Area-level poverty and preterm birth risk: A population-based multilevel analysis

Emily A. DeFranco
Washington University School of Medicine in St. Louis

Min Lian
Washington University School of Medicine in St. Louis

Louis J. Muglia
Washington University School of Medicine in St. Louis

Mario Schootman
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/254

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Area-level poverty and preterm birth risk: A population-based multilevel analysis
Emily A DeFranco*1,2, Min Lian3, Louis J Muglia1,2,4 and Mario Schootman2,3

Address: 1Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA, 2Center for Preterm Birth Research, Washington University School of Medicine, St. Louis, Missouri, USA, 3Department of Internal Medicine, Division of Health Behavior Research, Washington University School of Medicine, St. Louis, Missouri, USA and 4Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA

Email: Emily A DeFranco* - defranee@ucmail.uc.edu; Min Lian - mlian@im.wustl.edu; Louis J Muglia - muglia_L@kids.wustl.edu; Mario Schootman - Mschootm@dom.wustl.edu
* Corresponding author

Abstract

Background: Preterm birth is a complex disease with etiologic influences from a variety of social, environmental, hormonal, genetic, and other factors. The purpose of this study was to utilize a large population-based birth registry to estimate the independent effect of county-level poverty on preterm birth risk. To accomplish this, we used a multilevel logistic regression approach to account for multiple co-existent individual-level variables and county-level poverty rate.

Methods: Population-based study utilizing Missouri’s birth certificate database (1989–1997). We conducted a multilevel logistic regression analysis to estimate the effect of county-level poverty on PTB risk. Of 634,994 births nested within 115 counties in Missouri, two levels were considered. Individual-level variables included demographics factors, prenatal care, health-related behavioral risk factors, and medical risk factors. The area-level variable included the percentage of the population within each county living below the poverty line (US census data, 1990). Counties were divided into quartiles of poverty; the first quartile (lowest rate of poverty) was the reference group.

Results: PTB < 35 weeks occurred in 24,490 pregnancies (3.9%). The rate of PTB < 35 weeks was 2.8% in counties within the lowest quartile of poverty and increased through the 4th quartile (4.9%), p < 0.0001. High county-level poverty was significantly associated with PTB risk. PTB risk (< 35 weeks) was increased for women who resided in counties within the highest quartile of poverty, adjusted odds ratio (adjOR) 1.18 (95% CI 1.03, 1.35), with a similar effect at earlier gestational ages (< 32 weeks), adjOR 1.27 (95% CI 1.06, 1.52).

Conclusion: Women residing in socioeconomically deprived areas are at increased risk of preterm birth, above other underlying risk factors. Although the risk increase is modest, it affects a large number of pregnancies.

Background
Preterm birth is a major public health burden whose prevalence continues to rise. The rate of preterm birth in the U.S. is 12.7%, the highest rate reported to date[1]. The financial burden of caring for infant survivors of preterm birth is substantial, with a lower-end estimate of approxi-
mately 26.2 billion dollars annually in the U.S.[2]. Pre-
term birth is a complex disease with etiologic influences
from a variety of social, environmental, hormonal,
genetic, and other factors[3]. Our limited understanding
of the complex interactions among these factors contrib-
utes the lack of effective intervention strategies available
to reduce the rate of preterm birth.

It has been hypothesized that the association between pre-
term parturition and individual-level socioeconomic dep-
ervation is primarily accounted for by the co-existence of
other significant risk factors such as medical comorbid-
ties, lack of prenatal care, and adverse behaviors (smoking
and alcohol use) which occur more commonly in women
of lower socioeconomic status[4]. However, many prior
studies have been limited by design constraints and the
inability to thoroughly account for potential confounding
factors.

Implementation of appropriate statistical methodologies,
rigorous adherence to study design, and consideration of
as many clinically important covariates as possible opti-
mizes the capability to accurately quantify the independ-
ent association between area-level poverty and preterm
birth risk. When taking into consideration that people
who reside within the same area share common area-level
neighborhood conditions, individual-based statistical
models such as traditional logistic regression analyses are
not optimal to determine the true strength of the associa-
tion. Using multilevel logistic regression analysis has the
advantage of allowing one to estimate not only the fixed
effects of individual-level and area-level factors, but also
the random effect of geographic variation of preterm birth
between areas.

The purpose of this study was to utilize a large popula-
tion-based birth registry to estimate the independent
effect of county-level poverty on preterm birth risk. To
accomplish this, we used a multilevel logistic regression
approach to account for multiple co-existent individual-
level variables and county-level poverty rate.

Methods

A data set which included Missouri birth records from
1978–1998 was provided in a de-identified fashion for
this analysis by the Missouri Department of Health and
Senior Services. The study was considered exempt from
review by the Missouri Department of Health and Senior
Services IRB and the Human Subjects Committee of
Washington University in St. Louis. This data set has been
a rich source for the analysis of factors associated with
birth timing [5-10].

A total of 1,577,082 births occurred in Missouri between
1978 and 1998. To optimize our capability to examine the
influence of important individual factors, we limited our
study to those births which occurred between 1989 and
1998 due to an unacceptable amount of missing demo-
graphic data for births that occurred before 1989 due to
revisions in the birth certificate format in 1989 and
improvements in edit and query systems after that date.
Because deliveries which occur prior to 20 completed
weeks of pregnancy are considered miscarriages rather
than births, we limited our analysis to births recorded as
having occurred at 20 weeks or greater. We excluded births
resulting from a multifetal gestation, intrauterine fetal
demise, or involving a major congenital malformation
due to their know propensity to deliver preterm, poten-
tially for mechanisms unrelated to the exposure we
wished to evaluate. After these exclusions, the study pop-
ulation consisted of 675,044 births. We further limited
our analysis to births occurring to mothers whose reported
residence at the time of delivery was in the state of Mis-
souri. There were 40,050 births in Missouri to mothers
who resided in other states during the study period, yeild-
ing a final population of 634,994 births available for anal-
ysis.

Outcome measure

Preterm birth, as defined by the World Health Organiza-
tion,[11] is a delivery which occurs at less than 37 com-
pleted weeks of gestation. We performed our primary
analysis with preterm birth defined as less than 35 com-
pleted weeks in order to enrich for a population of deliv-
eries which were truly preterm by avoiding births occuring
at borderline gestational ages between 35 and 37 weeks,
in an effort to minimize misclassification bias[12]. We
deefined early preterm birth as birth occurring prior to 32
completed weeks of gestation, because the risk of neonatal
morbidity is higher for births of shorter gestations.

Individual-level measures

We included the following individual-level measures:
maternal age, maternal race (self-reported), maternal
and paternal highest educational attainment, residence within
city limits, birth sequence, marital status, presence of
medical risk factors, marital status, indicators of low
income (recipient of foodstamps, Medicaid, or WIC state-
funded assistance), adequacy of prenatal care received,
health-related behaviors (maternal tobacco or alcohol
use), and presence of medical risk factors. Individual-level
risk factors were selected from the data set based on clinici-
cal relevance and association with preterm birth[9].

Maternal and paternal education levels are recorded in the
database in years of education completed, which we
dichotomized as educational levels of < 12 years versus 12
years or more in order to identify those with less than a
high school education. The variable of maternal educa-
tion had minimal missing data, and paternal education
was less complete with 22.6% missing data. A composite dichotomous variable of low socioeconomic status was created from the individual dichotomous variables of recipient of any of three state funded support programs (Medicaid, foodstamps, and Special Supplemental Nutrition Program for Women, Infants and Children [WIC]). A dichotomous variable of inadequate prenatal care was created from a continuous variable which indicated the month of pregnancy when prenatal care was initiated. Inadequate prenatal care was defined as having initiated prenatal care after 20 weeks of pregnancy, which is the latter half of pregnancy. A composite variable of heterogeneous medical risk factors indicated pregnancies complicated by anemia (hematocrit < 30% or hemoglobin < 10 gm/dL), maternal cardiac disease, acute or chronic lung disease, diabetes (insulin dependent), diabetes (other), genital herpes, hydramnios/oligohydramnios, hemoglobinopathy, chronic hypertension, pre-eclampsia, eclampsia, incompetent cervix, previous infant weighing > 4000 gm, previous preterm or small-for-gestational-age infant, maternal renal disease, Rh sensitization, or uterine bleeding.

Area-level measure

Poverty rate was obtained from US census data (1990) and was defined as the percentage of the population falling below the US federal poverty line at the county level of the mother's reported residence as a measure of area socioeconomic position. The poverty rate is a measure that is robust across various diseases and levels of geography; it has a link to possible policy implications, and is comparable over time[13,14]. County-level poverty rates were divided into quartiles representing low poverty (first quartile, 0 – 6.86%), second quartile (6.89% – 11.91%), third quartile (11.92% – 14.49%) and high poverty (fourth quartile, ≥ 14.50%) to allow for nonlinear effects. The first quartile served as the reference group for comparison.

Statistical analysis

We used multilevel logistic regression analysis to estimate the effect of county-level poverty on preterm birth risk. This analytic method can estimate not only fixed effects of individual-level and area-level covariates, but also the random effect of geographic variation of preterm birth across counties. When significant geographic variation exists, this indicates that preterm birth was not randomly distributed. The 634,994 births were nested within 115 counties in Missouri (the City of St. Louis acts politically as a county).

Data were analyzed with SAS GLIMMIX macro (version 9.1, SAS Institute Inc., Cary, NC). Findings with a p-value of < 0.05 were considered statistically significant. We calculated median odds ratios (MOR) and interval odds ratios (IOR)[15,16] to estimate the effect of cluster-level (level 2) factors on preterm birth via several successive regression models (Models I through V). The methods for calculating MOR and IOR have been previously described and are directly comparable with the fixed-effects odds ratios[15,16]. MORs were calculated using the following equation:

\[\text{MOR} = \exp\left(Z_{0.75} \times \sqrt{V_C} \right) \]

where \(Z_{0.75}\) is the 75th percentile of standard normal distribution, \(V_C\) is the variance of PTB between counties, and \(\exp(\cdot)\) is the exponential function[15]. If the MOR is equal to 1, there is no variation between counties (no level 2 variation), but it is large if considerable intra-county variation exists.

80%-IORs were computed using the following equation:

\[\text{IOR}_{\text{upper}} = \exp\left(\beta + Z_{0.10} \times \sqrt{V_C} \right), \quad \text{and} \]
\[\text{IOR}_{\text{lower}} = \exp\left(\beta + Z_{0.90} \times \sqrt{V_C} \right) \]

where \(Z_{0.10}\) and \(Z_{0.90}\) are the values of the standard normal distribution at the 10th and 90th percentiles, respectively. \(\beta\) is the regression coefficient of each category of county-level poverty rate. Larger geographic variation results in a broader range of the IOR. If the IOR does not cross the value of one, it suggests that county-level poverty substantially contributed to the geographic heterogeneity of PTB.

Results

Individual-level factors

The study population was comprised of 634,994 live births to mothers who resided in 115 counties in Missouri from 1989 – 1998 for an average of 5,522 births per county (range: 156 – 119,244). The racial distribution of the study cohort was 82.4% White, 16.1% Black, 0.3% Indian, 0.5% Asian/Pacific Islander, 0.6% other/unknown.

Table 1 demonstrates the mothers' baseline demographic, medical and obstetric characteristics according the quartile of poverty rate of the county in which they resided at the time of the birth. Women who resided in counties with higher rates of poverty were significantly younger, and more likely to be black, less likely to graduate from high school, to be unmarried, and be of low income. Likewise, parturients residing in areas with higher county-level poverty were more likely to have inadequate prenatal care, smoke cigarettes, drink alcohol during pregnancy, and have at least one medical risk factor.
Preterm birth rate by county poverty rate

The overall rate of preterm birth < 35 weeks for the entire study population was 3.9%. The rate of preterm birth < 35 weeks was 2.8% for mothers who resided in counties within the lowest quartile of poverty (Table 2). The rate of preterm birth increased with increasing county poverty rate (2nd quartile: 3.4%, 3rd quartile: 3.9%, 4th quartile: 4.9%), p < 0.0001. Similarly, early preterm births (< 32 weeks) occurred more commonly in mothers who resided in counties with higher poverty rates. The rate of early preterm birth nearly doubled from 1.0% in the 1st quartile to 1.9% in the quartile with the highest poverty rate (p < 0.0001).

Compared to births to mothers residing in counties with the lowest poverty rate (1st quartile), the risk of preterm birth < 35 weeks increased with increasing rates of county-level poverty in univariate analysis (Table 3, Model I). This risk increase resulted in women in counties with the highest poverty rate being 1.30 times more likely to deliver preterm. The risk of early preterm birth was also significantly increased in mothers living in areas with the highest county-level poverty rate (OR 1.40; 95% CI 1.14, 1.72). This effect was similar when the study population was stratified by race. Both black and white mothers residing in counties with the highest poverty rate had an increased risk of preterm birth (Table 4).

Multivariable modeling

When demographic factors are added to county-level poverty (Table 3, Model II), the odds ratio for preterm birth < 35 weeks of women residing in counties with the highest poverty rate was reduced from 1.30 to 1.15. Subsequent addition of other individual-level factors to the model, as demonstrated in models III, IV, and V, had minimal influence on the risk of preterm birth < 35 weeks (ORs ranging from 1.15–1.18) compared to the risk when only demographic factors are considered (4th quartile, OR 1.15, 95% CI 1.09, 1.56).

When considering preterm births that occurred at earlier gestational ages (< 32 weeks of gestation), the risk increase associated with high county-level poverty was similarly influenced by individual-level factors. The unadjusted risk of early preterm birth with high county-level poverty (4th quartile, OR: 1.40) was reduced to 1.0 when individual-level demographic factors were added to the model. The addition of other individual-level covariates such as pre-
natal care, behavioral risk factors, and medical risk factors only minimally influence the adjusted odds ratio (range 1.23 to 1.27).

Stratified analysis by race (black, white) demonstrated similar effect sizes when individual-level factors were added to the models (Table 4). Many more of the confidence intervals of risk in the analysis stratified by black race cross one than in the analysis by white race, but the effect sizes are very similar regardless of race.

There was a modest amount of geographic heterogeneity of PTB across counties in Missouri as measured by MOR and IOR. In all multilevel models, MOR values ranged from 1.07 to 1.22, and IOR-80s ranged from 0.79 to 2.05. As some IOR ranges did not contain one, this suggests that county-level poverty was an important area-level characteristic for geographic heterogeneity of PTB. But, other unmeasured area-level characteristics may also partly contribute to the geographic outcome variation.

Discussion

In this study we found that women who gave birth in counties with the highest poverty rates were at increased risk of preterm birth at < 35 and < 32 weeks of gestation. Although these risks are modest, with odds ratio estimates of 1.18 and 1.27 respectively, the confidence intervals consistently excluded the value of one even after accounting for numerous individual demographic, obstetric, behavioral, and medical risk factors. These effects were similar regardless of maternal race. Modest increases in MOR and IOR values suggest that county-level poverty was an important area-level characteristic for geographic heterogeneity of PTB. But, other unmeasured area-level characteristics may also partly contribute to the geographic heterogeneity of preterm birth.

Other investigators have reported an association of individual and area-level socioeconomic deprivation with adverse perinatal outcomes, such as low birth weight and preterm birth[5,17-26]. Although numerous, these studies vary significantly with respect to sample size, study design, and methodologic strategies. Although women who are economically disadvantaged are disproportionately likely have co-existent risk factors for preterm birth, attempts to adjust for these factors in prior studies have not completely eliminated the modest association between poverty and prematurity. Our goal was to use
Table 4: Multilevel logistic regression analysis results of preterm birth risk by quartile of county-level poverty, stratified by maternal race

<table>
<thead>
<tr>
<th></th>
<th>White PTB (< 35 wk)</th>
<th></th>
<th></th>
<th>Black PTB (< 35 wk)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>IOR-80 *</td>
<td>MOR †</td>
<td>OR (95% CI)</td>
<td>IOR-80 *</td>
<td>MOR †</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model I: Poverty Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>1.10 (0.97, 1.26)</td>
<td>0.88, 1.38</td>
<td>1.08 (0.96, 1.21)</td>
<td>0.95, 1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>1.25 (1.10, 1.43)</td>
<td>1.00, 1.57</td>
<td>1.30 (1.16, 1.46)</td>
<td>1.14, 1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quartile</td>
<td>1.24 (1.10, 1.41)</td>
<td>0.99, 1.55</td>
<td>1.33 (1.19, 1.49)</td>
<td>1.17, 1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model II: Model I + Demographic factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>1.09 (0.97, 1.21)</td>
<td>0.91, 1.30</td>
<td>1.06 (0.96, 1.17)</td>
<td>0.99, 1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>1.16 (1.04, 1.30)</td>
<td>0.97, 1.39</td>
<td>1.19 (1.08, 1.31)</td>
<td>1.11, 1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quartile</td>
<td>1.13 (1.02, 1.26)</td>
<td>0.95, 1.36</td>
<td>1.20 (1.09, 1.32)</td>
<td>1.12, 1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model III: Model II + Prenatal Care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>1.09 (0.97, 1.23)</td>
<td>0.90, 1.32</td>
<td>1.07 (0.95, 1.21)</td>
<td>0.94, 1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>1.17 (1.04, 1.31)</td>
<td>0.97, 1.41</td>
<td>1.18 (1.05, 1.33)</td>
<td>1.03, 1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quartile</td>
<td>1.13 (1.02, 1.26)</td>
<td>0.94, 1.37</td>
<td>1.18 (1.05, 1.32)</td>
<td>1.03, 1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model IV: Model III + Behaviors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>1.10 (0.98, 1.24)</td>
<td>0.91, 1.33</td>
<td>1.08 (0.96, 1.22)</td>
<td>0.95, 1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>1.18 (1.05, 1.33)</td>
<td>0.98, 1.43</td>
<td>1.19 (1.06, 1.34)</td>
<td>1.04, 1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quartile</td>
<td>1.15 (1.03, 1.28)</td>
<td>0.95, 1.39</td>
<td>1.20 (1.07, 1.34)</td>
<td>1.05, 1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model V: Model III + Medical Risk Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>1.12 (0.97, 1.30)</td>
<td>0.87, 1.45</td>
<td>1.12 (0.93, 1.34)</td>
<td>0.84, 1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>1.22 (1.05, 1.41)</td>
<td>0.94, 1.57</td>
<td>1.24 (1.03, 1.49)</td>
<td>0.93, 1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quartile</td>
<td>1.17 (1.02, 1.34)</td>
<td>0.91, 1.51</td>
<td>1.23 (1.04, 1.46)</td>
<td>0.92, 1.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to table 1 for a complete list of co-variates included in each model

*IOR-80 = 80% interval odds ratio
†MOR = median odds ratio
optimal statistical techniques on a large-population based sample to describe the effect of regional poverty on pre-maturity. Due to the variety of information available, we were able to evaluate the effect of several partitions of clinically relevant social and medical factors on preterm birth while accounting for the random variation of prematurity across counties. Despite accounting for many sociodemographic, obstetric, medical, and other factors our results suggest that county environments may in fact independently influence birth outcomes.

The advantage of multilevel analytic approaches to health outcome research is that they enable us to evaluate and quantify the heterogeneity of the outcome across geographic areas. When minimal geographic heterogeneity exists, this implies high area-level correlation. When individuals within the population are similar and vary little with respect to health, this provides optimal conditions for regional prevention strategies[27]. Likewise, health outcomes such as preterm birth, which can be significantly influenced by behavior-related factors (smoking, alcohol use, receipt of prenatal care) may be less influenced by area-level factors than diseases with a long natural history such as atherosclerotic disorders. Also, considering that area-level effects are minimized as individuals move geographically,[15] it is unlikely that population mobility significantly accounted for our findings given the finite time of the gestational period. In the case of preterm birth, a serious complex disease process whose incidence continues to rise, refining our ability to identify at-risk populations in which to target preventative health care strategies has particular appeal.

The datasource used for this study has many advantages such as its large size and population-based nature. It includes a breadth of demographic information regarding the parents, detailed medical and obstetrical characteristics of the mother's antepartum and intrapartum course, as well as specific information regarding the status of the neonate at birth. Despite the extensive data available for analysis regarding each birth, there are some limitations to consider as well. One of the most commonly cited limitations of birth outcome research from vital statistics data is validity of the recorded gestational age[28]. In an effort to minimize the effect of gestational age estimation inaccuracies and potential misclassification bias,[12] we chose our primary outcome as birth prior to 35 weeks of gestation rather than the traditional definition of preterm birth, less than 37 weeks. The data set also had no information which could be used to reliably delineate spontaneous from medically indicated preterm births. Other limitations inherent to the datasource are more difficult to adjust such as the potential for undercoding or underreporting of obstetric and medical risk factors and errors in birth certificate data extraction and entry. A large amount of underreporting of important risk factors, if non-random, could have resulted in an increased effect size estimation of poverty on preterm birth risk due to the inability to adjust for the unreported risks in multivariable analyses. It is unlikely, though, that significant under-reporting of the most important obstetric and medical risk factors occurred within the database period we evaluated as the relative prevalence of those included in our analyses are consistent with known rates elsewhere in the US[9]. On the other hand, many social and demographic variables are likely to be accurate, such as race, level of education, receipt of state-funded assistance programs, and county of residence.

Another limitation of the study is the lack of ability to account for other county-level factors which could have possibly influenced the association between poverty and preterm birth risk, such as regional crime rates, adverse environmental exposures, etc. We incorporated as many clinically important concomitant factors into our analysis as were available through the data source, but we acknowledge that other unmeasured and unknown potential co-existent risk factors could potentially exist.

In conclusion, county-level poverty was associated with an increased risk of preterm birth. Although the association is modest, even a modest increase in preterm birth risk as demonstrated in this study has the potential to have a robust effect given the large number of women residing in areas with relatively high poverty levels.
Conclusion
Individual-level and area-level poverty have been associated in the past with an increased risk of preterm birth, but prior studies have been limited by design constraints and the inability to thoroughly account for potential confounding risks. We utilized a large population-based birth registry from the state of Missouri to perform a multi-level analysis of the association between poverty and preterm birth while accounting for many potential co-existent risks via optimal methodologic strategies. The findings from our study provide obstetrical care providers and health-care policy makers with important information regarding the prevalence of preterm birth in counties with high poverty and an accurate estimate of the effect of high area-level poverty on preterm birth risk.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ED and LM developed the study hypothesis and along with MS contributed to the study design. ML and MS performed the data analysis and assisted the other coauthors with its interpretation. ED wrote the first draft of the manuscript. All authors contributed to revision and preparation of the final manuscript.

Acknowledgements
This work was supported by a grant from the March of Dimes

All of the analyses, interpretations, and conclusions derived from the data source and included in this article are those of the authors and not the Missouri Department of Health and Senior Services, Section of Public Health Practice and Administrative Support.

References
28. Alexander GR: The accurate measurement of gestational age: a critical step toward improving fetal death reporting and

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2458/8/316/prepub