Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1

Madeline M Schwarz
University of Pittsburgh

David A Price
Washington University School of Medicine in St. Louis

Safder S Ganaie
Washington University School of Medicine in St. Louis

Annie Feng
Washington University School of Medicine in St. Louis

Nawneet Mishra
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation

Schwarz, Madeline M; Price, David A; Ganaie, Safder S; Feng, Annie; Mishra, Nawneet; Hoehl, Ryan M; Fatma, Farheen; Stubbs, Sarah H; Whelan, Sean P J; Cui, Xiaoxia; Egawa, Takeshi; Leung, Daisy W; Amarasinghe, Gaya K; and Hartman, Amy L, "Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1." Proceedings of the National Academy of Sciences of the United States of America. 119, 33. e2204706119 (2022).
https://digitalcommons.wustl.edu/oa_4/303

This Open Access Publication is brought to you for free and open access by the Open Access Publications at Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1

Madeline M. Schwartza,b,1, David A. Priced,1, Safder S. Ganaied,1, Annie Fengd,1, Nawmeet Mishra,1, Ryan M. Hoehl,1, Farheen Fatmad,1, Sarah H. Stubbsc,1, Sean P. J. Whelanf,1, Xiaojia Cuig,1, Takeshi Egawa,1, Daisy W. Leungc,d, Xiaoxia Cuig,1, Gaya K. Amarasingheg,2, and Amy L. Hartmana,b,2

Oropouche orthobunyavirus (OROV; *Peribunyoviridae*) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein–related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.

Significance

Emerging zoonotic viruses are at the forefront due to the ongoing COVID-19 pandemic. Bunyaviruses are a large group of diverse, arthropod-borne viruses that present concern due to reassortment and evolutionary capacity of their segmented RNA genomes. Here, we demonstrate that the conserved host cell surface receptor low-density lipoprotein receptor-related protein (Lrp1) facilitates efficient cellular infection by the South American bunyavirus Oropouche virus (OROV). Therefore, Lrp1 is a host factor for multiple bunyaviruses, including OROV and Rift Valley fever virus (RVFV), and it plays a broader role in bunyavirus infection than has been previously known. This is the first study to identify a pan-bunyaviral host factor with significant implications for therapeutic targets.
RVFV, also requires Lrp1 for efficient infection of host cells. Despite having a similar genome organization among members of the Bunyavirales, many of the virally encoded sequences show little sequence homology. Therefore, studies to define similar host protein usage by these two distantly related viruses would have significant implications for pan-bunyavirus therapeutically and diagnostic development.

Here, we used Lrp1 knockout (KO) cell lines to show that OROV infection is decreased compared to parental cells expressing Lrp1. Pretreatment of cells with varying concentrations of the high-affinity Lrp1-binding protein receptor-associated protein (RAP) significantly reduced OROV infection. Zika virus (ZIKV), an arbovirus outside the Bunyavirales order, was unaffected by the loss of Lrp1 or by treatment with Lrp1-binding RAP. Chimeric virions expressing OROV glycoproteins bound to the Lrp1 ectodomain. Finally, the role of Lrp1 in OROV infection was validated in vivo, whereby RAP treatment was able to reduce viral tissue titers and rescue mice from lethal intracerebral infection with OROV. Based on our findings, Lrp1 is a host factor for multiple bunyaviruses, presenting a potential therapeutic approach to address this important group of emerging arboviruses. This work also paves the way for future studies to understand the mechanism of OROV binding to Lrp1.

Results

OROV Infection Is Reduced in Lrp1 KO Cell Lines. OROV strain BeAn19991 (17) was grown in mouse microglial BV2 cells at a multiplicity of infection (MOI) of 0.1 and 0.01 along with RVFV strain ZH501 and ZIKV strain PRVABC59 for comparison (SI Appendix, Fig. S1A). While ZIKV did not replicate well in BV2 cells, OROV and RVFV reached 10⁶ PFU/mL by 24 h postinfection (hpi) at MOI 0.1, and these parameters were used for the remaining cellular infection studies. Clonal BV2 KO cell lines that are deleted for either Lrp1 or the Lrp1 chaperone protein RAP express significantly reduced levels of Lrp1, and this was visualized and quantified using immunofluorescence and western blot (SI Appendix, Fig. S1B-D) (11). Infection of both Lrp1 and RAP clonal KO cell lines with OROV resulted in significantly less infectious virus produced by 24 hpi when compared to the infection of BV2 wild-type (WT) cells (Fig. 1A), with reductions of 2 to 3 log in titer for both OROV and RVFV as a comparator. Thus, OROV requires Lrp1 or related proteins for efficient cellular infection and production of infectious virus from BV2 cells. Additional clonal Lrp1 KO cell lines were established in human HEK293T, A549, and murine N2a cell lines, with the loss of Lrp1 verified by western blot (SI Appendix, Fig. S1D). As with BV2 cells, Lrp1 KO resulted in significantly reduced OROV infection across all cell lines. While similar reductions were seen with RVFV in Lrp1 KO cells, no significant difference in virus infection or production was observed in cells infected with Zika virus (ZIKV), a flavivirus used as a control (Fig. 1B–D). The titers for both OROV and RVFV infection of KO cell lines were 10- to 100-fold lower than WT cell lines. By immunofluorescence, Lrp1 was detectable in WT parental A549 cells but was absent from Lrp1 KO lines (Fig. 1E and F). The number of OROV-infected cells at 24 hpi was reduced at least 10-fold in the KO line (Fig. 1E), which corresponds to the observed reduction in titers.

The Lrp1-Binding Chaperone Protein RAP Inhibits OROV Infection of Cell Lines from Taxonomically Distinct Species. RAP (or Lrpap1) is a high-affinity Lrp1 ligand and critical chaperone of Lrp1 and other LDLR family members (18). Domain 3 of RAP (RAPD3) (Fig. 2A) specifically binds to two extracellular cluster domains of Lrp1 (CLII and CLIV) and competes for attachment with other compatible ligands while chaperoning the protein through the endoplasmic reticulum (ER) to the cell surface (18). Here, we tested the ability of exogenous mouse RAPD3 (mRAPD3) to block OROV infection by adding it before infection, at the time of infection, or following infection (SI Appendix, Fig. S2A). After determining that pretreatment most effectively blocked infection, mRAPD3 was added to murine BV2 microglial cells, monkey Vero E6 kidney cells, and human SH-SYSY neuroblastoma cells at various concentrations 1 h before infection with MOI 0.1 of OROV, RVFV, or ZIKV as comparators (Fig. 2 B and C and SI Appendix, Fig. S2B). At 24 hpi, samples were tested for infectious virus by plaque assay. As a control, mutant mRAPD3, in which two lysines were changed (Fig. 2A) was tested in parallel, as these mutations have been shown previously to reduce the binding of RAP to CLII and CLIV of Lrp1 (11, 19, 20). In all of the cell lines, treatment with mRAPD3 significantly reduced OROV infection compared to untreated cells at all concentrations, and the reduction in infection was comparable to RVFV (Fig. 2 B and C and SI Appendix, Fig. S2B). The mutant mRAPD3 was less effective at inhibiting both viruses at lower concentrations, with significant inhibition of both OROV and RVFV at the highest concentrations tested (10 μg/mL). ZIKV does not efficiently infect BV2 cells, but it does infect SH-SYSY and Vero cells (SI Appendix, Fig. S1A). Neither mRAPD3 nor mutant mRAPD3 inhibited the ZIKV infection of SH-SYSY or Vero cells (Fig. 2 B and C).

OROV Interaction with Lrp1 Is Dependent on Viral Glycoproteins. To determine whether the restriction in OROV infection in Lrp1-deficient cells is at the level of the surface glycoproteins, we used a chimeric vesicular stomatitis virus (VSV) expressing green fluorescent protein (GFP) and the OROV glycoproteins Gn and Gc (VSV-OROV). Purified VSV-OROV or VSV control virions were used to infect BV2 WT cells or BV2 Lrp1 KO cells. Samples were collected at 6 to 8 hpi and analyzed for GFP expression by flow cytometry (Fig. 3A and SI Appendix, Fig. S3) or imaging by fluorescent microscopy (Fig. 3B). VSV-OROV infection was significantly reduced in BV2 Lrp1 KO cells. VSV infection was also significantly reduced but to a lesser degree, likely due to its utilization of other LDLR family members for viral entry (21). The reduction in VSV-OROV infection was confirmed by immunofluorescent microscopy (Fig. 3B).

Furthermore, because mRAPD3 is known to bind to Lrp1 CLIV and is able to block OROV infection (Fig. 2), we used biolayer interferometry to determine whether chimeric VSV-OROV binds to Lrp1 CLIV. To do this, we used a recombinant Fc-fusion of the Lrp1 CLIV domain (Fig. 3C), which was previously shown to block RVFV infection (11). We found that VSV-OROV virions bound to immobilized Fc-Lrp1 CLIV but not to Fc control (Fig. 3D).

Lrp1 Cluster Domains CLII and CLIV Inhibit OROV Infection. Many ligands of Lrp1 bind to the CLII and CLIV extracellular domains, including mRAPD3. Given the results showing VSV-OROV binding to CLIV (Fig. 3D), we treated Vero E6 cells with soluble Fc-fused CLII and CLIV proteins (Fig. 3C) (11) and compared the relative infection to untreated cells and Fc-control treated cells. We observed that Fc-fused CLII and CLIV treatment significantly reduced OROV infection compared to the Fc-control treated cells (Fig. 4A). These results are comparable to those of treated cells infected with RVFV at the
same MOI (Fig. 4B). In addition, ZIKV infection of Vero E6 cells was unaffected by treatment with any Fc-bound Lrp1 proteins (Fig. 4C).

OROV Infection Is Inhibited by the Glycoprotein Gn from RVFV.

We previously determined that the RVFV Gn protein binds to CLII and CLIV of Lrp1, and that mRAPD3 can compete with RVFV Gn for Lrp1 binding, indicating overlapping binding sites (11). Furthermore, the addition of soluble RVFV Gn was able to block RVFV infection (11). Since mRAPD3 was also able to block OROV infection and VSV-OROV bound to CLIV, we next determined whether addition of RVFV Gn can similarly block OROV infection. We treated BV2 cells with RVFV Gn 1 h before OROV infection and kept it in the media for the duration of the experiment. At 24 hpi, we evaluated OROV titers by plaque assay. We compared RVFV Gn blocking of RVFV infection as a control. In BV2 cells, we found that pre-treatment of cells with RVFV Gn at concentrations of 2, 5, 10,
and 20 μg/mL significantly reduced infectious titers of both OROV and RVFV (Fig. 5A). This experiment was repeated in Vero E6 cells with the addition of ZIKV as a control. RVFV Gn significantly reduced OROV and RVFV infection in Vero E6 cells and showed no significant effect on ZIKV infection (Fig. 5B).

mRAPD3 Treatment Rescues Mice from Lethal OROV Infection.

Because mRAPD3 reduced OROV infection in vitro, we used a proof-of-concept experiment to determine the in vivo relevance of this interaction. OROV does not cause lethal disease in adult mice when administered subcutaneously. However, the median lethal dose (LD50) of OROV administered by intracerebral (IC) injection in young adult mice is <5 PFU (SI Appendix, Fig. S4A). Mice succumbed to infection with an average time to death of 4.5 days postinfection (dpi) and viral titers in the brain at the time of death were >10^7 PFU/g tissue (SI Appendix, Fig. S4B).

Based on the LD50, a dose of 100 PFU (at least 20× OROV IC LD50) was chosen for the mRAPD3 treatment experiments. OROV was administered IC in conjunction with 215 μg mRAPD3, mutant mRAPD3, or a similar-sized, unrelated control protein (Ebola VP30) to C57BL/6J mice in a proof-of-concept experiment (Fig. 6A). All untreated and control protein-treated mice succumbed by 4 to 6 dpi. Of the mice that received mRAPD3 treatment, 90% survived, while 60% of mice that received mutant mRAPD3 also survived.

A cohort of mice underwent planned euthanasia at 3 dpi to directly compare tissue titers across treatment groups. The untreated and control protein-treated mice had high viral titers in their brains (10^6 to 10^8 PFU/g tissue), while the mRAPD3-treated mice had levels of infectious virus that were near or at the limit of detection (Fig. 6B). Fitting with the survival data and in vitro data (Fig. 2C), mutant mRAPD3-treated mice had intermediate amounts of virus in the brain compared to mRAPD3 and control animals (Fig. 6B). This can be visualized by immunofluorescence microscopy using an anti-OROV N polyclonal antibody on cryosections of the cerebral cortex from 3 dpi brain tissues. The mRAPD3-treated mice have little to no staining for OROV N protein in the brain at 3 dpi (Fig. 6C and SI Appendix, Fig. S5A), whereas the untreated and control protein-treated mice had abundant, diffuse OROV staining in the brain (Fig. 6C). The mutant mRAPD3-treated mice had reduced, focal regions of OROV staining in the brain at 3 dpi, which was substantially more than mRAPD3-treated mice. Thus, the reduced inhibition of OROV infection displayed by the mutant mRAPD3 protein (Fig. 2) corresponds to reduced binding affinity to CLII and CLIV, intermediate tissue viral loads, and concomitant intermediate levels of survival in IC-infected mice.

We also stained the brain tissues with the microglial marker Iba-1 to examine immune activation within the tissue. Brains from mice receiving mRAPD3 treatment alone or mRAPD3 + OROV expressed low levels of Iba-1^+ cells, indicative of a normal resting state in the brain. However, OROV infected and untreated, mutant mRAPD3-treated, or control protein-treated brain sections had more activated microglia (Iba1^+ cells), indicating higher levels of inflammatory activation and recruitment (Fig. 6C).
Finally, serum samples from the surviving mRAP D3 and mutant mRAP D3-treated mice were tested for neutralizing activity against OROV using a plaque-reduction neutralization assay (PRNT50). Titers in the surviving mice were ≥1:40, while the uninfected control animals had no detectable neutralizing titer, thus confirming that these exposed yet surviving animals were infected with OROV (*SI Appendix, Fig. S4C*).

Discussion

Our data show that a highly conserved protein Lrp1 is a host factor that supports efficient cellular infection by Oropouche orthobunyavirus. We demonstrate that OROV infection of Lrp1-deficient cells was significantly decreased. We also show that high-affinity Lrp1-binding RAP significantly reduced OROV...
infection in vitro and in vivo. Direct association between OROV and Lrp1 was established with binding assays using VSV-OROV. The relevance of our finding is also supported by the in vivo studies, in which intracerebral infection of mice with OROV in the presence of mRAPD3 rescued the animals from an otherwise lethal infection and significantly reduced viral titers in the brain. Taken together, these data support a role for Lrp1 in OROV infection.

Fig. 4. Soluble Fc-bound Lrp1 CLII and CLIV inhibit cellular infection by OROV. (A) Soluble Fc-bound CLII, CLIV, or Fc control proteins were added to Vero E6 cells 1 h before infection with (A) OROV, (B) RVFV, or (C) ZIKV at MOI 0.1. Samples were harvested at 24 hpi (OROV and RVFV) or 48 hpi (ZIKV), and virus was measured by plaque assay and qRT-PCR. Data are expressed as a percentage of untreated control titers. Statistical significance was determined using two-way ANOVA. Experiments were repeated two times. ****P < 0.0001.

Fig. 5. RVFV Gn inhibits cellular infection by OROV. (A) RVFV Gn was added to BV2 mouse microglia cells 1 h before infection with MOI 0.1 of OROV or RVFV ZH501. Samples were collected at 24 hpi and processed by viral plaque assay. (B) RVFV Gn was added to Vero E6 nonhuman primate cells 1 h before infection with MOI 0.1 of OROV, RVFV, or ZIKV. Samples were harvested at 24 hpi (for RVFV and OROV) or 48 hpi (for ZIKV) and infectious virus was measured by plaque assay and qRT-PCR. Data are expressed as a percentage of untreated control titers. Statistical significance was determined using one-way ANOVA. Experiments were repeated two times. ***P < 0.001.
Lrp1 mediates cellular infection by the phlebovirus RVFV (11, 22). Lrp1 is needed for efficient in vitro cellular infection and to promote lethal RVFV infection in vivo in a mouse model. While important, the previous study (11) was focused on RVFV and did not implicate Lrp1 as having a broader impact. Here, we reveal that the orthobunyavirus OROV, while classified in a different family than RVFV, also uses Lrp1 to efficiently infect cells and cause disease in vivo, thus implicating Lrp1 as a much broader host factor for bunyaviral infection. Both viruses bind similar and potentially overlapping regions within Lrp1 extracellular domains CLII and CLIV. This finding implies some structural similarities between the two Gn proteins despite sequence diversity.

Consistent with our results, recent studies have examined the role of the LDLR family and related proteins in the context of viral infections. These efforts led to several reports, including a role for LDLR in binding and entry of dengue virus (23), hepatitis C virus (24), VSV (25), and rhinovirus (26). The LDLR-related protein LDLRAD3 was recently reported to facilitate the entry of Venezuelan equine encephalitis virus (27). Finally, VLDLR and ApoER2 were recently identified as entry receptors for multiple alphaviruses, including Semliki Forest virus, eastern equine encephalitis virus, and Sindbis virus, despite differences in E2/E1 amino acid sequence homology (28). These findings of related LDLRs, but not Lrp1, further support a wide-ranging role for this family of receptors in viral infections. However, our studies define a role for Lrp1 in mediating efficient infection by both OROV and RVFV. While consistent with this broader role of LDLRs in viral infections, this study highlights distinct drivers of specificity in the viral entry of bunyaviruses that are related to Lrp1.

The strain of OROV used here, BeAn 19991, was isolated from a sloth in Brazil in 1960 and falls within Lineage I (29). This is also the strain that served as the basis for the OROV reverse genetics system (17). While further studies testing OROV strains from Lineage II and III strains would be informative, the conserved nature of the interactions and our studies using heterologous proteins such as RVFV Gn and RAPD3 to inhibit OROV infection suggest that Lrp1 may support infection by multiple OROV lineages.

Lrp1 mediates cellular infection by the phlebovirus RVFV (11, 22). Lrp1 is needed for efficient in vitro cellular infection and to promote lethal RVFV infection in vivo in a mouse model. While important, the previous study (11) was focused on RVFV and did not implicate Lrp1 as having a broader impact. Here, we reveal that the orthobunyavirus OROV, while classified in a different family than RVFV, also uses Lrp1 to efficiently infect cells and cause disease in vivo, thus implicating Lrp1 as a much broader host factor for bunyaviral infection. Both viruses bind similar and potentially overlapping regions within Lrp1 extracellular domains CLII and CLIV. This finding implies some structural similarities between the two Gn proteins despite sequence diversity.

Consistent with our results, recent studies have examined the role of the LDLR family and related proteins in the context of viral infections. These efforts led to several reports, including a role for LDLR in binding and entry of dengue virus (23), hepatitis C virus (24), VSV (25), and rhinovirus (26). The LDLR-related protein LDLRAD3 was recently reported to facilitate the entry of Venezuelan equine encephalitis virus (27). Finally, VLDLR and ApoER2 were recently identified as entry receptors for multiple alphaviruses, including Semliki Forest virus, eastern equine encephalitis virus, and Sindbis virus, despite differences in E2/E1 amino acid sequence homology (28). These findings of related LDLRs, but not Lrp1, further support a wide-ranging role for this family of receptors in viral infections. However, our studies define a role for Lrp1 in mediating efficient infection by both OROV and RVFV. While consistent with this broader role of LDLRs in viral infections, this study highlights distinct drivers of specificity in the viral entry of bunyaviruses that are related to Lrp1.

The strain of OROV used here, BeAn 19991, was isolated from a sloth in Brazil in 1960 and falls within Lineage I (29). This is also the strain that served as the basis for the OROV reverse genetics system (17). While further studies testing OROV strains from Lineage II and III strains would be informative, the conserved nature of the interactions and our studies using heterologous proteins such as RVFV Gn and RAPD3 to inhibit OROV infection suggest that Lrp1 may support infection by multiple OROV lineages.

Lrp1 mediates cellular infection by the phlebovirus RVFV (11, 22). Lrp1 is needed for efficient in vitro cellular infection and to promote lethal RVFV infection in vivo in a mouse model. While important, the previous study (11) was focused on RVFV and did not implicate Lrp1 as having a broader impact. Here, we reveal that the orthobunyavirus OROV, while classified in a different family than RVFV, also uses Lrp1 to efficiently infect cells and cause disease in vivo, thus implicating Lrp1 as a much broader host factor for bunyaviral infection. Both viruses bind similar and potentially overlapping regions within Lrp1 extracellular domains CLII and CLIV. This finding implies some structural similarities between the two Gn proteins despite sequence diversity.

Consistent with our results, recent studies have examined the role of the LDLR family and related proteins in the context of viral infections. These efforts led to several reports, including a role for LDLR in binding and entry of dengue virus (23), hepatitis C virus (24), VSV (25), and rhinovirus (26). The LDLR-related protein LDLRAD3 was recently reported to facilitate the entry of Venezuelan equine encephalitis virus (27). Finally, VLDLR and ApoER2 were recently identified as entry receptors for multiple alphaviruses, including Semliki Forest virus, eastern equine encephalitis virus, and Sindbis virus, despite differences in E2/E1 amino acid sequence homology (28). These findings of related LDLRs, but not Lrp1, further support a wide-ranging role for this family of receptors in viral infections. However, our studies define a role for Lrp1 in mediating efficient infection by both OROV and RVFV. While consistent with this broader role of LDLRs in viral infections, this study highlights distinct drivers of specificity in the viral entry of bunyaviruses that are related to Lrp1.

The strain of OROV used here, BeAn 19991, was isolated from a sloth in Brazil in 1960 and falls within Lineage I (29). This is also the strain that served as the basis for the OROV reverse genetics system (17). While further studies testing OROV strains from Lineage II and III strains would be informative, the conserved nature of the interactions and our studies using heterologous proteins such as RVFV Gn and RAPD3 to inhibit OROV infection suggest that Lrp1 may support infection by multiple OROV lineages.

Lrp1 mediates cellular infection by the phlebovirus RVFV (11, 22). Lrp1 is needed for efficient in vitro cellular infection and to promote lethal RVFV infection in vivo in a mouse model. While important, the previous study (11) was focused on RVFV and did not implicate Lrp1 as having a broader impact. Here, we reveal that the orthobunyavirus OROV, while classified in a different family than RVFV, also uses Lrp1 to efficiently infect cells and cause disease in vivo, thus implicating Lrp1 as a much broader host factor for bunyaviral infection. Both viruses bind similar and potentially overlapping regions within Lrp1 extracellular domains CLII and CLIV. This finding implies some structural similarities between the two Gn proteins despite sequence diversity.

Consistent with our results, recent studies have examined the role of the LDLR family and related proteins in the context of viral infections. These efforts led to several reports, including a role for LDLR in binding and entry of dengue virus (23), hepatitis C virus (24), VSV (25), and rhinovirus (26). The LDLR-related protein LDLRAD3 was recently reported to facilitate the entry of Venezuelan equine encephalitis virus (27). Finally, VLDLR and ApoER2 were recently identified as entry receptors for multiple alphaviruses, including Semliki Forest virus, eastern equine encephalitis virus, and Sindbis virus, despite differences in E2/E1 amino acid sequence homology (28). These findings of related LDLRs, but not Lrp1, further support a wide-ranging role for this family of receptors in viral infections. However, our studies define a role for Lrp1 in mediating efficient infection by both OROV and RVFV. While consistent with this broader role of LDLRs in viral infections, this study highlights distinct drivers of specificity in the viral entry of bunyaviruses that are related to Lrp1.

Fig. 6. mRAPD3 protects mice from lethal OROV IC infection and significantly reduces infectious virus in the brain at 3 dpi. (A) Mice were infected with 100 PFU of OROV IC alone or in combination with either mRAPD3, mutant mRAPD3, or the control protein VP30. They were monitored for 15 d to determine percentage of survival in each group. (B) A subset of mice from each group was euthanized at 3 dpi to collect brain tissue, which was processed by viral plaque assay. (C) Immunofluorescent microscopy of brain tissues (cerebral cortex) from mice euthanized at 3 dpi (20×). Scale bars, 250 μm. Statistical significance was determined using a Mantel-Cox test for survival and two-way ANOVA for log-transformed data. Experiments were repeated four times. **P < 0.01; ***P < 0.001; ****P < 0.0001. No tx, No treatment; mut, mutant.
affinity for Lrp1, but it does not abolish binding (19). Here, we observed an intermediate reduction in both OROV and RVFV infection in the presence of the mutant mRAPD3 protein at the highest concentrations tested (10 μg/mL), whereas the mRAPD3 inhibits both viruses at 1 μg/mL. The intermediate in vitro phenotype of the mutant mRAPD3 correlated well with the in vivo OROV findings, in which we see intermediate levels of virus in the brain as well as 60% survival of the mice (compared to 93% survival with mRAPD3). In contrast to the in vitro data presented here, mutant mRAPD3 is unable to out compete RVFV in vivo (11). This observation may be attributable to either differences in the affinity of each of the Gn proteins for Lrp1 or, alternatively, to differences in inherent pathogenicity between OROV and RVFV, as RVFV is much more pathogenic. Studies to address these key observations and differences are ongoing.

The work presented here underscores a previously unappreciated role played by Lrp1 in cellular infection by diverse bunyavirus. Our results with OROV and RVFV suggest that it is likely that Lrp1 is used by other members of the Bunyavirales order. Importantly, given the need to broadly acting inhibitors of emerging viruses, these results highlight the feasibility of Lrp1 as a pan-bunyaviral target. The dependence on Lrp1 by OROV (Peribunyaviridae) and RVFV (Phenuiviridae) suggest common structural elements that transcend sequence homology. Future studies to characterize the binding and internalization mechanisms of both OROV and RVFV will also identify potentially conserved binding epitopes as targets for therapeutic strategies.

Materials and Methods

Biosafety. Work with OROV and ZIKV was completed in a Biosafety Level 2 (BSL-2) laboratory following all university biosafety guidelines. Work with RVFV was completed at BSL-3 in the Regional Biocontainment Laboratory at the University of Pittsburgh. The authors have approval from the Federal Select Agent Program to work with RVFV in the described facilities.

Animal Study Oversight. The University of Pittsburgh is fully accredited by the Assessment and Accreditation of Laboratory Animal Care (AAALAC). The Guide for the Care and Use of Laboratory Animals published by the NIH was adhered to throughout the duration of the animal work. The Institutional Animal Care and Use Committee (IACUC) at the University of Pittsburgh oversaw and approved this work under the protocol number 19114577.

Cells. The LPR1KO R4 and RAPKO A7 cells were generated, as previously described (11). All BV2 and Vero cells (American Type Culture Collection [ATCC], CRL-1586) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (ATCC, 30-0200) supplemented with 1% penicillin/streptomycin (Pen/Strep), 1% L-glutamine (L-Glut), and either 2% (D2), 10% (D10), or 12% (D12) fetal bovine serum (FBS). SH SY5Y cells were obtained from ATCC (CRL-2266) and cultured in D10/F12 media (ATCC, 30-0200) supplemented with 1% Pen/Strep and 1% L-Glut. HEK293T, A549, and N2a clonal KO cells were generated by CRISPR-Cas9 using ribonucleaseprotein complexes of Cas9 and Lrp1-specific guide RNAs, as previously described (11). The resulting cells were subcloned and subjected to next-generation sequencing analysis and short tandem repeat profiling to confirm the deletion and homogeneity of the clones. HEK293T Lrp1KO cells were maintained in D10 media, A549 Lrp1KO cells were maintained in D12/F12 media, and N2a Lrp1KO cells were maintained in Eagle’s minimum essential medium (ATCC, 30-0203) with 10% FBS.

Viruses. The BeAn19991 strain of OROV was rescued through reverse genetics and was generously provided by Paul Duprex and Natasha Tilston-Lunel (Pitt Center for Vaccine Research) (17). RVFV ZHAV91 is a rescued virus (30) and was generously provided by Dr. Paul Duprex. The virus was propagated in Vero E6 cells with standard culture conditions using D2 media supplemented with 1% Pen/Strep and 1% L-Glut. A standard viral plaque assay (VPA) was used to determine the titer of the stocks. The agar overlay for the VPA was comprised of 1× minimal essential medium, 2% FBS, 1% Pen/Strep, 1% HEPES buffer, and 0.8% SeaKem agarose; the assay incubated at 37°C for 4 d (OROV) and 3 d (RVFV), followed by visualization of plaques with 0.1% crystal violet.

Antibodies. The following antibodies were used: rabbit anti-Lrp1 (Abcam ab92544), mouse anti-Lrp1 (Santa Cruz, sc-57353), rabbit anti-OROV N (Custom Genescript), and mouse anti-RVFV N (BEI Resources, NR-43188) for fluorescence immunostaining, and rabbit anti-Lrp1 (Cell Signaling Technology, 64099S) and rabbit anti-GAPDH (Thermo Fisher, PA1-987) for western blots.

Neutralization Assays with mRAPD3, RVFV Glycoprotein Gn, and Lrp1 clusters. Cells were seeded in a 24-well plate at a density of 2.4E5 cells/mL in D10 the day before infection. The following day, the media was removed and the virus was diluted in D2 (MOI 0.1) and added to the cell monolayer in a 200-μL volume. Following a 1-h incubation at 37°C, the inoculum was removed. The monolayer was washed with 1× Dulbecco’s phosphate-buffered saline (DPBS), and fresh D2 media was added to each well. At the designated time point(s), supernatants were collected and infectious virus titers were determined by VPA. In the treatment assays, mRAPD3, mutant mRAPD3, RVFV Gn, FcCl4, or Fc-control (trastuzumab) were diluted in D2 and added to the cell monolayer, followed by a 1-h incubation at 37°C. Following the incubation, virus diluted in D2 (MOI 0.1) was added to the media and incubated for 1 h at 37°C. After the absorption period, the inoculum was removed, the cell monolayer was washed once with 1× DPBS, and D2 media containing the designated proteins was added in a 500-μL volume. Supernatants were collected at 24 hpi (OROV and RVFV) or 48 hpi (ZIKV) and viral titers were determined through VPA. Vial titers for RVFV and ZIKV were also analyzed through qRT-PCR as previously described (31-33).

Immunofluorescence. Cover glass (FisherBrand, 12-546-P) was sterilized in 70% EtOH and coated with BME Cultrex (R&D Systems, 3432-010-01) before seeding. Cells were seeded the day before staining at a density of 1E5–5E5 cells/mL in D10 media. Upon harvest, virus-infected cells were fixed in 4% paraformaldehyde for 20 min, followed by permeabilization with 0.1% Triton X-100 detergent + 1×PBS for 15 min at room temperature (RT). Cells were blocked using 5% normal goat serum (Sigma, G9023) for 1 h at RT, followed by incubation with the primary antibodies rabbit anti-LRP1 at 1:200, mouse anti-Lrp1 at 1:50, mouse anti-RVFV N at 1:200, or rabbit anti-OROV N at 1:200 for 1 h at RT. The secondary antibodies goat anti-mouse Cy3 (JacksonImmuno, 115-165-003), goat anti-rabbit 488 (JacksonImmuno, 115-545-003), goat anti-mouse 488 (JacksonImmuno, 115-545-033), or goat anti-rabbit Cy3 (JacksonImmuno, 115-165-144) were added (1:500 dilution) for 1 h at RT. The cells were counterstained with Hoescht and mounted using Gelvatol.

Brain tissue collected from mice at 3 dpi was fixed in 4% paraformaldehyde for 24 h, washed in 1×PBS, and submerged in the following sucrose concentrations for 24 h each: 10%, 20%, 40%. Brains were embedded in OCT (Fisher 23-730-571) and cerebral cortical regions were sliced at 6 μm on a cryostat. Brain sections were permeabilized in 0.1% Triton X-100 detergent + 1×PBS for 15 min at RT. Tissue sections were blocked with 5% normal donkey serum (Sigma, D9663) for 1 h at RT, washed with 1×PBS + 0.5% bovine serum albumin (BSA) (PBB) and probed with rabbit anti-OROV N and/or goat anti-IBA-1 (Novus NB-100-1028) at 1:200 for 1 h at RT. Following washes with 1×PBS + 0.5% BSA (PBB), the tissue sections were probed with donkey anti-rabbit Cy3 (Jackson Immuno, 711-165-152) or donkey anti-goat 488 (Jackson Immuno, 705-545-003) secondary antibodies. Slides were washed with 1×PBS and stained with Hoescht 30 s at RT before being mounted with Gelvatol. Fluorescent slides were imaged using a Leica DMIRB inverted fluorescent microscope and denoised using the Leica Application Suite X software provided by the Center for Vaccine Research. Images were processed and quantified using ImageJ.

Animal studies. Female, 3- to 4-week-old C57BL/6J were obtained from Jackson Laboratories. Previous studies have shown no sex-based differences in susceptibility to RVFV infection or disease outcome (34). Mice were anesthetized with iso-flurane before infection. Virus and 215 μg of respective protein treatments were previously (30). All of the viruses were propagated in Vero E6 cells with standard culture conditions using D2 media supplemented with 1% Pen/Strep and 1% L-Glut. A standard viral plaque assay (VPA) was used to determine the titer of the stocks. The agar overlay for the VPA was comprised of 1× minimal essential medium, 2% FBS, 1% Pen/Strep, 1% HEPES buffer, and 0.8% SeaKem agarose; the assay incubated at 37°C for 4 d (OROV) and 3 d (RVFV), followed by visualization of plaques with 0.1% crystal violet.
diluted in D2 to a final volume of 15 μL and injected IC using a Hamilton syringe with a 27G needle. Following infection, mice were monitored daily for clinical signs of disease. Mice were euthanized when they met IACUC euthanasia criteria. Blood was collected for serum analysis from the surviving mice. At the 3 dpi planned euthanasia, mice were anesthetized and blood was collected via cardiac puncture. The mice were then euthanized and necropsied to harvest brain tissue, which was homogenized and titered using a VPA.

Protein Expression and Purification. Recombinant protein expression and purification was performed as described previously (11). Briefly, expression plasmids containing mRAPD3 or mutant mRAPD3 were transformed in BL21(DE3) Escherichia coli cells (Novagen), cultured in Luria Broth media at 37 °C to an optical density 600 of 0.6 and induced with 0.5 mM isopropyl-β-D-thiogalactoside for 12 h at 18 °C. Cells were harvested, resuspended in lysis buffer containing 20 mM Tris (pH 8.0), 500 mM NaCl, and 2 mM 2-mercaptoethanol, and lysed using an EmulsiFlex-C5 homogenizer (Avestin). The resulting pellet was centrifuged at 47,000 g for 1 h at 4 °C to remove debris and NaCl, and the supernatant containing the secreted proteins was loaded onto a NiFF (GE Healthcare) column using a reverse linear urea gradient with imidazole. Endochrom K kit (Charles River Laboratories) was used, following the manufacturer’s instructions to determine endotoxin levels for purified mRAPD3 proteins and the control protein.

Expression plasmids encoding mClq or mClq with an Fc- and His6-tag were transfected in Expi293F expression cells (Gibco-Thermo Fisher) using the ExpiFect-...

Virus-Binding Assays Using Biolayer Interferometry. VSV-OROV was grown in BSR cells in DMEM media containing 2% FBS, as described previously (11). Briefly, expression plasmids containing mRAPD3 or mutant mRAPD3 were transformed in BL21(DE3) Escherichia coli cells (Novagen), cultured in Luria Broth media at 37 °C to an optical density 600 of 0.6 and induced with 0.5 mM isopropyl-β-D-thiogalactoside for 12 h at 18 °C. Cells were harvested, resuspended in lysis buffer containing 20 mM Tris (pH 8.0), 500 mM NaCl, and 2 mM 2-mercaptoethanol, and lysed using an EmulsiFlex-C5 homogenizer (Avestin). The resulting pellet was centrifuged in buffer containing 2 M urea, 20 mM Tris (pH 8.0), 500 mM NaCl, and 2% Triton X-100 before centrifugation at 47,000 g for 10 min. Inclusion bodies were isolated after repeated rounds of resuspension in urea and centrifugation. The final pellet was resuspended in 20 mM Tris-HCl (pH 8.0), 500 mM NaCl, 5 mM imidazole, 8 M urea, and 1 mM 2-mercaptoethanol and refolded on a NiFF (GE Healthcare) column using a reverse linear urea gradient with imidazole. Endochrom K kit (Charles River Laboratories) was used, following the manufacturer’s instructions to determine endotoxin levels for purified mRAPD3 proteins and the control protein.

Expression plasmids encoding mClq or mClq with an Fc- and His6-tag were transfected in Expi293F expression cells (Gibco-Thermo Fisher) using the ExpiFect-amime293...