Brain charts for the human lifespan

R A I Bethlehem
University of Cambridge

J Seidlitz
University of Pennsylvania

S R White
University of Cambridge

C Ortinau
Washington University School of Medicine in St. Louis

C D Smyser
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Bethlehem, R A I; Seidlitz, J; White, S R; Ortinau, C; Smyser, C D; and et al, "Brain charts for the human lifespan." *Nature*. 604, 525 - 533. (2022).
https://digitalcommons.wustl.edu/open_access_pubs/11666

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
R A I Bethlehem, J Seidlitz, S R White, C Ortinau, C D Smyser, and et al
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.

The simple framework of growth charts to quantify age-related change was first published in the late eighteenth century and remains a cornerstone of paediatric healthcare—an enduring example of the utility of standardized norms to benchmark individual trajectories of development. However, growth charts are currently available only for a small set of anthropometric variables, such as height, weight and head circumference, and only for the first decade of life. There are no analogous charts available for quantification of age-related changes in the human brain, although it is known to grow through a prolonged and complex maturational program from pregnancy to the third decade, followed by progressive senescence from approximately the sixth decade. The lack of tools for standardized assessment of brain development and aging is particularly relevant to research studies of psychiatric disorders, which are increasingly recognized as a consequence of atypical brain development, and neurodegenerative diseases that cause pathological brain changes in the context of normative senescence. Premature birth and neurogenetic disorders are also associated with marked abnormalities of brain structure that persist into adult life and are associated with learning disabilities and mental health disorders. Mental illness and dementia collectively represent the single biggest global health burden, highlighting the urgent need for normative brain charts as an anchor point for standardized quantification of brain structure over the lifespan.

Such standards for human brain measurement have not yet materialized from decades of neuroimaging research, probably owing to the challenges of integrating MRI data across multiple, methodologically diverse studies targeting distinct developmental epochs and clinical conditions. For example, the perinatal period is rarely incorporated in analysis of age-related brain changes, despite evidence that early biophysical and molecular processes powerfully influence life-long neurodevelopmental trajectories and vulnerability to psychiatric disorders. Primary case–control studies are usually focused on a single disorder despite evidence of trans-diagnostically shared risk factors and pathogenic mechanisms, especially in psychiatry. Harmonization of MRI data across primary studies to address these and other deficiencies in the extant literature is challenged by methodological and technical heterogeneity. Compared with relatively simple anthropometric measurements such as height or weight, brain morphometrics are known to be highly sensitive to variation in scanner platforms and sequences, data quality control, pre-processing and statistical analysis, thus severely limiting the generalizability of trajectories estimated from any individual study. Collaborative initiatives spurring collection of large-scale datasets, recent advances in neuroimaging data processing and proven statistical frameworks for modelling biological growth curves provide the building blocks for a more comprehensive and generalizable approach to age-normed quantification of MRI phenotypes over the entire lifespan (see Supplementary Information I for details and consideration of previous work focused on the related but distinct objective of inferring brain age from MRI data).

Here, we demonstrate that these convergent advances now enable the generation of brain charts that (1) robustly define normative processes of sex-stratified, age-related change in multiple MRI-derived phenotypes; (2) identify previously unreported brain growth milestones; (3) increase sensitivity to detect genetic and early life environmental effects on brain structure; and (4) provide standardized effect sizes to quantify neuroanatomical atypicality of brain scans collected across multiple clinical disorders. We do not claim to have yet reached the ultimate goal of quantitatively precise diagnosis of MRI scans from...
individual differences in brain structure is already achievable at global scale and over the entire life-course; and provides a suite of open science resources for the neuroimaging research community to accelerate further progress in the direction of standardized quantitative assessment of MRI data.

Mapping normative brain growth

We created brain charts for the human lifespan using generalized additive models for location, scale and shape (GAMLSS), a robust and flexible framework for modelling non-linear growth trajectories recommended by the World Health Organization. GAMLSS and related statistical frameworks have previously been applied to developmental

Fig. 1 Human brain charts. a, MRI data were aggregated from over 100 primary studies comprising 123,984 scans that collectively spanned the age range from mid-gestation to 100 postnatal years. Box–violin plots show the age distribution for each study coloured by its relative sample size (log-scaled using the natural logarithm for visualization purposes). b, Non-centilled, ‘raw’ bilateral cerebrum tissue volumes for grey matter, white matter, subcortical grey matter and ventricles are plotted for each cross-sectional control scan as a function of age (log-scaled); points are coloured by sex. c, Normative brain-volume trajectories were estimated using GAMLSS, accounting for site- and study-specific batch effects, and stratified by sex (female, red; male, blue). All four cerebrum tissue volumes demonstrated distinct, non-linear trajectories of their medians (with 2.5% and 97.5% centiles denoted as dotted lines) as a function of age over the lifespan. Demographics for each cross-sectional sample of healthy controls included in the reference dataset for normative GAMLSS modelling of each MRI phenotype are detailed in Supplementary Table 1.2–1.8. d, Trajectories of median between-subject variability and 95% confidence intervals for four cerebrum tissue volumes were estimated by sex stratified bootstrapping (see Supplementary Information 3 for details). e, Rates of volumetric change across the lifespan for each tissue volume, stratified by sex, were estimated by the first derivatives of the median volumetric trajectories. For solid (parenchymal) tissue volumes, the horizontal line (y = 0) indicates when the volume at which each tissue stops growing and starts shrinking and the solid vertical line indicates the age of maximum growth of each tissue. See Supplementary Table 2.1 for all neurodevelopmental milestones and their confidence intervals. Note that y axes in b–e are scaled in units of 10,000 mm3 (10 ml).
modelling of brain structural and functional MRI phenotypes in open datasets. Our approach to GAMLSS modelling leveraged the greater scale of data available to optimize model selection empirically, to estimate non-linear age-related trends (in median and variance) stratified by sex over the entire lifespan, and to account for site- or study-specific ‘batch effects’ on MRI phenotypes in terms of multiple random effect parameters. Specifically, GAMLSS models were fitted to structural MRI data from control subjects for the four main tissue volumes of the cerebrum (total cortical grey matter volume (GMV), total white matter volume (WMV), total subcortical grey matter volume (sGMV) and total ventricular cerebrospinal fluid volume (ventricles or CSF)). Supplementary Tables 1.1–1.8 present details on model specification and estimation; image quality control, which used a combination of expert visual curation and automated metrics of image quality (Supplementary Information 2); model stability and robustness (Supplementary Information 3, 4); phenotypic validation against non-imaging metrics (Supplementary Information 3 and 5.2); inter-study harmonization (Supplementary Information 5); and assessment of cohort effects (Supplementary Information 6). See Supplementary Information 19 for details on all primary studies contributing to the reference dataset, including multiple publicly available open MRI datasets.

Lifespan curves (Fig. 1, Supplementary Table 2.1) showed an initial strong increase in GMV from mid-gestation onwards, peaking at 5.9 years (95% bootstrap confidence interval (CI) 5.8–6.1), followed by a near-linear decrease. This peak was observed 2 to 3 years later than previous reports relying on smaller, more age-restricted samples. WMV also increased rapidly from mid-gestation to early childhood, peaking at 28.7 years (95% bootstrap CI 28.1–29.2), with subsequent accelerated decline in WMV after 50 years. Subcortical GMV showed an intermediate growth pattern compared with GMV and WMV, peaking in adolescence at 14.4 years (95% bootstrap
CI14.0–14.7). Both the WMV and sGMV peaks are consistent with previous neuroimaging and postmortem reports45,46. By contrast, CSF showed an increase until age 2, followed by a plateau until age 30, and then a slow linear increase that became exponential in the sixth decade of life. Age-related variance (Fig. 1d), explicitly estimated by GAMLSS, formally quantifies developmental changes in between-subject variability. There was an early developmental increase in GMV variability that peaked at 4 years, whereas subcortical volume variability peaked in late adolescence. WMV variability peaked during the fourth decade of life, and CSF was maximally variable at the end of the human lifespan.

Extended neuroimaging phenotypes
To extend the scope of brain charts beyond the four cerebrum tissue volumes, we generalized the same GAMLSS modelling approach to estimate normative trajectories for additional MRI phenotypes including other morphometric properties at a global scale (mean cortical thickness and total surface area) and regional volume at each of 34 cortical areas47 (Fig. 2, Supplementary Information 7–9, Supplementary Tables 1, 2). We found, as expected, that total surface area closely tracked the development of total cerebrum volume (TCV) across the lifespan (Fig. 2a), with both metrics peaking...
MRI phenotypes. The schematic shows segmentation of four cerebrum tissue volumes, followed by estimation of univariate centile scores, leading to the orthogonal projection of a single participant’s scan (Sub,) onto the four respective principal components of the CN (coloured axes and arrows). The CMD for Sub, is then the sum of its distances from the CN group mean on all four dimensions of the multivariate space. c, Probability density plots of CMD across disorders. Vertical black line depicts the median CMD of the control group. Asterisks indicate an FDR-corrected significant difference from the CN group (P < 0.001). d, Heritability of raw volumetric phenotypes and their centile scores across two twin studies (Adolescent Brain Cognitive Development (ABCD) and Human Connectome Project (HCP)); Supplementary Information 19, see Supplementary Information 13 for a full overview of statistics for each individual feature in each dataset. Data are mean ± s.e.m. (although some confidence intervals are too narrow to be seen). MCI, mild cognitive impairment. See Fig. 3 for other diagnostic abbreviations. FDR-corrected significance: *P < 0.05, **P < 0.01, ***P < 0.001.

Developmental milestones

Neuroimaging milestones are defined by inflection points of the tissue-specific volumetric trajectories (Fig. 3, Methods, ‘Defining developmental milestones’). Among the total tissue volumes, only GMV peaked before the typical age at onset of puberty, with sGMV peaking mid-puberty and WMV peaking in early adulthood. The rate of growth (velocity) peaked in infancy and early childhood for GMV (5.08 months (95% bootstrap CI 4.85–5.22)), sGMV (5.65 months (95% bootstrap CI 5.75–5.83)) and WMV (7.2 years (95% bootstrap CI 6.6–7.8)). TCV velocity peaked between the maximum velocity for GMV and WMV at approximately 7 months. Two major milestones of TCV at approximately 11–12 years of age (surface area peak at 10.97 years (95% bootstrap CI 10.32–11.51); TCV peak at 12.5 years (95% bootstrap CI 12.11–12.89)). By contrast, cortical thickness peaked distinctively early at 1.7 years (95% bootstrap CI 1.3–2.1), which reconciles previous observations that cortical thickness increases during the perinatal period and declines during later development (Supplementary Information 7).

We also found evidence for regional variability in volumetric neurodevelopmental trajectories. Compared with peak GMV at 5.9 years, the age of peak regional grey matter volume varied considerably—from approximately 2 to 10 years—across 34 cortical areas, Primary sensory regions reached peak volume earliest and showed faster post-peak declines, whereas fronto-temporal association cortical areas peaked later and showed slower post-peak declines (Fig. 2b, Supplementary Information 8.2). Notably, this spatial pattern recapitulated a gradient from sensory-to-association cortex that has been previously associated with multiple aspects of brain structure and function.

Table 1

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Estimated additive genetic heritability</th>
<th>MDD</th>
<th>ANX</th>
<th>ADHD</th>
<th>ASD</th>
<th>SCZ</th>
<th>MCI</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCI</td>
<td>0.58 (95% CI 0.55–0.62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>0.57 (95% CI 0.54–0.60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCZ</td>
<td>0.59 (95% CI 0.56–0.63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASD</td>
<td>0.61 (95% CI 0.58–0.64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANX</td>
<td>0.63 (95% CI 0.60–0.66)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDD</td>
<td>0.64 (95% CI 0.61–0.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMV</td>
<td>0.65 (95% CI 0.62–0.68)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sGMV</td>
<td>0.66 (95% CI 0.63–0.69)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey matter</td>
<td>0.51 (95% CI 0.48–0.54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White matter</td>
<td>0.53 (95% CI 0.50–0.56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcortical</td>
<td>0.55 (95% CI 0.52–0.58)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventricular</td>
<td>0.57 (95% CI 0.54–0.60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 | Case–control differences and heritability of centile scores. a, Centile score distributions for each diagnostic category of clinical cases relative to the control group median (depicted as a horizontal black line). The median deviation of centile scores in each diagnostic category is overlaid as a lollipop plot (white lines with circles corresponding to the median centile score for each group of cases). Pairwise tests for significance were based on Monte Carlo resampling (10,000 permutations) and P-values were adjusted for multiple comparisons using the Benjamini–Hochberg false discovery rate (FDR) correction across all possible case–control differences. Only significant differences from the control group (CN median (with corrected P < 0.001) are highlighted with an asterisk. For a complete overview of all pairwise comparisons, see Supplementary Information 10, Supplementary Table 3. Groups are ordered by their multivariate distance from the CN group (see a and Supplementary Information 10.3). b, The CMD is a summary metric that quantifies the aggregate atypicality of an individual scan in terms of all global MRI phenotypes. The schematic shows segmentation of four cerebrum tissue.
Fig. 5 Schematic overview of brain charts, highlighting methods for out-of-sample centile scoring. Top, brain phenotypes were measured in a reference dataset of MRI scans. GAMLSS modelling was used to estimate the relationship between (global) MRI phenotypes and age, stratified by sex, and controlling for technical and other sources of variation between scanning sites and primary studies. Bottom, the normative trajectory of the median and confidence interval for each phenotype was plotted as a population reference curve. Out-of-sample data from a new MRI study were aligned to the corresponding epoch of the normative trajectory, using maximum likelihood estimation to estimate the study-specific offsets (random effects) for three moments of the underlying statistical distributions: mean (μ), variance (σ), and skewness (ν) in an age- and sex-specific manner. Centile scores of each phenotype could then be estimated for each scan in the new study, on the same scale as the reference population curve, while accounting for study-specific ‘batch effects’ on technical or other sources of variation (see Supplementary Information 1.8 for details). MLE, maximum likelihood estimation.

and sGMV (peak velocity and size) (Fig. 3) coincided with the early neonatal and adolescent peaks of height and weight velocity. The velocity of mean cortical thickness peaked even earlier, in the perinatal period at 0.38 years (95% bootstrap CI: 0.4 to 0.34) (relative to birth), corresponding approximately to mid-gestation. This early peak in cortical thickness velocity has not been reported previously—to our knowledge—prior to challenges in acquiring adequate and consistent signal from typical MRI sequences in the perinatal period. Similarly, normative trajectories revealed an early period of GMV:WMV differentiation, beginning in the first month after birth with the switch from WMV to GMV as the proportionally dominant tissue compartment, and ending when the absolute difference of GMV and WMV peaked around 3 years (Supplementary Information 9). This epoch of GMV:WMV differentiation, which may reflect underlying changes in myelination and synaptic proliferation, has not been demarcated in previous studies. It was probably identified in this study owing to the substantial amount of early developmental MRI data available for analysis in the aggregated dataset (in total across all primary studies, N = 2,571 and N = 1,484 participants aged less than 2 years were available for analysis of cerebrum tissue volumes and extended global MRI phenotypes, respectively). The period of GMV:WMV differentiation encompasses dynamic changes in brain metabolites (0–3 months), resting metabolic rate (RMR) (minimum = 7 months, maximum = 4.2 years), the typical period of acquisition of motor capabilities and other early paediatric milestones, and the most rapid change in TCV (Fig. 3).

Individualized centile scores

We computed individualized centile scores that benchmarked each individual scan in the context of normative age-related trends (Methods, ‘Centile scores and case–control differences’ and Supplementary Information 1–6 for further details). This approach is conceptually similar to quantile rank mapping, as previously reported, where the typicality or atypicality of each phenotype in each scan is quantified by the score on the distribution of phenotypic parameters in the normative or reference sample of scans, with more atypical phenotypes having more extreme centile (or quantile) scores. The clinical diversity of the aggregated dataset enabled us to comprehensively investigate case–control differences in individually specific centile scores across a range of conditions. Relative to the control group (CN), there were highly significant differences in centile scores across large (N > 500) groups of cases diagnosed with multiple disorders (Fig. 4a, Supplementary Information 10), with effect sizes ranging from medium (0.2 < Cohen’s d < 0.8) to large (Cohen’s d > 0.8) (see Supplementary Tables 3, 4 for all false discovery rate (FDR)-corrected P values and effect sizes). Clinical case–control differences in cortical thickness and surface area generally followed the same trend as volume differences (Supplementary Information 10). Alzheimer’s disease showed the greatest overall difference, with a maximum difference localized to grey matter volume in biologically female patients (median centile score = 14%, 36 percentage points difference from CN median, corresponding to Cohen’s d = 0.88; Fig. 4a). In addition, we generated a cumulative deviation metric, the centile Mahalanobis distance (CMD), to summarize a comparative assessment of brain morphology across all global MRI phenotypes relative to the CN group (Fig. 4b, Supplementary Information 1.6). Notably, schizophrenia ranked third overall behind Alzheimer’s disease and mild cognitive impairment (MCI) on the basis of CMD (Fig. 4c).

Assessment across diagnostic groups, based on profiles of the multiple centile scores for each MRI phenotype and for CMD, highlighted shared and distinct patterns across clinical conditions (Supplementary Information 10, 11). However, when examining cross-disorder similarity of multivariate centile scores, hierarchical clustering yielded three clusters broadly comprising neurodegenerative, mood and anxiety, and neurodevelopmental disorders (Supplementary Information 11). Across all major epochs of the lifespan, the CMD was consistently greater in cases relative to controls, irrespective of diagnostic category.
The largest case–control differences across epochs occurred in late adulthood when risk for dementia increases and in adolescence, which is well-recognized as a period of increased incidence of mental health disorders (Supplementary Information 10.3). In five primary studies covering the lifespan, average centile scores across global tissues were related to two metrics of premature birth (gestational age at birth: \(t = 13.164, P < 2 \times 10^{-6} \); birth weight: \(t = 36.395, P < 2 \times 10^{-6} \); Supplementary Information 12), such that greater gestational age and birth weight were associated with higher average centile scores. Centile scores also showed increased twin-based heritability in two independent studies (total \(N = 913 \) twin pairs) compared with non-centiled phenotypes (average increase of 11.8 percentage points in narrow sense heritability \(h^2 \) across phenotypes: Fig. 4d, Supplementary Information 13). In summary, centile normalization of brain metrics reproducibly detected case–control differences and genetic effects on brain structure, as well as long-term sequelae of adverse birth outcomes even in the adult brain.

Longitudinal centile changes

Owing to the relative paucity of longitudinal imaging data (about 10% of the reference dataset), normative models were estimated from cross-sectional data collected at a single time point. However, the generalizability of cross-sectional models to longitudinal assessment is important for future research. Within-subject variability of centile scores derived from longitudinally repeated scans, measured with the interquartile range (IQR) (Methods, ‘Longitudinal stability’, Supplementary Information 1.7), was low across both clinical and CN groups (all median IQR < 0.05 centile points), indicating that centile scoring of brain structure was generally stable over time, although there was also some evidence of between-study and cross-disorder differences in within-subject variability (Supplementary Information 14). Notably, individuals who changed diagnostic categories—for example, those who progressed from mild cognitive impairment to Alzheimer’s disease over the course of repeated scanning—showed small but significant increases in within-subject variability of centile scores (Supplementary Information 14, Supplementary Tables 5, 6). Within-subject variability was also slightly higher in samples from younger individuals (Supplementary Information 14), which could reflect increased noise due to the technical or data quality challenges associated with scanning younger individuals, but was also consistent with the evidence of increased variability in earlier development observed across other anthropometric traits.

Centile scoring of new MRI data

A key challenge for brain charts is the accurate centile scoring of out-of-sample MRI data, not represented in the reference dataset used to estimate normative trajectories. We therefore carefully evaluated the reliability and validity of brain charts for centile scoring of such ‘new’ scans. For each new MRI study, we used maximum likelihood to estimate study-specific statistical offsets from the age-appropriate epoch of the normative trajectory; we then estimated centile scores for each individual in the new study benchmarked against the offset trajectory (Fig. 5, Methods, ‘Data-sharing and out-of-sample estimation’, Supplementary Information 1.8). Extensive jackknife and leave-one-study-out analyses indicated that a study size of \(N > 100 \) scans was sufficient for stable and unbiased estimation of out-of-sample centile scores (Supplementary Information 4). This study size limit is in line with the size of many contemporary brain MRI research studies. However, these results do not immediately support the use of brain charts to generate centile scores from smaller-scale research studies, or from an individual patient’s scan in clinical practice—this remains a goal for future work. Out-of-sample centile scores proved highly reliable in multiple test–retest datasets and were robust to variations in image processing pipelines (Supplementary Information 4).

Discussion

We have aggregated the largest neuroimaging dataset to date to modernize the concept of growth charts for mapping typical and atypical human brain development and ageing. The approximately 100-year age range enabled the delineation of milestones and critical periods in maturation of the human brain, revealing an early growth epoch across its constituent tissue classes—beginning before 17 post-conception weeks, when the brain is at approximately 10% of its maximum size, and ending by age 3, when the brain is at approximately 80% of the maximum size. Individual centile scores benchmarked by normative neurodevelopmental trajectories were significantly associated with neuropsychiatric disorders as well as with dimensional phenotypes (Supplementary Information 5.2, 12). Furthermore, imaging–genetics studies may benefit from the increased heritability of centile scores compared with raw volumetric data (Supplementary Information 13). Perhaps most importantly, GAMLSS modelling enabled harmonization across technically diverse studies (Supplementary Information 5), and thus unlocked the potential value of combining primary MRI studies at scale to generate normative, sex-stratified brain growth charts, and individual centile scores of typicality and atypicality.

The analogy to paediatric growth charts is not meant to imply that brain charts are immediately suitable for benchmarking or quantitative diagnosis of individual patients in clinical practice. Even for traditional anthropometric growth charts (height, weight and BMI), there are still important caveats and nuances concerning their diagnostic interpretation in individual children; similarly, it is expected that considerable further research will be required to validate the clinical diagnostic utility of brain charts. However, the current results bode well for future progress towards digital diagnosis of atypical brain structure and development. By providing an age- and sex-normalized metric, centile scores enable trans-diagnostic comparisons between disorders that emerge at different stages of the lifespan (Supplementary Information 10, 11). The generally high stability of centile scores across longitudinal measurements also enabled assessment of brain changes related to diagnostic transition from mild cognitive impairment to Alzheimer’s disease (Supplementary Information 14), which provides one example of how centile scoring could be clinically useful in quantitatively predicting or diagnosing progressive neurodegenerative disorders in the future. Our provision of appropriate normative growth charts and online tools also creates an immediate opportunity to quantify atypical brain structure in clinical research samples, to leverage available legacy neuroimaging datasets, and to enhance ongoing studies.

Several important caveats are worth highlighting. Even this large MRI dataset was biased towards European and North American populations and European ancestry groups within those populations. This bias is unfortunately common in many clinical and scientific references, including anthropometric growth charts and benchmark genetic datasets, representing an inequity that must be addressed by the global scientific community. In the particular case of brain charts, further increasing ethnic, socioeconomic and demographic diversity in MRI research will enable more population-representative normative trajectories that can be expected to improve the accuracy and strengthen the interpretation of centile scores in relation to appropriate norms. The available reference data were also not equally distributed across all ages—for example, foetal, neonatal and mid-adulthood (30–40 years of age) epochs were under-represented (Supplementary Information 17–19). Furthermore, although our statistical modelling approach was designed to mitigate study- or site-specific effects on centile scores, it cannot entirely correct for limitations of primary study design, such as ascertainment bias or variability in diagnostic criteria. Our decision to stratify the lifespan models by sex followed the analogous logic of sex-stratified anthropometric growth charts. Males have larger brain-tissue volumes than females in absolute terms (Supplementary
Information 16), but this is not indicative of any difference in clinical or cognitive outcomes. Future work would benefit from more detailed and dimensional self-report variables relating to sex and gender71. The use of brain charts also does not circumvent the fundamental requirement for quality control of MRI data. We have shown that GAMLiSS modelling of global structural MRI phenotypes is in fact remarkably robust to inclusion of poor-quality scans (Supplementary Information 2), but it should not be assumed that this level of robustness will apply to future brain charts of regional MRI or functional MRI phenotypes; therefore, the importance of quality control remains paramount.

We have focused primarily on global brain phenotypes, which were measurable in the largest achievable sample, aggregated over the widest age range, with the fewest methodological, theoretical and data-sharing constraints. However, we have also provided proof-of-concept brain charts for regional grey matter volumetrics, demonstrating plausible heterochronicity of cortical patterning, and illustrating the potential generalizability of this approach to a diverse range of fine-grained MRI phenotypes (Fig. 2, Supplementary Information 8). As ongoing and future efforts provide increasing amounts of high-quality MRI data, we predict an iterative process of improved brain charts for an increasing number of multimodal29 neuroimaging phenotypes. Such diversification will require the development, implementation and standardization of additional data quality control procedures27 to underpin robust brain chart modelling. To facilitate further research using our reference charts, we have provided interactive tools to explore these statistical models and to derive normalized centile scores for new datasets across the lifespan at www.brainchart.io.

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-022-04554-y.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Article

3R-BRAIN
X. N. Zuo206,207,208,209,223

AIBL*
C. Rowe206

*Memory Disorders Clinic, Austin Health, Melbourne, Victoria, Australia.

Alzheimer's Disease Neuroimaging Initiative*
C. R. Jack Jr216

Alzheimer's Disease Repository Without Borders Investigators*
G. B. Frisoni217,218

217University Hospitals and University of Geneva, Geneva, Switzerland. 218IRCCS Fatebenefratelli, The National Centre for Alzheimer's and Mental Diseases, Brescia, Italy.

CALM Team*
D. E. Astle18

Cam-CAN*
R. N. Henson6,18

CCNP*
Y. S. Wang206,207,208,209, N. Yang56,203,204,209 & X. N. Zuo56,203,204,209,223

COBRE*
V. D. Calhoun95

cVEDA*
B. Holla97,98

ENIGMA Developmental Brain Age Working Group*
J. H. Cole41,42, N. Bourke39,39, H. C. Whalley97, D. C. Glaister41,42, J. Seidlitz1,4,5, R. A. I. Bethlehem1,4,5 & A. F. Alexander-Bloch41,42

Developing Human Connectome Project*
A. D. Edwards66,67

FinnBrain*
H. Karlsson105,106, L. Karlsson105,106, J. D. Lewis206 & J. J. Tuulainen206,303

Harvard Aging Brain Study*
K. A. Johnson84,91,92,93, Reisa Sperling64,91,92,93, Aaron Schultz84,91,92 & Trey Hedden80,81

IMAGEN*
S. Desrivieres94, A. Heinz95, T. Jia107,108,109 & G. Schumann178,179

KNE96
J. Bae37, K. W. Kim92,93,94,95 & S. Lee96

The Mayo Clinic Study of Aging*
C. R. Jack Jr216 & D. T. Jones56,91

NSPN*
E. T. Bullmore6, R. Dolan60,61, P. Fonagy60,61, I. M. Goodyer6 & P. B. Jones56,91

POND*
E. Anagnostou34,35, M. Ayub90,91, J. Crosbie90, C. F. Hammitt66,67, E. A. Kelley90 & R. J. Schachar90

The PREVENT-AD Research Group*
A. Pichert Binette96,97 & S. Villeneuve96,98,99

VETSA*
J. A. Elman11, C. E. Franz11 & W. S. Kremen12
Methods

Ethics
The research was reviewed by the Cambridge Psychology Research Ethics Committee (PRE.2020.104) and The Children’s Hospital of Philadelphia’s Institutional Review Board (IRB 20-017874) and deemed not to require PRE or IRB oversight as it consists of secondary analysis of de-identified primary datasets. Informed consent of participants (or their guardians) in primary studies is referenced in Supplementary Information 19 and Supplementary Table 1.

Model generation and specification
To accurately and comprehensively establish standardized brain reference charts across the lifespan, it is crucial to leverage multiple independent and diverse datasets, especially those spanning prenatal and early postnatal life. Here we sought to chart normative brain development and ageing across the largest age-span and largest aggregated neuroimaging dataset to date using a robust and scalable methodological framework2,24. We used GAMLSS2 to estimate cross-sectional normative age-related trends from 100 studies, comprising a reference dataset of more than 100,000 scans (see Supplementary Tables 1.1–1.7 for full demographic information and Supplementary Information 19 for dataset descriptions).

We optimised GAMLSS model specification and parameterization to estimate non-linear normative growth curves, their confidence intervals and first derivatives, separately for males and females, allowing for random effects on the mean and higher order moments of the outcome distributions.

The reliability of the models was assessed and endorsed by cross-validation and bootstrap resampling procedures (Supplementary Information 3). We leveraged these normative trajectories to benchmark individual scans by centile scores, which were then investigated as age-normed and sex-stratified measures of diagnostic and longitudinal atypicalities of brain structure across the lifespan.

The GAMLSS approach allowed not only modelling of age-related changes in brain phenotypes but also age-related changes in the variability of phenotypes, and in the form of both linear and nonlinear changes over time, thereby overcoming potential limitations of conventional additive models that only allow additive means to be modelled2. In addition, study-specific offsets (mean and variance) for each brain phenotype were also modelled as random effects. These modelling criteria are particularly important in the context of establishing growth reference charts as recommended by the World Health Organization24, as it is reasonable to assume the distribution of higher order moments (for example, variance) changes with age, sex, site/study and pre-processing pipeline, and it is impossible to circumvent some of these issues by collecting standardized data longitudinally for individuals spanning the approximately 100-year age range. Furthermore, recent studies suggest that changes in between-subject variability might intersect with vulnerability for developing a mental health condition25. The use of data spanning the entire age range is also critical, as data from partial age-windows can bias estimation of growth charts when extrapolated to the whole lifespan. In short, using a sex-stratified approach24, age, pre-processing pipeline and study were each included in the GAMLSS model estimation of first order (\(\mu\)) and second order (\(\sigma\)) distribution parameters of a generalized gamma distribution using fractional polynomials to model nonlinear trends. See Supplementary Information for more details regarding GAMLSS model specification and estimation (Supplementary Information 1), image quality control (Supplementary Information 2), model stability and robustness (Supplementary Information 3, 4), phenotypic validation against non-imaging metrics (Supplementary Information 3, 5, 2), inter-study harmonization (Supplementary Information 5) and assessment of cohort effects (Supplementary Information 6).

More formally, the GAMLSS framework can be specified in the following way:

\[
Y \sim F(\mu, \sigma, \nu, \tau)
\]

\[
g_\mu(\mu) = X_\mu \beta_\mu + Z_\mu \gamma_\mu + \sum_t s_{\mu,t}(x_t)
\]

\[
g_\sigma(\sigma) = X_\sigma \beta_\sigma + Z_\sigma \gamma_\sigma + \sum_t s_{\sigma,t}(x_t)
\]

\[
g_\nu(\nu) = X_\nu \beta_\nu + Z_\nu \gamma_\nu + \sum_t s_{\nu,t}(x_t)
\]

\[
g_\tau(\tau) = X_\tau \beta_\tau + Z_\tau \gamma_\tau + \sum_t s_{\tau,t}(x_t)
\]

Here, the outcome vector, \(Y\), follows a probability distribution \(F\) parameterized by up to four parameters, (\(\mu, \sigma, \nu, \tau\)). The four parameters, depending on the parameterization of the probability density function, may correspond to the mean, variance, skewness, and kurtosis—that is, the first four moments. However, for many distributions there is not a direct one-to-one correspondence. Each component is linked to a linear equation through a link-function, \(g()\), and each component equation may include three types of terms: fixed effects, \(\beta\) (with design matrix \(X\)); random effects, \(\gamma\) (with design matrix \(Z\)); and non-parametric smoothing functions, \(s\), applied to the ith covariate for each parameter. The nature of the outcome distribution determines the appropriate link functions and which components are used. In principle any outcome distribution can be used, from well-behaved continuous and discrete outcomes, through to mixtures and truncations.

Here we have used fractional polynomials as a flexible, but not unduly complex, approach to modelling age-related changes in MRI phenotypes. Although non-parametric smoothers are more flexible, they can become unstable and infeasible, especially in the presence of random effects. Hence, the fractional polynomials enter the model within the \(X\) terms, with associated coefficients in \(\beta\). The GAMLSS framework includes the ability to estimate the most appropriate powers of fractional polynomial expansion within the iterative fitting algorithm, searching across the standard set of powers, \(p \in \{-2, -1, -0.5, 0, 0.5, 1, 2, 3\}\), where the design matrix includes the covariate (in this case, age) raised to the power, namely, \(x^p\). Fractional polynomials naturally extend to higher-orders, for example a second-order fractional polynomial of the form, \(x^{p_1} + x^{p_2}\) (see Supplementary Information 1.3 for further details).

There are several options for including random effects within the GAMLSS framework depending on the desired covariance structures. We consider the simplest case, including a factor-level (or group-level) random intercept, where the observations are grouped by the study covariate. The random effects are drawn from a normal distribution with zero mean and variance to be estimated, \(\gamma \sim \mathcal{N}(0, \sigma^2)\). The ability to include random effects is fundamental to accounting for co-dependence between observations. It is therefore possible to take advantage of the flexibility of ‘standard’ GAMLSS, as typically used to develop growth charts\(^{26,61,75}\), while accounting for co-dependence between observations using random effects. The typical applications of GAMLSS assume independent and identically distributed outcomes; however, in this context it is essential to account for within-study covariance implying the observations are no longer independent.

The resulting models were evaluated using several sensitivity analyses and validation approaches. These models of whole-brain and regional morphometric development were robust to variations in image quality, and cross-validated by non-imaging metrics. However, we expect that several sources of variance, including but not limited to...
MRI data quality and variability of acquisition protocols, may become increasingly important as brain charting methods are applied to more innovative and/or anatomically fine-grained MRI phenotypes. It will be important for future work to remain vigilant about the potential impact of data quality and other sources of noise on robustness and generalizability of both normative trajectories and the centile scores derived from them.

Based on the model selection criteria, detailed in Supplementary Information 1, the final models for normative trajectories of all MRI phenotypes were specified as illustrated below for GMV:

\[
\text{GMV} \sim \text{Generalised Gamma}(\mu, \sigma, \nu) \text{ with}
\]

\[
\log(\mu) = \alpha_\mu + \alpha_{\mu, \text{sex}}(\text{sex}) + \alpha_{\mu, \text{ver}}(\text{ver}) + \beta_{\mu, 1}(\text{age})^2 + \beta_{\mu, 2}(\text{age})^2
\]

\[
\log(\sigma) = \alpha_\sigma + \alpha_{\sigma, \text{sex}}(\text{sex}) + \beta_{\sigma, 1}(\text{age})^2 + \beta_{\sigma, 2}(\text{age})^2 + \mu_{\text{study}}
\]

\[
v = \nu
\]

(2)

For each component of the generalized gamma distribution, \(\alpha\) terms correspond to fixed effects of the intercept, sex (female or male), and software version used for pre-processing (five categories); \(\beta\) terms correspond to the fixed effects of age, modelled as fractional polynomial functions with the number of terms reflecting the order of the fractional polynomials; and \(\nu\) terms correspond to the study-level random effects. Note that we have explicitly included the link-functions for each component of the generalised gamma, namely the natural logarithm for \(\mu\) and \(\sigma\) (since these parameters must be positive) and the identity for \(\nu\).

Similarly for the other global MRI phenotypes:

\[
\text{WMV} \sim \text{Generalised Gamma}(\mu, \sigma, \nu) \text{ with}
\]

\[
\log(\mu) = \alpha_\mu + \alpha_{\mu, \text{sex}}(\text{sex}) + \alpha_{\mu, \text{ver}}(\text{ver}) + \beta_{\mu, 1}(\text{age})^2 + \beta_{\mu, 2}(\text{age})^2
\]

\[
\log(\sigma) = \alpha_\sigma + \alpha_{\sigma, \text{sex}}(\text{sex}) + \beta_{\sigma, 1}(\text{age})^2 + \beta_{\sigma, 2}(\text{age})^2 + \mu_{\text{study}}
\]

\[
v = \nu
\]

(3)

\[
\text{sGMV} \sim \text{Generalised Gamma}(\mu, \sigma, \nu) \text{ with}
\]

\[
\log(\mu) = \alpha_\mu + \alpha_{\mu, \text{sex}}(\text{sex}) + \alpha_{\mu, \text{ver}}(\text{ver}) + \beta_{\mu, 1}(\text{age})^2 + \beta_{\mu, 2}(\text{age})^2
\]

\[
\log(\sigma) = \alpha_\sigma + \alpha_{\sigma, \text{sex}}(\text{sex}) + \beta_{\sigma, 1}(\text{age})^2 + \beta_{\sigma, 2}(\text{age})^2 + \mu_{\text{study}}
\]

\[
v = \nu
\]

(4)

\[
\text{Ventricles} \sim \text{Generalised Gamma}(\mu, \sigma, \nu) \text{ with}
\]

\[
\log(\mu) = \alpha_\mu + \alpha_{\mu, \text{sex}}(\text{sex}) + \alpha_{\mu, \text{ver}}(\text{ver}) + \beta_{\mu, 1}(\text{age})^2 + \beta_{\mu, 2}(\text{age})^2
\]

\[
\log(\sigma) = \alpha_\sigma + \alpha_{\sigma, \text{sex}}(\text{sex}) + \beta_{\sigma, 1}(\text{age})^2 + \beta_{\sigma, 2}(\text{age})^2 + \nu_{\text{study}}
\]

\[
v = \nu
\]

(5)

\[
\text{TCV} \sim \text{Generalised Gamma}(\mu, \sigma, \nu) \text{ with}
\]

\[
\log(\mu) = \alpha_\mu + \alpha_{\mu, \text{sex}}(\text{sex}) + \alpha_{\mu, \text{ver}}(\text{ver}) + \beta_{\mu, 1}(\text{age})^2 + \beta_{\mu, 2}(\text{age})^2
\]

\[
\log(\sigma) = \alpha_\sigma + \alpha_{\sigma, \text{sex}}(\text{sex}) + \beta_{\sigma, 1}(\text{age})^2 + \beta_{\sigma, 2}(\text{age})^2 + \nu_{\text{study}}
\]

\[
v = \nu
\]

(6)

No smoothing terms were used in any GAMLLS models implemented in this study, although the fractional polynomials can be regarded as effectively a parametric form of smoothing. Reliably estimating higher order moments requires increasing amounts of data, hence none of our models specified any age-related fixed-effects or random effects in the \(\nu\) term. However, \(\nu\) was found to be important in terms of model fit and hence we have used a generalized gamma distribution (Supplementary Information 1).

Defining developmental milestones
GAMLLS modelling also allowed us to leverage the aggregated life-spanning neuroimaging dataset to derive developmental milestones (that is, peaks of trajectories) and compare them to existing literature. The cerebrum tissue classes from 100 studies (Fig. 1, Supplementary Tables 1.1–1.7, Supplementary Information 18) showed clear, predominantly age-related trends, even prior to any modelling. Comparing these models with multiple non-MRI metrics of brain size demonstrated high correspondence across the lifespan (Supplementary Information 3). Peaks were determined based on the GAMLLS model output (50th centile) for each of the tissue classes and TCV, for both total tissue volumes and rates of change or growth (velocity). A similar series of methodological steps was performed for the set of extended global and regional cortical morphometric phenotypes (Fig. 2, Supplementary Information 7, 8). To further contextualize the neuroimaging trajectories, diagnostic age ranges from previous literature\(^{3,23}\) (blue boxes in Fig. 3) were compared with empirical age ranges of patients with a given diagnosis across the aggregated neuroimaging dataset (black boxes in Fig. 3). Note that age of diagnosis is significantly later than age of symptom onset for many disorders\(^{23}\). Developmental milestones were also compared to published work for brain resting metabolic rate\(^{61}\), from its minimum in infancy to its maximum in early childhood; anthropometric variables (height and weight), which reach a first peak in velocity during infancy and a second peak in velocity in adolescence\(^{62}\); typical acquisition of the six gross motor capabilities\(^{63}\); and pubertal age ranges as defined based on previous reports\(^{31,32}\).

Centile scores and case–control differences
These normative trajectories of brain development and aging also enabled each individual scan to be quantified in terms of its relative distance from the median of the age-normed and sex-stratified distributions provided by the reference model\(^{23,27}\) (Fig. 4, Supplementary Information 10, 11). Individual centile scores were estimated relative to the reference curves, in a way that is conceptually similar to traditional anthropometric growth charts (Supplementary Information 1). These centiles represent a novel set of population- and age-standardized clinical phenotypes, providing the capacity for cross-phenotype, cross-study and cross-disorder comparison. A single multivariate metric (CMD, Supplementary Information 1.6) was estimated by combining
centile scores on multiple MRI phenotypes for each individual (Fig. 4c).
Case-control differences in centile scores were analysed with a bootstrapped (500 bootstraps) non-parametric generalization of Welch's one-way ANOVA. Pairwise, sex stratified, post-hoc comparisons were conducted using non-parametric Monte Carlo permutation tests (10,000 permutations) and thresholded at a Benjamini–Hochberg FDR of \(q < 0.05 \).

Longitudinal stability
To use centile scores in a diagnostically meaningful or predictive way, they need to be stable across multiple measuring points. To assess this intra-individual stability, we calculated the subject-specific IQR of centiles across timepoints for the datasets that included longitudinal scans (\(N = 9,306, 41 \) unique studies). Exploratory longitudinal clinical analyses were restricted to clinical groups that had at least 50 subjects with longitudinal data to allow for robust group-wise estimates of longitudinal variability. In addition, there was a subset of individuals with documented clinical progression over the course of longitudinal scans, for instance from mild cognitive impairment to Alzheimer’s disease, where we expected an associated change in centile scored brain structure. To test this hypothesis, we assessed whether these individuals showed longitudinal variation of centile scores (as assessed with IQR) with a direction of change consistent with their clinical progression. See Supplementary Information 14 for further details about the longitudinal stability of centile scores.

Data sharing and out-of-sample estimation
We have provided an interactive tool (www.brainchart.io) and made our code and models openly available (https://github.com/brainchart/Lifespan). The tool allows the user to visualize the underlying demographics of the primary studies and to explore the normative brain charts in a much more detailed fashion than static images allow. It also provides the opportunity for interactive exploration of case-control differences in centile scores across many diagnostic categories that is beyond the scope of this paper. Perhaps most significantly, the brain chart interactive tool includes an out-of-sample estimator of model parameters for new MRI data that enables the user to compute centile scores for their own datasets without the computational or data-sharing hurdles involved in adding that data to the reference dataset used to estimate normative centiles (Fig. 5). Bias and reliability of out-of-sample centile scoring was extensively assessed and endorsed by resampling and cross-validation studies for ‘new’ studies comprising at least 100 scans. Although already based on the largest and most comprehensive neuroimaging dataset to date, and supporting analyses of out-of-sample data, these normative brain charts will continue to be updated as additional data are made available with aggregation for the reference dataset. See Supplementary Information 1.8, 4 for further details about out-of-sample estimation.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
Model parameters and out-of-sample centile scores are available at www.brainchart.io and on https://github.com/brainchart/Lifespan. Summary statistics are available in the Supplementary Tables (Supplementary Tables 1–8). Links to open datasets are also listed on https://github.com/brainchart/Lifespan. Availability of other MRI datasets aggregated here is through application procedures individually managed at the discretion of each primary study, with additional information provided in Supplementary Table 1.1 and Supplementary Information 19.

Code availability
All code is available at https://github.com/brainchart/Lifespan.

Acknowledgements
R.A.I.B. was supported by a British Academy Postdoctoral fellowship and by the Autism Research Trust. J. Sedlitz was supported by NIH T32MH09112-29 and K08MH202564. S.R.W. was funded by UKRI Medical Research Council MC_UU_00002/2 and was supported by the NIHR Cambridge Biomedical Research Centre (BRC–1215–20141). E.T.B. was supported by an NIHR Senior Investigator award and the Wellcome Trust collaborative award for the Neuroscience in Psychiatry Network. A.F.A.-B. was supported by NIH T32MH202564. Data were curated and analysed using a computational facility funded by an MRC research infrastructure award (MR/M009404/1) to the School of Clinical Medicine, University of Cambridge and supported by the mental health initiative of the Wellcome Trust. The views expressed are those of the authors and not necessarily those of the NIHR, NHS, the NIHR or the Department of Health and Social Care. We acknowledge the invaluable contribution to this effort made by several openly shared MRI datasets: OpenNeuro (https://openneuro.org/), the Healthy Brain Network (https://healthybrainnetwork.org/), UK Biobank (https://www.ukbiobank.ac.uk/), ABCCD (https://abccdstudy.org/), the Laboratory of Neuromaging (https://loni.usc.edu/), data made available through the Open Science Framework (https://osf.io/), COINS (https://coins.mrn.org/), the Developing Human Connectome Project (http://www.developingconnectome.org/), the Human Connectome Project (http://www.humanconnectomeproject.org/), the Open Project (https://www.openbrainproject.org), the International Neuroimaging Datasharing Initiative (INDI) (https://fcon_1000.projects.nitrc.org), and the INM1 Data Archive (https://nda.nih.gov/). See Supplementary Information 21 for further notes on the usage of open MRI data and data sharing. Data used in this article were provided by the brain consortium for reliability, reproducibility and replicability (3R-BRAIN) (https://github.com/zuoxianm/3R-BRAIN). Data used in the preparation of this article were obtained from the Australian Imaging Biomarkers and Lifestyle (AIBL) study funded by the Commonwealth of Australia and the Department of Industry, Innovation and Science, the Canadian Stroke Alliance, and the Canadian Institute of Health Research (CIHR) which were made available at the ADNI database (https://adni.loni.usc.edu/). AIIBL researchers contributed data but did not participate in analysis or writing of this report. AIIBL researchers are listed at https://www.aiibl.csiro.au. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/). The investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A full list of ADNI investigators can be found at https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. More information on the ARWIBO consortium can be found at https://www.arwibo.it/. More information on CALM team members can be found at https://www.cs.ucl.ac.uk/people/teams/locan/information. Further information about the CAM-CAN corporate authorship membership can be found at https://www.cam-can.org/index.php?option=com Blueprint#12. Data used in this article were obtained from the developmental component ‘Growing Up in China’ of the Chinese Color Nest Project (http://www.colornestproject.com.cn/). Data were downloaded from the Collaborative Informatics and Neuroimaging Suite Data Exchange tool (COINS) (https://coins.trendscenter.org/). Details of The ENIGMA Developmental Brain Age working group can be found at https://github.com/ENIGMA-Developmental-BrainAge/main. Data used in the preparation of this article were obtained from the Harvard Aging Brain Study (HABS PN106686864) (https://habs.mgh.harvard.edu). Data used in the preparation of this article were obtained from the ICON consortium (https://enigm-europe.com/). Data used in this article were obtained from the Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD) (https://recode.re.kr). A full list of NSPN consortium members can be found at https://www.nspn.org.uk/nspn-team/. The POND network (https://pond-network.ca/) is a Canadian translational network in neurodevelopmental disorders, primarily funded by the Ontario Brain Institute.

Author contributions
R.A.I.B., J.S., S.R.W., E.T.B. and A.F.A.-B. designed the study, conducted analyses, wrote and edited the manuscript. L.J. and K.M.A. helped to design the study and contributed to data analysis. All other authors made substantial contributions to the conception or design of the work, the acquisition, analysis or interpretation of data, the creation of new software used in the work, or drafted or substantially revised the Article.

Competing interests
E.T.B. serves on the scientific advisory board of Sosei Heptares and as a consultant for GlaxoSmithKline, Boehringer Ingelheim and Monument Therapeutics. G.S.A. has served on advisory boards of Eisai and Janssen and in speakers bureaus of Allergan, Takeda and Lundbeck. K.M.A. is an employee of Neumora Therapeutics. P.B. J. has consulted for McK. L. Panalipappan reports personal fees from Janssen Canada for participating in an Advisory Board (2019) and Continuous Professional Development events (2017–2020), OtsoSA Canada for Continuous Professional Development events (2017–2020), SPPM Course Limited,
UK for preparing educational materials for psychiatrists and trainees (2010 onwards), Canadian Psychiatric Association for Continuous Professional Development events (2018–2019); book royalties from Oxford University Press (2009 onwards); institution-paid investigator-initiated educational grants with no personal remunerations from Janssen Canada, Sunovion and Otsuka Canada (2016–2019); travel support to attend a study investigator’s meeting organized by Boehringer-Ingelheim (2017); travel support from Magstim Limited (UK) to speak at an academic meeting (2014); none of these activities are related to this work. T.R. has received honoraria from Oxford Biomedica. A.P.S. has consulted for Janssen, Biogen, Qynapse, and NervGen. R.T.S. has received consulting income from Octave Bioscience and compensation for scientific review duties from the American Medical Association, the US Department of Defense, the Emerson Collective, and the National Institutes of Health. R.A.S. has consulted for Janssen, AC Immune, NervGen and Genentech. D.J.S. has received research grants and/or consultancy honoraria from Discovery Vitality, Johnson & Johnson, Lundbeck, Sanofi, Servier, Takeda and Vistagen. J. Suckling has consulted for GW Pharmaceuticals, Claritas HealthTech, Fundacion La Caixa and Fondazione Cariplo. All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-04554-y.
Correspondence and requests for materials should be addressed to R. A. I. Bethlehem or J. Seidlitz.
Peer review information Nature thanks Michael Harms, Michael Milham and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer review reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- **n/a**
 - The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
 - A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
 - The statistical test(s) used AND whether they are one- or two-sided
 - [Only common tests should be described solely by name; describe more complex techniques in the Methods section.](#)
 - A description of all covariates tested
 - A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
 - A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
 - For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.
 - For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
 - For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
 - Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about: [availability of computer code](#)

Data collection

No software was used in data collection

Data analysis

Data was analysed using a combination of open source R code (v4.1.2) and custom R code made available on https://github.com/ucan-department-of-psychiatry/Lifespan. With respect to all visualisation and statistics represented in graphical format, unless otherwise stated these were generated in R GNU v4.1.2 using the “ggplot” package. Where boxplots are used they indicate the median and lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called “outlying” points and are plotted individually. Density plots were generated with the ‘geom._flat_violin’ option from the “raincloudplots” package. Estimation of densities and the resulting number of peaks were done using the default settings of the ’density[]’ function in the base R “stats” package using a Gaussian smoothing kernel which defaults to 0.9 times the minimum of the standard deviation and the interquartile range divided by 1.34 times the sample size to the negative one-fifth power (Silverman’s ‘rule of thumb’); unless the quartiles coincide, when a positive result will be guaranteed. Clustering heatmaps were generated using the “ComplexHeatmap” package. Crosshair plots depict the median and standard deviations. Plots depicting linear associations were generated with ggplot’s ‘geom_point[]’ function and where linear relations are reported include shaded regions indicating the 95% confidence intervals of that linear relation. Linear regression was performed using the “lm” function in the base “stats” package, as well as the “lmertest” package for mixed-effects modelling. Student’s T-tests were performed using the “t.test” function in the base “stats” package (two-sided, unless otherwise reported). The “ggpatsplot” package was used for the model generalisability analyses to report robust correlation values. Cohen’s d effect sizes were calculated using the “ezsize” function. A description of the freesurfer version and processing pipeline can be found in SI8 (mainly Freesurfer 6.0.1 unless stated otherwise).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third-party data, please ensure that the statement adheres to our policy

Model parameters and out-of-sample centile scores are available at www.brainchart.io and on https://github.com/brainchart/Lifespan. Summary statistics are available in the Supplementary Tables (ST1-8). Links to open and semi-open datasets are also listed on https://github.com/brainchart/Lifespan. Availability of other MNI datasets aggregated here is through application procedures individually managed at the discretion of each primary study, with additional information provided in ST1.1 and ST1.9.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
No a-priori sample size was calculated, but we used the largest sample of neuroimaging data reported to date and conduct multiple sensitivity analyses in addition to the built in optimisation of our models to ensure data was robust.

Data exclusions
Exclusion criteria for each dataset at input stage was determined by collecting sites and studies and are listed in the supplementary materials (ST1.9) where each dataset is described and where relevant. Missing demographic data or failure in image processing (either due to technical problems with the data or other artefacts) was a secondary reason for exclusion.

Replication
Reproducibility of findings was ensured by extensive sensitivity and bootstrapping analysis, simulation of model parameters, evaluation of optimal model parameters, validation using iterative leave-one-out analysis, and validation against known growth charts derived from other modalities.

Randomization
For our bootstrapping we used random sampling maintaining dataset ratios as described in the supplementary methods. For pairwise comparisons between control and clinical cohorts we used permutation tests that randomly reshuffle case and control labels to generate 10,000 null distributions.

Blinding
Blinding was not possible, but also not applicable for establishing growth trajectories; furthermore all analyses were conducted in a data driven manner

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed in relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>Antibodies</td>
</tr>
<tr>
<td>☒</td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td>☒</td>
<td>Palaeontology and archaeology</td>
</tr>
<tr>
<td>☒</td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td>☒</td>
<td>Human research participants</td>
</tr>
<tr>
<td>☒</td>
<td>Clinical data</td>
</tr>
<tr>
<td>☒</td>
<td>Dual use research of concern</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>☒</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>☒</td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>
Human research participants

Policy information about studies involving human research participants

Population characteristics Population characteristics are listed in supplementary tables 1.1-1.48. For the analysis age and sex were included in our models. Diagnoses was provided for each dataset individually and procedures for obtaining these were described in the description of each individual dataset.

Recruitment All analyses in the present manuscript were based on existing data. Recruitment for each existing dataset is described in the supplementary description for each dataset see SI19.

Ethics oversight The project received IRB exemption from CHOP and ethical approval from the Psychology Research Ethics Committee at the University of Cambridge. All contributing datasets already contained their own respective ethical oversight and therefore both committees concluded no additional ethical approval was required. The following statement has been added to the methods section:

The research was reviewed by the Cambridge Psychology Research Ethics Committee (PRE 2020.104) and The Children’s Hospital of Philadelphia’s Institutional Review Board (IRB 20-017874) and deemed not to require PRE or IRB oversight as it consists of secondary analysis of de-identified primary datasets. Informed consent of participants (or their guardians) in primary studies is referenced in supplementary information [SI] 19 and supplementary table [ST] 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Structural MRI

Design specifications No specific experimental setup was used

Behavioral performance measures No behavioural measures are included

Acquisition

Imaging type(s) Structural, mainly T1 and/or T2 weighted imaging, variations of each dataset are listed in detail in supplementary table 1.1

Field strength Varying (description in each dataset description and supplementary table 1.1 under the column "Field Strength")

Sequence & imaging parameters Varying (description in each dataset description and supplementary table 1.1]

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Varying (description in each dataset description)] but mainly based on Freesurfer recon-all

Normalization Varying (description in each dataset description)] but mainly based on Freesurfer recon-all

Normalization template Varying (description in each dataset description)] but mainly based on Freesurfer recon-all [e.g. fsaverage]

Noise and artifact removal Varying (description in each dataset description)] but mainly based on Freesurfer recon-all

Volume censoring None

Statistical modeling & inference

Model type and settings We used generalised additive models for location scale and shape (GAMLSS) to estimate cross-sectional normative age-related trends.

Effect(s) tested We modelled growth trajectories and generated individual centile scores from these growth charts

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference (See Flandin et al. 2016) Not applicable

Correction For any pairwise comparisons we used Monte-Carlo permutation tests and report all Benjamin-Hochberg FDR corrected values in addition to Cohens d effect sizes
Models & analysis

n/a Involved in the study
☒ ☐ Functional and/or effective connectivity
☒ ☐ Graph analysis
☒ ☒ Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis

We used generalised additive models for location scale and shape (GAMLSS) to estimate cross-sectional normative age-related trends. Including study, sex and processing pipeline as random effects in higher order polynomial models.