The complete mitochondrial genome of the New Zealand parasitic roundworm Teladorsagia circumcincta (Trichostrongyloidea: Haemonchidae) field strain NZ_Teci_NP

Nikola Palevich
Grasslands Research Centre
Paul H Maclean
Grasslands Research Centre
Makedonka Mitreva
Washington University School of Medicine in St. Louis
Richard Scott
Grasslands Research Centre
David Leathwick
Grasslands Research Centre

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Palevich, Nikola; Maclean, Paul H; Mitreva, Makedonka; Scott, Richard; and Leathwick, David, "The complete mitochondrial genome of the New Zealand parasitic roundworm Teladorsagia circumcincta (Trichostrongyloidea: Haemonchidae) field strain NZ_Teci_NP" Mitochondrial DNA Part B. 4, 2. 2869 - 2871. (2019).
https://digitalcommons.wustl.edu/open_access_pubs/11613

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
The complete mitochondrial genome of the New Zealand parasitic roundworm *Teladorsagia circumcincta* (Trichostrongyloidea: Haemonchidae) field strain NZ_Teci_NP

Nikola Palevich, Paul H. Maclean, Makedonka Mitreva, Richard Scott & David Leathwick

To cite this article: Nikola Palevich, Paul H. Maclean, Makedonka Mitreva, Richard Scott & David Leathwick (2019) The complete mitochondrial genome of the New Zealand parasitic roundworm *Teladorsagia circumcincta* (Trichostrongyloidea: Haemonchidae) field strain NZ_Teci_NP, Mitochondrial DNA Part B, 4:2, 2869-2871, DOI: 10.1080/23802359.2019.1660241

To link to this article: https://doi.org/10.1080/23802359.2019.1660241
The complete mitochondrial genome of the New Zealand parasitic roundworm Teladorsagia circumcincta (Trichostrongyloidea: Haemonchidae) field strain NZ_Teci_NP

Nikola Palevicha, Paul H. Macleana, Makedonka Mitreva, Richard Scott and David Leathwick

aAgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand; bMcDonnell Genome Institute and Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America

ABSTRACT
The complete mitochondrial genome of the New Zealand parasitic nematode Teladorsagia circumcincta field strain NZ_Teci_NP was sequenced and annotated. The 14,083 bp-long mitogenome contains 12 protein-coding genes (atp8 gene missing), two ribosomal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). Phylogenetic analysis showed that T. circumcincta NZ_Teci_NP forms a monophyletic cluster with the remaining Haemonchidae species and further reinforces the high levels of diversity and gene flow observed among Trichostrongylidae.

ARTICLE HISTORY
Received 26 May 2019
Accepted 31 July 2019

KEYWORDS
Teladorsagia circumcincta; roundworm; gastrointestinal; trichostrongyloid; nematode; phylogeny

The large and highly variable mitochondrial (mt) genomes of helminths (worms), including parasitic nematodes (roundworms), are ideal sources of molecular markers suitable for studying population genetic structures and evolution. Teladorsagia circumcincta NZ_Teci_NP was selected for genome sequencing as a representative of an anthelmintic-susceptible NZ field strain of T. circumcincta. The specimen was collected from the Palmerston North area (40°21’3’S, 175°36.7’E) and is stored (accession number: NPX120886) and available upon request from AgResearch Ltd., Grasslands Research Centre. High molecular weight genomic DNA was isolated from multiple T. circumcincta adult males using a modified phenol:chloroform protocol (Palevich et al. 2017; Palevich, Kelly, et al. 2019). The Illumina MiSeq (Macrogen, Korea) platform was used to amplify the entire mitochondrial genome sequence (GenBank accession number: MN013406).

The mitogenome of NZ_Teci_NP (14,083 bp) is standard in size and comparable to the T. circumcincta (GQ888720) strain (Jex et al. 2010; Choi et al. 2017; Palevich, Maclean, et al. 2019). For example, all genes are transcribed in the same direction, there is a lack of the Atp8 gene, it contains 12 protein-coding genes (PCGs), two rRNAs, and 22 tRNAs. All 12 PCGs use standard ATN/TAN start/stop codons, respectively. The studied genome has a high T content (46.1%) and a low C content (7.2%), resulting in a very strong A + T bias (77.3%). Gene order, sizes, and all common organization features are relatively conserved among the 43 nematode mitogenomes (usually 13.6–14.3 kb) (Jex et al. 2009; Palevich et al. 2018; Palevich, Maclean, Baten et al. 2019; Palevich, Maclean, et al. 2019).

The phylogenetic position of T. circumcincta was estimated using maximum-likelihood, implemented in RAxML version 8.2.11 (1000 bootstrap replications) (Stamatakis 2014), and the Bayesian inference (BI), implemented in MrBayes version 3.2.6 (default settings, four MCMC chains, 6.34–106 generations) (Huelsenbeck and Ronquist 2001) approaches. Mitogenome sequences of all 36 available nematode species were retrieved from GenBank. Analyses were performed both on the entire nucleotide sequences of the complete mitogenomes and using only the concatenated mitochondrial PCGs and rRNA genes, producing identical dendrogram topologies (Figure 1). Teladorsagia circumcincta formed a monophyletic cluster with the remaining Trichostrongylidae species, which then formed a sister clade with the Strongylidae family. Overall, the dendrogram topology is highly congruent with recent results (Palevich, Maclean, et al. 2019). In the pursuit of improving the phylogenetic resolution within the phylum Nematoda, future efforts should focus on the availability of
Figure 1. Phylogenetic analysis of the complete mt genomes for all 43 nematode species or isolates available in GenBank. The evolutionary relationships between the *T. circumcincta* field strain NZ_Teci_NP (highlighted by a black star) and the two major suborders of the Strongylida are represented by coloured boxes (Trichostrongylina (blue) and Strongylina (green)). Species representing the Rhabditida, Ascaridida, Aphelenchida, Tylenchida, Spirurida, and Trichocephalida have been included as outgroups. Phylogenetic analysis was conducted using maximum-likelihood and Bayesian inference (MrBayes). The numbers above the midpoint of each tree branch represent the statistical support for each node (based on posterior probability score). The phylogram provided is presented to scale (scale bar = 0.07 estimated number of substitutions per site) and GenBank accession numbers are provided (in parentheses) for all reference sequences. An identical topology was found with maximum-likelihood; all nodes were supported by >99% bootstrap re-sampling (*n* = 1000).
more complete mitogenomes across all nematode species, and especially for different strains/isolates.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
Research was supported and funded by the Agricultural and Marketing Research and Development Trust (AGMARDT) Postdoctoral Fellowships Programme [grant number P17001], New Zealand.

ORCID
Nikola Palevich http://orcid.org/0000-0002-2101-2452

References


