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Abstract

Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the

Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267298 May 26, 2022 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ali M, Sung YJ, Wang F, Fernández MV,

Morris JC, Fagan AM, et al. (2022) Leveraging

large multi-center cohorts of Alzheimer disease

endophenotypes to understand the role of Klotho

heterozygosity on disease risk. PLoS ONE 17(5):

e0267298. https://doi.org/10.1371/journal.

pone.0267298

Editor: Kensaku Kasuga, Niigata University, JAPAN

Received: February 23, 2022

Accepted: April 6, 2022

Published: May 26, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0267298

Copyright: © 2022 Ali et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

https://orcid.org/0000-0002-1399-6631
https://orcid.org/0000-0002-8021-4070
https://orcid.org/0000-0002-7677-5406
https://orcid.org/0000-0002-7290-6405
https://orcid.org/0000-0003-0073-7654
https://orcid.org/0000-0002-4487-6405
https://orcid.org/0000-0002-3819-3245
https://orcid.org/0000-0002-3443-7716
https://orcid.org/0000-0002-0276-2899
https://doi.org/10.1371/journal.pone.0267298
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267298&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267298&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267298&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267298&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267298&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267298&domain=pdf&date_stamp=2022-05-26
https://doi.org/10.1371/journal.pone.0267298
https://doi.org/10.1371/journal.pone.0267298
https://doi.org/10.1371/journal.pone.0267298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


associated with brain resilience during normal aging, were recently shown to be associated

with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carri-

ers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower

risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been sug-

gested against amyloid burden for cognitively normal participants, potentially mediated via

the regulation of redox pathways. However, inconsistent associations and a smaller sample

size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we

performed a well-powered association analysis between KL-VSHET+ and five different AD

endophenotypes; brain amyloidosis measured by positron emission tomography (PET)

scans (n = 5,541) or cerebrospinal fluid Aβ42 levels (CSF; n = 5,093), as well as biomarkers

associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n =

4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2

(sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-

VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aβ positivity; odds ratio [OR]

= 0.67 [95% CI, 0.55–0.78], β = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity

for CSF Tau; OR = 0.39 [95% CI, 0.19–0.77], β = -0.94, p = 0.007, and pTau; OR = 0.50

[95% CI, 0.27–0.96], β = -0.68, p = 0.04) in cognitively normal participants, 60–80 years old,

who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-

VSHET+ on an APOE ε4 genotype background may modulate Aβ and tau pathology, thereby

lowering the intensity of neurodegeneration and incidence of cognitive decline in older con-

trols susceptible to AD.

Introduction

Alzheimer disease (AD), the most common form of dementia, affects about 30% of those aged

over 85 years [1]. AD is classified as a neurodegenerative disease, affecting brain integrity and

function, eventually resulting in progressive deterioration of cognitive capabilities [2]. Besides

aging, a strong genetic risk factor for developing AD is the epsilon 4 allele of the apolipopro-

tein E gene (APOE ε4) [3, 4]. As such, participants carrying one or two APOE ε4 alleles are sig-

nificantly overrepresented among persons diagnosed with AD, in comparison to non-carriers

[5, 6]. This particular genetic variant has been shown to be associated with cognitive decline

[7] and reduced mean age at onset even within families with late onset AD [8]. Further, APOE
ε4 homozygosity among cognitively normal participants is associated with earlier and more

abundant Aβ deposition [9–12], earlier pre-clinical memory decline [13], and an increased

incidence of conversion to dementia [9], in comparison to APOE ε4 heterozygotes and non-

carriers. These observations suggest that APOE ε4 influences the very core of AD pathophysi-

ology, in large part due to its key role in fostering cerebral Aβ pathology. Therefore,

identifying genetic factors that interact with APOE ε4 genotype to reduce Aβ burden and,

eventually, a participant’s risk for developing AD, may inspire novel strategies for preventing

or halting the progression of AD and reveal novel targets for effective therapeutic

interventions.

One such genetic factor that has been recently reported and showed a protective effect

among cognitively normal APOE ε4 carriers is polymorphism on Klotho (KL) gene [6, 14, 15].

KL is a transmembrane protein that is cleaved by α- and β-secretases and shed into CSF and

plasma, where it acts as a signaling molecule and longevity factor [16, 17] that promotes
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neuronal functions and brain resilience during aging [18–20]. In humans, two KL gene vari-

ants (rs9536314 for p.F352V and rs9527025 for p.C370S) exist in strong linkage disequilibrium

and segregate together as a functional haplotype called KL-VS. Interestingly, heterozygosity

for the KL-VS haplotype (KL-VSHET+) has been associated with higher serum concentrations

of KL [18, 21] which, in turn, has been reported to promote healthy brain aging and protect

synaptic functions in comparison to participants who carry two copies of the KL-VS haplotype

(KL-VSHET-) [20, 22]. Even though KL-VSHET+ is associated with better cognitive health and

longevity among those aging normally, there exist no clear indication of its involvement in

protection against aging-associated neurodegenerative disorders, such as AD.

Identification of genetic risk factors for AD based on clinical diagnosis poses several chal-

lenges. A clinical diagnosis of AD relies in part on evidence of cognitive decline using standard

cognitive tests that might be influenced by factors unrelated to disease (e.g., anxiety, education,

and general test-taking ability of the participant [23]). In addition, other salient factors that

can play an important role include variability in the cognitive measures [24, 25], over-reliance

on normative cut-off scores to diagnose dementia, and practice effect [24, 26]. A complemen-

tary approach to classical case-control studies involves the use of more robust and stable mea-

sures (endophenotypes) that support a diagnosis of AD, such as cerebrospinal fluid (CSF)

biomarkers and Aβ burden assessed by positron emission tomography (PET). This approach

can increase statistical power to identify AD genetic risk factors, discover novel associations,

and understand their impact on the brain [27]. For example, by using brain endophenotypes,

researchers have identified novel protective genetic variants in TMEM106B and MS4A genes,

associated with neuroprotection (high neuronal proportion) in AD [28], and increased CSF

soluble triggering receptor expressed on myeloid cells 2 (sTREM2) concentrations with

reduced AD risk, respectively [29].

In the spectrum of AD pathology and different genetic factors that exert a protective effect

in the context of disease onset and/or progression, KL-VS appears to be a compelling candi-

date due to its implication in promoting longevity and cognitive resilience during aging [18,

20, 22]. Interestingly, two recent studies evaluating the protective effect of KL-VSHET+ against

AD pathology in cognitively normal participants [15, 30] provided contradictory evidence.

The first study [15] focused on 309 late-middle-aged adults (mean age 61 years) and found

KL-VSHET+ to be associated with reduced Aβ aggregation, suggesting its protective effect

against APOE ε4-linked pathways to disease onset in AD. The second study [30] analyzed data

from 581 adults (mean age 71 years) and found no significant associations between KL-VSHET

+ and cognitive decline, independent of the APOE ε4 genotype, suggesting no modifying effect

of KL-VSHET+ on Aβ aggregation and APOE ε4-driven cognitive decline in preclinical AD.

Furthermore, a study assessing the association between Klotho KL-VS haplotype and cogni-

tion using data from the population-based Heinz Nixdorf Recall Study in 1812 subjects (55–87

years) suggested a slightly lower cognitive performance in KL-VSHET+ subjects [31]. However,

a recent large-scale meta-analysis [6] that focused on cognitively normal participants in the

age range of 60–80 years revealed a 30% reduction in AD risk for participants who are APOE
ε4 carriers and KL-VSHET+. They also observed a significant associations between KL-VSHET+

and higher Aβ42 in CSF (p = 0.03) and between KL-VSHET+ and lower Aβ on PET scans

(p = 0.04), modulated by APOE ε4 status. Focusing on tau pathology, a recent study showed

KL-VSHET+ to be associated with both lower levels and slower rate of change in amyloid-

related increase of tau-PET accumulation in asymptomatic and symptomatic elderly partici-

pants, supporting a protective effect of KL-VSHET+ on the primary AD pathologies [32]. Due

to contradictory outcomes from the existing reports and their relatively small sample sizes, we

performed a systematic evaluation of association between KL-VSHET+ and multiple well-estab-

lished AD endophenotypes to evaluate whether it has a protective effect on AD pathology in
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asymptomatic elderly participants. Here, we have performed a well-powered association analy-

sis between KL-VSHET+ and five different AD endophenotypes: Aβ assessed by PET scans

(n = 5,541) and CSF (n = 5,093), as well as the CSF Tau (n = 5,127), phosphorylated Tau

(pTau181; n = 4,778) and sTREM2 (n = 2,123). In line with previous studies, we performed

APOE ε4- and age-stratified (60–80 years) analyses to determine if there is any association

between KL-VSHET+ and Aβ aggregation that is modulated by APOE ε4 status. In addition, we

also evaluated if there is any association between KL-VSHET+ and other AD endophenotypes

that include Tau, pTau, and sTREM2 measured by CSF. Briefly, in the case of APOE ε4-carri-

ers, we found significant associations between KL-VSHET+ and biomarkers for brain amyloid-

osis (CSF Aβ42; p = 0.007) and tau pathology (CSF Tau; p = 0.007, and pTau; p = 0.04). As

evident from the observed P-values, the detected associations are nominally significant and

would likely fail multiple test correction, indicating the need for validating these findings in

studies with even larger sample sizes before drawing definitive conclusions. Nevertheless, these

findings suggest that KL-VSHET+ exerts an APOE ε4-genotype dependent protective effect on

CSF Tau and pTau concentrations and on subsequent cognitive decline in older cognitively

normal participants susceptible to AD.

Methods

Study samples and phenotype processing

Written consent was obtained for all participants. This study was approved the Washington

University Human study committee. IRB approval #: 201109148.

For this study, we collected data from 17 different AD-related cohorts. Participants were

enrolled in the Memory and Aging Project (MAP) at the Knight Alzheimer’s Disease Research

Center (Knight-ADRC), Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.loni.usc.

edu), BIOCARD, the Dominantly Inherited Alzheimer Network (DIAN), HB, Hospital Sant

Pau (Lleo), London, MOLI, Pau, Mayo Clinic (Mayo), SWEDEN, UPENN, UW, Parkinson’s

Progression Markers Initiative (PPMI), Anti-Amyloid Treatment in Asymptomatic Alzhei-

mer’s Disease (A4), and ADNI Department of Defense (ADNIDOD) studies. Total sample size

was 9,526 (S1 Table in S2 File). Collection of genotype data, PET image processing, and CSF

data processing for each cohort are described in detail in the respective studies [10, 11, 28, 29,

33, 34]. We analyzed the association between KL-VSHET+ and five different AD endopheno-

types (Table 1) that served as biomarkers for brain amyloidosis (Aβ pathology assessed by

amyloid-PET [n = 5,541] and Aβ42 measured from CSF [n = 5,093]), tau pathology (Tau

[n = 5,127] and pTau181 [n = 4,778] from CSF), and inflammation (sTREM2 levels from CSF

[n = 2,123]). A schematic overview of the analyses conducted and the datasets used is provided

in Fig 1.

Briefly, participants were diagnosed as cognitively normal (controls) or AD (cases), based

on the clinical dementia rating (CDR) that was available for 88% of the total dataset. The CDR

is a five-point scaling system that describes the overall dementia severity for each participant

(no dementia = 0, very mild = 0.5, mild = 1, moderate = 2, and severe = 3). Participants with

CDR = 0 were categorized as controls, and those with CDR> 0 were defined as cases. Any par-

ticipant who was missing information about age, sex, KL-VSHET+, APOE ε4 genotype, or

genetic principal components (PCs) was excluded from the analysis. Following this rationale,

we considered 3,725 cognitively normal participants assessed by amyloid-PET and 1,030 cog-

nitive normal participants measured by CSF (Aβ42, Tau, and pTau) and 639 participants with

CSF sTREM2 levels. Similarly, the number of clinically defined AD participants assessed from

amyloid-PET, CSF Aβ42, Tau, pTau, and sTREM2 were 1,090, 2,424, 2,443, 2,297, and 1,074,

respectively.
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For each cohort, amyloid PET images were normalized to their reference cerebellar regions

to obtain standardized uptake value ratios (SUVR) in a composite of cortical brain areas. The

normalized z-scores were calculated for each endophenotype using the mean and standard

deviation (SD) units across each cohort and applied to the entire endophenotype. These nor-

malized z-scores were used for dichotomizing each endophenotype into biomarker positive

Table 1. Demographics of analyzed Alzheimer’s disease (AD) endophenotypes.

Total Amyloid-PET Aβ42 Tau pTau181 sTREM2

Sample size 9,526 5,541 5,093 5,127 4,778 2,123

Female (%) 51.86 54.54 49.30 49.19 48.68 50.31

Age, mean (SD) 68.93 (11.13) 69.53 (10.73) 67.04 (13.27) 67.15 (13.30) 66.93 (13.43) 68.17 (12.13)

APOE ε4+ (%) 39.03 37.39 40.74 41.08 39.47 42.11

Biomarker, mean (SD) 0.028 (0.02) 0.045 (1.03) -0.0018 (1) 0.027 (1) 0.02 (1) 0.05 (0.98)

Klotho-VSHET+ (%) 25.76 25.99 25.31 25.16 25.09 25.20

Cases 3,109 1,090 2,424 2,443 2,297 1,074

Controls 5,286 4,117 1,584 1,589 1,582 879

Demographics of participants at the time of amyloid PET imaging and CSF sampling. This table summarizes basic demographic information of participants included in

the analysis. For each modality, we report percentage of females, mean age of the participants and standard deviation (SD) in the age, percentage of APOE ε4-carriers

(APOE ε4+) participants, mean value of the endophenotypic biomarker and its SD, percentage of KL-VS heterozygous (KL-VSHET+) participants, and number of cases

and controls. Samples with missing case/controls status were also considered in the ‘all participants’ analysis. To normalize endophenotypes across different cohorts, we

converted different amyloid imaging measures (e.g., Centiloid, PiB, and AV45) into log-normalized z-score using “scale” function in base R. Phenotype from each

cohort was normalized individually to account for within cohort variation. These AD endophenotypes are used for checking their association with KL-VSHET+.

Abbreviations: PET, positron emission tomography; Aβ, β-amyloid; pTau, phosphorylated tau; soluble triggering receptor expressed on myeloid cells 2, sTREM2; sd,

standard deviation; KL-VS, Klotho-VS; Het+, heterozygosity.

https://doi.org/10.1371/journal.pone.0267298.t001

Fig 1. Schematic overview of datasets and performed analysis. Number of participants in each modality were stratified into three categories: 1) All of

the participants; 2) Age: 60–80, participants aged 60 to 80 years; 3) CN: 60–80, cognitively normal participants aged 60 to 80 years. Association between

KL-VSHET and endophenotypes were assessed using generalized linear mixed (logistic regression) model for dichotomized phenotype. Age, sex, and

first three genetic PCs were used as covariates in an APOE ε4-stratified analysis. Abbreviations: PET, positron emission tomography; N, number of;

CSF, cerebrospinal fluid; Aβ, β-amyloid; pTau, phosphorylated tau181; soluble triggering receptor expressed on myeloid cells 2, sTREM2; CN,

cognitively normal; KL, Klotho; Het, heterozygous; PC, principal component.

https://doi.org/10.1371/journal.pone.0267298.g001
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(case) and negative (control), as previously described [11]. Briefly, defining biomarker positiv-

ity and negativity requires the selection of a cut-point. We and others [11, 35, 36] have demon-

strated that it is possible to use Gaussian mixture model (GMM) to statistically infer that cut-

off. We overlapped the distributions of quantitative z-scores from cases and controls for each

endophenotype and employed a GMM that relies on hierarchical model-based agglomerative

clustering to get votes for defining a cut-point for dichotomization. We used Mclust function

from “mclust” R package (version 5.4.6) for dichotomizing all quantitative endophenotypes

separately. The empirical dichotomization cutoffs obtained using this approach appeared con-

sistent with existing literature. For instance, our model suggested the cut-point of 527 pg/mL

for Aβ42 from CSF in MAP cohort which is between 500 pg/mL [37] to 518 ng/l [35] depend-

ing on the study. A density plot defining the dichotomization cutoffs for Aβ assessed by PET

scan and Aβ42 from CSF in MAP and ADNI cohorts is shown in Fig 2. Further details about

the empirical cutoffs derived from z-scores and their corresponding raw values are provided in

S2 Table in S2 File. The dichotomized (biomarker positive/negative) endophenotypic status

was used as a response variable to assess its association with Klotho heterozygosity.

Genotyping, quality checks, imputation, and population structure

We applied stringent quality control (QC) steps to process the genotyping array and sequenc-

ing data. We used the threshold of 98% for removing single nucleotide polymorphisms (SNPs)

and participants with low call rate. Autosomal SNPs that were not in the Hardy-Weinberg

equilibrium (P < 1×10−6) were also removed. Duplication and relatedness of participants were

estimated from identity-by-descent (IBD) analysis carried out in Plink version 1.9 [38]. In case

of related participants (Pihat�0.25), the samples from MAP or with a higher number of vari-

ants that passed the QC were prioritized. For phasing and imputation, we used The 1000

Genomes Project Phase 3 data (October 2014), SHAPEIT v2.r837 [39], and IMPUTE2 v2.3.2

[40]. We used imputed probability score < 0.90 and�0.90 as thresholds for missing and fully

observed participant genotypes, respectively. Genotyped and imputed variants with

Fig 2. Cutoffs for dichotomizing different AD endophenotypes across MAP and ADNI cohorts. A density plot defining the dichotomization cutoffs

for Aβ assessed by PET scan and Aβ42 from CSF in MAP and ADNI cohorts. The distribution of z-score for cases and controls is shown by red and

blue dotted lines, respectively. The cut-off point where both these distributions overlap was selected as the dichotomization threshold for each

endophenotype. The dichotomization was performed on normalized z-scores for each endophenotype. However, the corresponding raw score for each

dichotomization threshold is also labelled in the plot. Abbreviations: Aβ, β-amyloid; PET, positron emission tomography; MAP, Memory and Aging

Project; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CSF; Cerebrospinal fluid.

https://doi.org/10.1371/journal.pone.0267298.g002
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Direct effect of KL-VSHET+ status on inflammation-specific biomarker

For sTREM2 CSF levels, we did not observe any significant association between this inflamma-

tion biomarker and KL-VSHET+ status across any participant stratification, regardless of the

age group and APOE ε4 status. Nevertheless, for cognitively normal participants aged 60 to 80

years, we observed that KL-VSHET+ status is associated with increased sTREM2 CSF levels,

which represents the positivity of inflammation-specific biomarker, but association was not

deemed significant in APOE ε4-carriers (OR = 1.08 [95% CI, 0.58–2], β = 0.08, p = 0.80) as

well as non-carriers (OR = 1.20 [95% CI, 0.77–1.86], β = 0.18, p = 0.43).

Sensitivity analysis result: Robustness of the associations between

KL-VSHET+ status and brain amyloidosis to the ���� ε4 status, age, and

sex

In order to estimate whether the associations between KL-VSHET+ and amyloidosis were con-

founded by uneven sample size of APOE ε4-carriers and non-carriers as well as by differences

in the sex and age of the participant groups, the association analyses were repeated with equal

numbers of APOE ε4-carriers (N = 308) and non-carriers (N = 308) matched for age and sex.

As in the full-sample analyses for cognitively normal participants aged 60 to 80, these smaller,

balanced analyses revealed that KL-VSHET+ was consistently associated with CSF Aβ bio-

marker positivity among APOE ε4-carriers (OR = 0.68 [95% CI, 0.56–0.78], β = 0.75,

p = 0.005; S6 Table in S2 File) and among APOE ε4 non-carriers (OR = 0.69 [95% CI, 0.51–

0.79], β = 0.70, p = 0.034). Likewise, similar trends were observed between the full-sample and

smaller, balanced analyses for amyloid imaging, CSF Tau, pTau181, and sTREM2 (S6 Table in

Fig 3. Forest plot of odds ratio (OR) for KL-VSHET+ association with dichotomized AD endophenotypes in 60–80 year cognitively normal

participants, stratified by ���� ε4 status. A significant association was detected between KL-VSHET+ and dichotomized Aβ, Tau, and pTau CSF

levels. In case of Aβ, the associations were deemed significant across both APOE ε4 strata, whereas for Tau and pTau, associations were observed only

in APOE ε4-carriers, representing an exclusive protective effect of KL-VSHET+ for the cognitively normal participants aged 60 to 80 years and carrying

APOE ε4. Abbreviations: APOE4+, Apolipoprotein E4 positive; APOE4-, Apolipoprotein E4 negative; PET, positron emission tomography; Aβ, β-

amyloid; pTau, phosphorylated tau181; soluble triggering receptor expressed on myeloid cells 2, sTREM2.

https://doi.org/10.1371/journal.pone.0267298.g003
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S2 File). In these corrections for class imbalance of APOE ε4-carriers and non-carriers, as well

as for males and females of same age, the direction of effect remains the same for each endo-

phenotype, and the strength of association becomes more profound (lower p-values). Taken

together, these results suggest that observed associations between KL heterozygous cognitively

normal participants and different AD endophenotypes (e.g. tau and pTau) are independent of

the distribution of APOE ε4 carriage status, age, and sex of participants.

Cognitively normal participants (aged 60 to 80) drive association between

KL-VSHET + status and AD endophenotypes

We also conducted APOE ε4-stratified association analyses between KL-VSHET+ status and bio-

markers for brain amyloidosis (Aβ from PET and CSF), tau-related pathology (CSF Tau and

pTau), and inflammation (CSF sTREM2) for all participants, regardless of their age and case-

control status. In these larger inclusive analyses, no significant association was observed

between KL-VSHET+ and any of the five endophenotypes (S3 Table in S2 File). Similarly, we also

performed the same analyses but restricting to participants between 60 and 80 years of age,

regardless of their case-control status; even in that case, no significant association was detected

across any endophenotype (S3 Table in S2 File). Only when participants were restricted to the

age range 60–80 and cognitive normalcy were significant association detected between

KL-VSHET+ status and CSF Aβ, Tau, and pTau levels (S3 Table in S2 File). Notably, these find-

ings suggest that the nearly-significant associations observed in the more inclusive analyses (e.g.

for Aβ42) were mainly driven by the cognitively normal participants who are 60 to 80 years old.

Discussion

The role of Klotho protein as a longevity factor is widely recognized [16, 17]. There has been

an increasing amount of evidence supporting the relationship between KL-VSHET+ and pre-

served brain integrity and cognitive performance during normal aging [18–20]. In this study,

we examined the association of KL-VSHET+ status with five different AD-related endopheno-

types that serve as biomarkers for brain amyloidosis (Aβ levels measured from CSF and amy-

loid PET), tau pathology (CSF Tau and pTau), and inflammation (sTREM2). To our

knowledge, we have analyzed the largest sample size of AD endophenotypic data for evaluating

its association with KL-VSHET+; this approach is instrumental to discern the potential protec-

tive effect of this heterozygous genetic variant for AD in cognitively normal APOE ε4-carriers.

Our results showed that KL-VSHET+ status was associated with CSF Aβ42, Tau and pTau bio-

marker negativity in participants who are cognitively normal APOE ε4-carriers within an age

range of 60 to 80 years. This finding suggests that KL-VSHET+ status reduces the risk of subse-

quent AD dementia among APOE ε4-carriers by lowering the AD pathology burden [6, 42].

We were able to replicate the findings by Belloy et al. [6]; that is, KL-VSHET+ status was sig-

nificantly associated with increased CSF Aβ42 levels (Aβ biomarker positivity) for cognitively

normal participants aged 60 to 80 years who are APOE ε4-carriers (OR = 0.67 [95% CI, 0.55–

0.78], β = 0.72, p = 0.007). Further, our analyses also found this association to be significant

among APOE ε4 non-carriers (OR = 0.61 [95% CI, 0.51–0.70], β = 0.46, p = 0.03), with similar

(overlapping 95% CI) effect sizes (Table 2). Although no significant association was observed

with amyloid PET, the detected trend towards a negative association suggests that KL-VSHET+

may protect against AD by reducing deposits of Aβ that are capable of binding amyloid PET

tracers. Consistently, studies have shown a very high concordance between CSF Aβ42 and

amyloid PET [43], but with a proportion of individuals with discordant results (CSF+/PET-);

such individuals may represent the earliest stages of AD neuropathologic change, when low

CSF Aβ levels appear to coincide with early amyloid deposition, but amyloid deposits have not
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yet accrued sufficiently to reach threshold for amyloid-PET tracer binding, and neurodegen-

eration has not yet begun [44, 45]. In support of this interpretation, a previous study investigat-

ing longitudinal differences in cognition between participants without dementia with different

CSF and PET profiles found no memory decline in concordant-negative (CSF−/PET−) and

discordant (CSF+/PET−) groups, in contrast to the concordant-positive (CSF+/PET+) group

that deteriorated over time [46]. Furthermore, Palmqvist et al. [44] reported similar results,

when they analyzed 437 non-demented participants from ADNI whose results from amyloid

PET scans and CSF Aβ measurements showed that CSF Aβ levels become abnormal in the ear-

liest stages of AD, before amyloid PET and before neurodegeneration starts.

We also investigated whether KL-VSHET+ status is significantly associated with Tau and

pTau levels in CSF. We found that KL-VSHET+ status was significantly associated with

decreased levels of CSF Tau (OR = 0.39 [95% CI, 0.20–0.77], β = -0.94, p = 0.007) and pTau

(OR = 0.50 [95% CI, 0.27–0.96], β = -0.68, p = 0.04) i.e., CSF Tau and pTau biomarker negativ-

ity, in participants who are APOE ε4-carriers and 60 to 80 years old. Interestingly, APOE ε4

non-carriers showed similar negative trends, but the associations were not significant for Tau

(OR = 0.85 [95% CI, 0.54–1.35], β = -0.16, p = 0.49) or pTau (OR = 0.89 [95% CI, 0.57–1.39], β
= -0.11, p = 0.61). This indicates that KL-VSHET+ status interaction with pathological aspects

of AD are more profound among APOE ε4-carriers, such as Aβ and Tau accumulation during

the pre-clinical phase of the disease [47, 48]. Although we did not find a protective effect of

KL-VSHET+ in individuals with AD dementia, a recent study reported that KL-VSHET+ attenu-

ated the association between higher amyloid PET and higher increases in tau PET accumula-

tion [32]. Reasons for the discrepancy could be that here we did not investigate interaction

effects of KL-VSHET+ and amyloid on tau pathology, and second, we did not investigate tau

PET, which assesses fibrillar tau deposits, whereas CSF p-tau181 appears to represent one or

more earlier phenomena that do not closely correlate with neurofibrillary tangle burden.

Indeed, previous studies have also reported a significant association between KL-VS heterozy-

gosity and reduced tau accumulation and lower memory impairment in elderly humans at risk

of AD dementia [32, 49]. However, in a mouse model of AD that was used to examine the neu-

roprotective effects of Klotho protein against neuronal damage associated with oxidative stress

and neurodegeneration, no changes in Tau phosphorylation were observed in the presence of

Klotho [50]. Unlike Tau and pTau association with KL-VSHET+ status, we observed a positive

association with CSF levels of sTREM2 (inflammation biomarker). The observed increase in

CSF sTREM2 levels was not significantly associated with KL-VSHET+ status for either APOE
ε4-carriers (OR = 1.08 [95% CI, 0.59–2], β = 0.08, p = 0.80) or non-carriers (OR = 1.20 [95%

CI, 0.77–1.86], β = 0.18, p = 0.43). Interestingly, recent studies [29, 34, 51, 52] have shown that

higher sTREM2 levels are associated with lower AD risk and slower progression. Therefore,

the observed positive association suggests that the protective effect of the KL-VSHET+ might be

mediated by higher CSF sTREM2 levels. However, this hypothesis will need to be validated in

studies with larger sample size for CSF sTREM2 levels.

Taken together, the observed significant associations between KL-VSHET+ status and bio-

markers for brain amyloidosis (CSF Aβ positivity) and tau pathology (CSF Tau and pTau neg-

ativity) are suggestive of neuroprotective effect of KL-VSHET+ against age-related biomarker,

biomolecular, and cognitive alterations that confer risk for AD. Our results further strengthen

the findings of a recent meta-analysis including 25 independent studies, showing that APOE
ε4-carriers who were also KL-VSHET+, were at a reduced risk for the combined outcome of

conversion to mild cognitive impairment (MCI) or AD [6]. Besides, several other studies that

evaluated the association of KL-VSHET+ status with different cognitive measures in control

participants did not consider interactions with APOE ε4 but did observe protective associa-

tions that were more pronounced closer to 80 years of age [18, 53, 54].
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Notably, we assessed the associations between KL-VSHET+ status and AD endophenotypes

across three age strata: all of the participants (AD and controls); only those aged 60 to 80 years

(AD and controls); and only cognitively normal participants aged 60 to 80 years (S3 Table in

S2 File). Owing to a higher genetic risk for AD attributable to APOE ε4 in individuals who are

60 to 80 years old [55–57] and an existing study that hypothesized protective association of

KL-VSHET+ status to be strongest in APOE ε4 carriers who are 60 to 80 years old [6], the a pri-

ori focus of the current study was also at this particular age range. Although we observed simi-

lar associative trends most of the time, it was interesting to see how the effects became

apparent when restricting analyses to the cognitively normal participants in the age range of

60 to 80 years. In all of the cases, no significant associations were observed between KL-VSHET

+ status and AD endophenotypes while considering all of the AD and cognitively normal par-

ticipants, or all of the AD and cognitively normal participants within age range of 60–80. How-

ever, pronounced effects and associations were apparent for Aβ, Tau, and pTau levels from

CSF, while considering cognitively normal participants who are APOE ε4-carriers and

KL-VSHET+. These findings suggest that the cognitively normal participants group, aged 60 to

80 years, mainly drove the outcome in our analyses, further strengthening the existing hypoth-

esis that KL-VS heterozygous genotype is favorable for better health and cognition in older

people [18, 53, 58]. Importantly, we also observed that associations between KL heterozygous

cognitively normal participants and different AD endophenotypes are robust to uneven sam-

ple size of APOE ε4-carriers and non-carriers as well as differences in the sex and age of the

participants (S6 Table in S2 File). Although, the observed findings appear consistent with our

initial hypothesis and confirm existing literature [6, 42], the detected associations are nomi-

nally significant and would likely fail multiple test correction due to limited sample size.

Therefore, additional studies are required to investigate the associations between KL-VSHET+

and AD endophenotypes with relatively larger sample size to draw definitive conclusions.

The exact mechanism underlying the KL-VSHET+ interaction with APOE ε4 and modula-

tion of Aβ, Tau, and pTau burden is yet unknown. However, it is logical to postulate that

KL-VSHET+ may confer resilience by increasing the serum level of circulating Klotho protein

[18, 21] or by changing its function. In animal mouse models, elevated klotho levels have led

to an extended lifespan [17], enhanced cognition [19] and increased resilience to AD-related

toxicity [58]. Other studies in humans indicated that KL-VSHET+ status has protective effects

against brain aging and cognitive decline [21, 59], suggestive of its protective association

against AD. Our findings also suggest that middle-aged APOE ε4-carriers who are KL-VSHET+

might show resilience to age-induced cognitive and tau changes. Interestingly, we have

observed an age-specific association between KL-VSHET+ and AD endophenotypes, which is in

line with existing studies reporting a specific time window for the effect of KL-VS polymor-

phism [20, 59].

To conclude, our work contributes to the existing literature by demonstrating that the pro-

tective effects of KL-VSHET+ extend to AD-related Aβ, Tau, and pTau endophenotypes and

deficits in memory and executive function in cognitively normal APOE ε4-carriers who are at

risk for developing AD. One promising research avenue for the future studies could be to

assess whether Klotho protein levels in the CSF or serum/plasma of participants associate with

measures of preclinical and symptomatic AD.
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Daniel Alcolea, Jordi Clarimon, Lorena Rami, José Luis Molinuevo, Marc Suárez-Calvet,
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