have shown here that it is ineffective at delivering all-trans-
retinol to photoreceptors for oxidation (Fig. 3). Electron mi-
croscopy studies of IRBP bound to either all-trans-retinol or
11-cis-retinol suggest that IRBP undergoes a structural change
when bound by either ligand (Adler et al., 1987). Thus, the
binding of different retinoids to IRBP results in conformation
changes to the protein, and it is possible that these changes
promote tissue-specific delivery of retinoids. Also, it is possi-
ble that an unidentified 11-cis-RDH is responsible for the ox-
idation of 11-cis-retinol in cones and all-trans-retinol is not a
usable substrate for that RDH. Regardless of the mechanism,
the selective delivery or oxidation of 11-cis-retinol would fa-
cilitate the cone visual cycle.

Importance of IRBP to the oxidation reaction of the cone
visual cycle

11-cis-Retinol is highly unstable and undergoes rapid isomeriza-
tion and degradation under physiological conditions. This is in-
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creased further in the presence of light. IRBP is known to preserve
the isomeric state of 11-cis-retinal (Crouch et al., 1992), and here
we have shown that it also helps preserve 11-cis-retinol under
physiological conditions (Fig. 4). The result of this protection is
the more efficient production of 11-cis-retinal and reduced levels
all-trans-retinol. Furthermore, IRBP’s ability to protect 11-cis-
retinol in the presence of light would allow 11-cis-retinal to be
generated in light (Fig. 5). Because the cone visual cycle should be
able to provide cones with 11-cis-retinal under photopic condi-
tions, these findings, coupled with the reduced chromophore
levels known to be present in Irbp '~ mice under photopic con-
ditions (Parker et al., 2009; Parker and Crouch, 2010a), suggest
that IRBP plays an important role in normal cone function.

Summary

The cone-like photoreceptors of Nrl /~ mice are similar to WT
cones in their ability to oxidize 11-cis-retinol to 11-cis-retinal and
use the retina visual cycle. IRBP is an effective vehicle for deliv-
ering 11-cis-retinol to cones and increases the efficiency of 11-cis-
retinal production under physiological conditions. The ability of
IRBP to protect 11-cis-retinol from isomerization in light may
allow cones to produce 11-cis-retinal under photopic conditions
and enable continuous cone function in constant light.
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