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The N-Terminal, Polybasic Region Is Critical for Prion
Protein Neuroprotective Activity
Jessie A. Turnbaugh1,2., Laura Westergard2., Ursula Unterberger1, Emiliano Biasini1, David A. Harris1*

1 Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America, 2 Department of Cell Biology and Physiology

Washington University School of Medicine St. Louis, St. Louis, Missouri, United States of America

Abstract

Several lines of evidence suggest that the normal form of the prion protein, PrPC, exerts a neuroprotective activity against
cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrPC to suppress the
spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (D32–134, called F35). To
define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of
PrP (D23–31, D23–111, and D23–134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed
greatly diminished rescue activity, although D23–31 PrP partially suppressed neuronal loss when expressed at very high
levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrPC neuroprotective activity, and
suggest that identification of molecules interacting with this region will provide important clues regarding the normal
function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for
treatment of prion diseases.

Citation: Turnbaugh JA, Westergard L, Unterberger U, Biasini E, Harris DA (2011) The N-Terminal, Polybasic Region Is Critical for Prion Protein Neuroprotective
Activity. PLoS ONE 6(9): e25675. doi:10.1371/journal.pone.0025675

Editor: Andrew Francis Hill, University of Melbourne, Australia

Received May 13, 2011; Accepted September 9, 2011; Published September 29, 2011

Copyright: � 2011 Turnbaugh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the N.I.H. to D.A.H. (NS040975 and NS052526). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: daharris@bu.edu

. These authors contributed equally to this work.

Introduction

Prion diseases are invariably fatal neurodegenerative disorders

resulting from the conversion of the normally a-helical cellular prion

protein (PrPC) into a misfolded b-sheet rich conformer called PrPSc.

While much research has focused on characterizing PrPSc as an

infectious agent, little progress has been made in defining the

normal function of PrPC. Mice deleted for endogenous PrP are

relatively normal, with no gross anatomical or developmental

defects, providing few clues for understanding the physiological role

of this protein [1,2].

Several studies attempting to characterize PrPC function demon-

strated that the protein may have a role in neuroprotection. For

example, overexpression of PrPC has been shown to protect cells

against a variety of apoptotic stimuli, including Bax overexpression

[3,4], oxidative stress [5,6], and serum-deprivation [7,8]. However,

in almost all cases PrPC expression provided only a modest

neuroprotective effect, making these cell assays difficult to reproduce

[9] and calling into question their physiological relevance.

Perhaps one of the most dramatic examples of PrP-dependent

neuroprotection has been observed in mice expressing mutant

forms of the protein. Transgenic expression of PrP molecules

deleted for residues 32–121, 32–134, 105–125 or 94–134 leads to

a spontaneous neurodegenerative phenotype [10,11,12], as does

ectopic expression of Doppel, a PrP paralog structurally

homologous to the C-terminal half of PrP [13,14,15,16].

Intriguingly, co-expression of wild type (WT) PrP counteracts

the neurodegenerative effect of each of these PrP mutants and

Doppel, providing a way to test PrP neuroprotective activity in vivo.

For example, PrP molecules deleted for most (D32–80) or all (D32–

93) of the octapeptide repeats rescued mice expressing D32–134

PrP [referred to as Tg(F35)] as efficiently as WT PrP, indicating

that this region is not essential for neuroprotection [10,17].

Conversely, PrP carrying a deletion of 23–88 had an impaired

ability to rescue from Doppel, despite being expressed at higher

levels than WT PrP [18]. Collectively, these results suggest that the

N-terminus of PrP, particularly residues 23–31, is critical for PrP

rescuing activity. These residues (23KKRPKPGGW31) are highly

conserved across mammalian species and have several known

functions, including regulating PrP endocytosis [19,20,21], binding

to glycosaminoglyans (GAGs) [22,23,24] and the ability to act as a

protein transduction domain [25].

In order to directly address the role of residues 23–31 in the

neuroprotective activity of PrP, we have compared the ability of

several specific N-terminal deletion mutants, including D23–31,

D23–111, or D23–134 PrP, to reverse F35-induced toxicity in Tg

mice. We found that each of these molecules showed greatly

impaired rescuing activity, despite considerably higher expression

levels compared to WT PrP. These results demonstrate that

residues 23–31 are crucial for the neuroprotective function of PrP.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was
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approved by the Boston University Institutional Animal Care and

Use Committee (Permit Number: AN-14997).

Construction of transgenic mice
Bridge PCR amplification was used to generate D23–31 PrP

(containing a 3F4 epitope tag) using in the yeast p426GPD vector [26].

D23–31 PrP was subcloned into the mammalian pCNDA3.1 (+) Hygro

vector (Invitrogen, Carlsbad, CA) under the control of the CMV

promoter. To create a non 3F4-tagged version of this plasmid, the C-

terminal (3F4-containing) fragment of the plasmid described above was

released by digestion with restriction enzymes AgeI and XbaI and the

corresponding portion of the untagged cDNA was ligated to the D23–

31 vector. Using this non-3F4-tagged D23–31 construct, the following

primers were used to PCR-amplify PrP: FWD (59 – TATATACTC

GAGGCCGCCACCATGGCGAACCTTGGCTACTGG – 39) and

REV (59 – CTCGAGCTT GTCATCGTCGTCCTTGTAGTCT-

CATTATCCCACGATCAGGAAGATGAG – 39).

A cDNA encoding murine C1 (D23–111) was generated by PCR

amplification. The following primers were used: FWD (59 – TCCGA

AAGCTTCTCGAGGCCGCCACCA TGGCGAACCTTGGC-

TACTGGCTGCTGGCCCTCTTTGTGACTATGTGGACTG-

ATGTCGGCCTCTGCAGGCCCATGATCCATTTTGGC – 39)

and REV (59 – CGGACTCTAGACT CGAGTCATCATCCCAC-

GATCAGGAAGAT – 39). The resulting PCR product was digested

with HindIII and XbaI and cloned into pcDNA 3.1 (+) Hygro.

To create both Tg (D23–31) and Tg (D23–111) mice, the

corresponding sequences were released from the pcDNA3.1 (+)

Hygro plasmid by digestion with XhoI and ligated into the Xho I

site of MoPrP.Xho [27] under the control of the mouse half-

genomic PrP promoter. The resulting colonies were checked for

the presence of the insert using PCR primers P1 and P4 [28], and

then sequenced to confirm the correct sequence and orientation.

The transgene was released from the recombinant plasmid by

NotI digestion, purified with a GFX column (GE), and injected

into the pronuclei of fertilized eggs from C57BL6/J6CBA hybrid

mice. Tg (D23–31) founders were bred to Prn-p2/2 mice on the

C56BL6/J background (EMMA), and Tg(D23–111) founders were

bred initially to Tga20+/+ mice on a C57BL6/CBA/129

background (EMMA), and were then back-crossed to Prn-p2/2

mice on the C56BL6/J background.

Generation of Tg(D23–134) mice has been described elsewhere

[29]. Mice expressing D23–31, D23–111, or D23–134 on the Prn-

p2/2 background were mated to F35+/0 Prn-p+/2 mice to generate

the genotypes used in this study. All transgenes were hemizygous.

Genotyping of transgenic mice
Mice were genotyped by PCR analysis of tail DNA prepared

using the Puregene DNA Isolation Kit (Gentra Systems, Minneap-

olis, MN). The Prn-p allele was detected with primers E2 (referred to

as P2 in [28]) and E4 [12]. Primers E2 and K4 (59 – GTGAG

ATGACAGGAGATCCTGCC – 39) recognized the PrP knockout

allele. Primer pair 890 (59 – CTCGAGGCCGCCACCATG – 39)

and P4 [28] recognized D23–31, D23–111, and D23–134 PrP

transgenes, and primers 913 (59 – AAGCGGCCAAAGCCTG-

GAGGGTGG – 39) and P4 recognized the F35 transgene.

Statistical Analysis
Animals were sacrificed when terminally ill. The age of each

mouse at the time of sacrifice was used to compare the lifespans of

mice of the indicated genotypes using the Kruskal-Wallis test with

Dunn’s secondary testing. All statistical analyses were performed

using the GraphPad Prism 5 program.

Immunofluorescence and PIPLC treatment
BHK cells grown in PDL-coated 8 well chamber slides (BD

Biosciences) were transiently transfected w/0.25 mg DNA and

0.75 mg Lipofetamine2000 (Invitrogen) per well. At 24 hours

post-transfection, cells were washed with PBS, fixed in 4%

paraformaldehyde for 10 minutes, permeabilized with 0.2%

Triton X-100, and blocked in 2% goat serum in PBS. Cells were

then stained with the following antibodies in blocking solution:

6D11 (R. Kascsak), 6H4 (Prionics), and Giantin (Covance),

followed by incubation with fluorescently conjugated secondary

antibodies (Molecular Probes), staining with DAPI, and visualiza-

tion with a fluorescence microscope. For surface staining and

PIPLC treatment, the same transfection protocol was followed

except that plasmids encoding PrP and dsRedER were co-

transfected (0.25 mg DNA each). At 24 hours post-transfection,

cells were incubated in the absence or presence of PIPLC (Sigma)

at 0.5 U/ml for 2 hours prior to surface staining with anti-PrP

antibody 6D11 or 6H4, followed by incubation with a fluores-

cently conjugated secondary antibody (Molecular Probes) and

staining with DAPI.

Cerebellar graunule cell cultures
Cultures were performed as described previously [12]. After 4–5

days in culture, cells were fixed with 4% paraformaldehyde,

surface stained with anti-PrP antibody 6H4, and then incubated

with AlexaFlour 488-coupled goat anti-mouse IgG.

Histology
Mouse brains were fixed in 4% paraformaldehyde before

embedding in paraffin and cutting 4 mm sections. Paraffin sections

were stained with hematoxylin and eosin as described previously

[28], and were imaged with a Nikon TE-2000E inverted

microscope.

PNGaseF treatment and Western Blotting
Brain homogenates (10% w/v) were made by mechanically

dissociating frozen brains in PBS using plastic pestles (South Jersey

Precision Tool and Mold Inc., Vineland, NJ). Homogenates were

then lysed in 0.5% NP-40/0.5% DOC, pH 7, and total protein

levels were quantified with the BCA kit (Pierce, Rockford, IL). To

de-glycosylate PrP, a 20 mg aliquot of total protein was treated

with PNGase-F (N-glycosidase-F, New England Biolabs, Beverly,

MA) according to the manufacturer’s instructions. Samples were

subjected to Western blotting and probed with anti-PrP antibody

6H4 (Prionics) followed by goat anti-mouse IgG (Pierce, Rockford,

IL). Blots were developed with Millipore immobilon Western

Chemiluminescent HRP substrate prior to imaging on a Biorad

Chemidoc XRS system.

Immunoprecipitation
Brain homogenates (10% w/v in PBS) were lysed in 0.5%

CHAPS/0.5% NP-40 containing protease inhibitors (complete

Mini EDTA-free, Roche), subjected to low-speed centrifugation to

remove DNA and cellular debris, and total protein was

quantitated using the BCA kit. Prior to immunoprecipitation,

30 mg of 6D11 antibody was coupled to 500 ml of anti-IgG

Dynabeads (Dynal, Carlsbad, CA) in presence of 20 mM dimethyl

pimelimidate dihydrochloride (Sigma), followed by washing and

resuspending in PBS containing 0.1% BSA. Lysates were diluted

to 0.5 mg/ml, pre-cleared with naked beads, and PrP was

immunoprecipitated overnight with 50 ml of antibody-coupled

Dynabeads, or with naked beads, washed, and collected with a

magnet. Beads were re-suspended in 0.5% NP-40/0.5% DOC,

N-Terminus Is Critical for PrP Neuroprotection

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e25675



pH 7, and digested with PNGase-F as described above. After

digestion, samples were boiled in SDS-loading sample buffer prior

to Western blotting.

Results

N-terminal PrP deletion mutants have a cellular
localization pattern similar to WT PrP

Before examining the ability of N-terminal deletion mutants to

rescue the toxicity of F35 PrP in vivo, we characterized the

localization of these proteins in cultured cells. To demonstrate that

D23–31, D23–111, and D23–134 are correctly delivered to the

plasma membrane, BHK cells expressing either WT or mutant PrP

were incubated with or without phosphatidylinositol-specific phos-

pholipase C (PIPLC) then surface-stained with an anti-PrP antibody.

We found that, like WT PrP, D23–31, D23–111, D23–134, and F35

PrPs were released by PIPLC treatment, demonstrating that they are

all attached to the outer leaflet of the plasma membrane via a

phospholipase-cleavable GPI anchor (Figure 1 A–L). Additionally,

WT PrP and each of the N-terminal mutants co-localized with the

Golgi marker, giantin, in permeabilized BHK cells, indicating that

the proteins traffic through the Golgi on their way to the plasma

membrane (Figure 1 M–R).

To confirm that deletion of the N-terminal residues does not

alter PrP localization in neurons, we also examined the

localization of D23–31 and D23–134 PrP in cerebellar granule

neurons cultured from the respective transgenic mice. Immuno-

fluorescent staining of cell surface PrP showed that, like WT PrP,

D23–31 and D23–134 PrPs are expressed on the plasma

membrane of cell bodies as well as neurites (Figure 2).

Deletions of the N-terminus of PrP compromise its
rescuing ability

In order to define the role of the N-terminal region of PrP in

neuroprotection, we compared the lifespan of mice co-expressing

F35 PrP along with either WT PrP or three different, N-terminally

deleted mutants (D23–31, D23–111, or D23–134). All transgenes

were expressed under the control of the PrP half-genomic

promoter on a Prn-p2/2 background. D23–111 PrP corresponds

to the major, physiologically occurring, C-terminal fragment of

PrP, called C1. In this study, we utilized two lines of Tg(D23–31)

mice with expression levels of 16 and 66 with respect to

endogenous PrP, one line of Tg(D23–111) mice with an expression

level of 76, and one line of Tg(D23–134) mice with an expression

level of 16 (Figure 3A, compare lanes 3–6 to lane 1). The Tg(F35)

Figure 1. D23–31, D23–111, D23–134, and D32–134 (F35) PrP are GPI-anchored and have a cellular localization pattern similar to WT
PrP. (A–L) The indicated constructs were transiently expressed in BHK cells along with dsRedER. Cells were incubated in the absence (A–F) or
presence (G–L) of PIPLC, then surface stained for PrP (A–C, G–I: 6D11 or D–F, J–L: 6H4) on ice prior to incubating with secondary antibody (dsRedER
signal in red, PrP in green). DAPI staining is shown in blue for panels D–F, J–L. Like WT PrP (H), the mutant PrP molecules are released from the plasma
membrane by PIPLC treatment (I–L). (M–R) BHK cells transfected with the indicated constructs were permeabilized and stained with anti-PrP
antibody [M–O: 6D11, P–R: 6H4 (green)], anti-giantin antibody (red), and DAPI (blue). Like WT PrP, each mutant is present both at the cell surface and
intracellularly, where it colocalizes with the Golgi marker, giantin. [Scale bar in A (applicable to panels A–L, P–R) = 25 mm. Scale bar in M–O = 15 mm.].
doi:10.1371/journal.pone.0025675.g001

N-Terminus Is Critical for PrP Neuroprotection
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line expresses the mutant protein at 26(Figure 3A, lane 2) [10]. As

shown in Figure 3, each mutant migrated at the expected

molecular weight and was glycosylated, with the di-glycosylated

band appearing as the predominant form.

Tg(F35)/Prn-p+/2 mice were crossed with Tg(D23–3116),

Tg(D23–3166), Tg(D23–11176), or Tg(D23–13416), all on a Prn-

p2/2 background, to retrieve the doubly transgenic genotypes

shown in Table 1. To assess relative expression levels of the

Figure 2. Cell surface staining of PrP in cerebellar neurons from non-Tg, Tg(D23–3116), and Tg(D23–134) mice. Cerebellar granular
neurons cultured from mice of the indicated genotype were stained for cell surface PrP (6H4, green). Like WT PrP from non-Tg mice, both D23–31 and
D23–134 PrPs are present on the cell surface and along neurites.
doi:10.1371/journal.pone.0025675.g002

Figure 3. Expression of transgenes. (A) Brain lysates from a non-transgenic WT mouse (expressing 16PrP), and from Tg mice expressing F35 PrP
(26), D23–31 PrP (16and 66), D23–111 PrP (76), and D23–134 PrP (16) were Western blotted and probed with anti-PrP antibody 6H4. (B) Lysates
from the brains of 10 week old mice were treated with PNGase F to removed N-linked oligosaccharides. Digestion products were subjected to
Western blotting using antibody 6H4 to detect PrP. Single and double asterisks mark the positions of the endogenous C1 and C2 cleavage fragments,
respectively.
doi:10.1371/journal.pone.0025675.g003

N-Terminus Is Critical for PrP Neuroprotection
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mutant PrP molecules, we treated brain homogenates taken from

mice at 10 weeks of age with PNGase F to removed N-linked

oligosaccharides, followed by Western blotting (Figure 3B). These

results demonstrated that levels of D23–31, D23–111, or D23–134

PrPs were not affected by co-expression of the F35 mutant, and

conversely that the level of F35 PrP was not affected by co-

expression of the other mutants (Figure 3B, lanes 6–10).

Mice expressing D23–31, D23–111, or D23–134 PrP in the

absence of F35 PrP showed no evidence of spontaneous disease

and had normal lifespans (not shown).

As reported previously [10], co-expression of 0.56 WT PrP

completely suppressed neurological signs of disease and extended the

lifespan of F35 mice to more than 1 year (Table 1; Figure 4, black

line). In contrast, co-expression of each of the three N-terminal

Table 1. N-terminally deleted forms of PrP are impaired in their ability to suppress the neurodegenerative phenotype of Tg(F35)
mice.

Genotype Expression level of rescue molecule Age at death (days)

Tg(F35)/Prn-p2/2 0 88.168.1 (n = 30)

Tg(F35)/Prn-p+/2 0.56 .365 (n = 12) **

Tg(F35/D23–31)/Prn-p2/2 16 100.9614.1 (n = 12)

Tg(F35/D23–31)/Prn-p2/2 66 159.1622.2 (n = 10) **

Tg(F35/D23–111)/Prn-p2/2 76 97.8610.2 (n = 10)

Tg(F35/D23–134)/Prn-p2/2 16 126.4614.2 (n = 8) *

The genotype, number of mice, age at death, and relative expression levels PrP are shown for each transgenic line. While 0.56expression of WT PrP greatly prolongs the
lifespan of Tg(F35) mice, the N-terminal mutants have only a modest effect on lifespan, even at elevated expression levels. Asterisks indicate statistically significant
differences in age at death compared to Tg(F35)/Prn-p2/2 mice (** p,0.001, * p,0.01 by Kruskal-Wallis with Dunn’s secondary test).
doi:10.1371/journal.pone.0025675.t001

Figure 4. Survival of mice co-expressing N-terminal deletion mutants. Each point represents the percentage of animals alive at the indicated
age. Statistical analyses are shown in Table 1.
doi:10.1371/journal.pone.0025675.g004

N-Terminus Is Critical for PrP Neuroprotection
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deletion mutants did not delay the age of onset (data not shown) and

failed to reverse the F35 clinical phenotype, with all mice displaying

progressive tremor, ataxia, and hind limb paresis and eventually

dying from neurological illness. Moreover, each of the mutant PrP

molecules had a much weaker effect than WT PrP on extending the

lifespan of the mice. For example, although 66expression of D23–31

PrP produced a statistically significant lengthening of lifespan, 16
expression had no significant effect on survival (Table 1; Figure 4,

blue and purple lines, respectively). The D23–111 mutant, which

carries a larger deletion, provided no statistically significant rescue

even when expressed at 76 (Table 1; Figure 4, green line).

Surprisingly, D23–134 PrP showed a more substantial rescue than

the other two mutants, despite the fact that it harbors the longest

deletion and was expressed at only 16 (Table 1; Figure 4, orange

line).

Collectively, these results indicate that each of the N-terminal

deletion mutants is impaired compared to WT PrP in its ability to

suppress neurological symptoms and death in Tg(F35) mice, even

when expressed at supraphysiological levels. Moreover, deletion of

the 9 amino acid, polybasic domain (residues 23–31) is sufficient to

dramatically compromise rescuing activity.

N-terminal deletion mutants do not reverse Tg(F35)
pathology

The pathological hallmarks of neurodegeneration in Tg(F35)

mice include prominent loss of cerebellar granular neurons

(CGNs) and vacuolation of white matter in the cerebellum and

other brain areas. In order to determine if the N-terminal deletion

mutants were able to rescue these pathological signs, we analyzed

brain sections taken from mice co-expressing F35 and either WT,

D23–31, D23–111, or D23–134 PrP. Mouse brains were analyzed

at 3 weeks (pre-symptomatic), 10 weeks (symptomatic), and time of

terminal disease (depending on the different genotypes), and

sections were stained with hematoxylin/eosin.

At 3 weeks, the cerebellum of Tg(F35) mice on a PrP-null

background appears slightly shrunken (Figure 5A), although the

granule cell layer (Figure 5G) and the white matter (Figure 5M) are

still intact. At both 10 weeks and at the time of terminal disease, the

cerebellum of these mice is severely atrophic (Figure 6A and 7A),

with evident loss of CGNs (Figure 6G and 7G) and white matter

vacuolation (Figure 6M and 7M). As expected, no pathological signs

were detected at any time point in F35 mice co-expressing 0.56WT

PrP (Figure 5–7, panels F, L and R).

The cerebellum of Tg(F35) mice co-expressing each of the three

N-terminal deletion mutants appeared normal at 3 weeks of age

(Figure 5 B–E, H–K, N–Q). However, by 10 weeks of age there

was noticeable cerebellar atrophy (Figure 6 B, D, E), dramatic loss

of CGNs (Figure 6 H, J, K) and accumulation of vacuoles in the

cerebellar white matter (Figure 6, N, P, Q) of Tg(F35) mice co-

expressing D23–31 (16), D23–111 (76), or D23–134 (16) PrP.

These neuropathological changes were even more marked at the

time of terminal illness (Figure 7). Unexpectedly, co-expression of

D23–31 PrP at high levels (66) prevented the loss of CGNs at both

10 weeks (Figure 6I) and at the time of terminal disease (Figure 7I),

although these mice still showed prominent white matter

vacuolation at both time points (Figure 6 and 7, O).

These results demonstrate that the N-terminal region of PrP is

necessary to fully rescue the pathological changes induced by

Figure 5. F35 mice co-expressing N-terminal deletion mutants are normal at 3 weeks. Animals of the indicated genotypes were sacrificed
at 3 weeks and brain sections were stained with hematoxylin and eosin. Images show the whole cerebellum (A–F), the granule cell layer of the second
cerebellar lobe (G–L), and the cerebellar white matter (M–R). Scale bars = 1 mm (A–F) and 100 mm (G–R).
doi:10.1371/journal.pone.0025675.g005

N-Terminus Is Critical for PrP Neuroprotection
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expression of F35 PrP. The fact that terminally ill Tg(F35/D23–

3166) mice display prominent white matter vacuolation without

substantial granule cell loss suggests that white matter pathology

itself is sufficient for causing death in F35 mice.

F35 does not co-immunoprecipitate with WT or D23–31
PrP

One possible explanation for the rescuing ability of WT PrP in

Tg(F35) mice is that the normal protein physically interacts with

the F35 mutant, preventing its toxic effect. Our results suggest that

such interaction would involve residues 23–31. Consequently,

deletion of these residues should decrease or abolish binding of

WT PrP to F35 PrP.

To test the possibility that WT but not D23–31 PrP directly

interacts with the F35 mutant, we performed co-immunoprecip-

itation experiments on brain homogenates. Beads coated with

antibody 6D11, which recognizes an epitope (residues 95–100)

deleted in F35, were used to pull-down PrP molecules from F35

mice co-expressing either WT or D23–31. After immunoprecip-

itation, proteins were enzymatically de-glycosylated to discrimi-

nate between WT, D23–31 and F35 PrPs based on their migration

on SDS-PAGE. Antibody 6H4, which recognizes a C-terminal

epitope (144–152), was then used to detect all PrP species by

Western blotting. As expected, the F35 protein was not

immunoprecipitated by naked beads (Figure 8, lane 3), or by

6D11 (Figure 8, lane 2), although the protein was still detected in

the input lane (Figure 8, lane 1). Conversely, both WT (Figure 8,

lane 4) and D23–31 PrP (Figure 8, lane 6) were efficiently

immunoprecipitated by 6D11, but not by naked beads (Figure 8,

lanes 5 and 7). However, F35 PrP did not co-immunoprecipitate

with either WT or D23–31 PrP (Figure 8, lanes 4, 6) suggesting

that the rescuing activity of WT PrP does not rely on a direct

interaction with the toxic mutant.

Discussion

Expression of WT PrP is known to suppress the spontaneous

neurodegenerative phenotype induced by several N-terminal

deletion mutants of PrP. For example, Tg(F35) mice expressing

D32–134 PrP on a Prn-p2/2 background become terminally ill

within three months after birth, while co-expression of 0.56
endogenous, WT PrP prolongs the lifespan of these animals to more

than one year [10]. In the present study, we have defined the regions

of PrP participating in this neuroprotective activity, and showed that

deletions encompassing the N-terminal polybasic domain (residues

23–31) significantly impair the ability of PrP to reverse neurode-

generative phenotype of Tg(F35) mice. We found that, although

D23–31 PrP displayed greatly diminished rescuing activity, over-

expression of the protein was able to prevent CGN loss, although

white matter vacuolation and clinical symptoms still ensued,

demonstrating the independent roles of these two kinds of pathology

in the death of the animals. We failed to observe co-immunopre-

cipitation of WT and F35 PrP, suggesting that the rescuing ability of

the WT protein does not depend on a physical interaction with the

mutant protein. Therefore, deletion of residues 23–31 could

compromise PrP neuroprotective activity by disrupting its associ-

ation with other membrane-bound molecules.

Figure 6. D23–31, D23–111, and D23–134 PrP are impaired in their ability to suppress Tg(F35) neuropathology at 10 weeks. Animals
of the indicated genotypes were sacrificed at 10 weeks. Histological staining, order of images, and scale bars are identical to Figure 5. Mice
expressing F35 in the presence or absence of D23–3116, D23–11176, or D23–13416 PrP display marked loss of CGNs (G, H, J and K), as well as
vacuolation of the cerebellar white matter (M, N, P and Q). Conversely, expression of D23–3166 PrP prevents loss of CGNs (I), but not white matter
vacuolation (O).
doi:10.1371/journal.pone.0025675.g006
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Residues 23–31 are critical for the neuroprotective
activity of PrP

The main conclusion of our study is that N-terminal deletion

mutants are significantly impaired in their ability to reverse the

phenotype of Tg(F35) mice. This conclusion holds true for three

successive deletions including D23–31, D23–111, and D23–134.

The most substantial rescue was seen by over-expressing D23–31

PrP by six-fold, although even at this expression level the protein

did not prevent neurological symptoms or death of Tg(F35) mice.

In comparison, an expression level of WT PrP that is 12 times

lower (0.56) is sufficient for fully reversing the Tg(F35) phenotype

and allowing the animals to have a normal lifespan. Surprisingly,

D23–134 PrP, which harbors the longest deletion, showed a mild

rescuing effect at physiological expression levels (16). It is

currently unclear why this molecule would display a better

rescuing ability than either D23–31 or D23–111 PrP, when

expressed at 16 and 76 respectively. Possibly, the presence of

residues between 31 and 134 negatively impacts whatever

interactions are important for the rescuing activity of PrP.

While this is the first study to examine the role of the N-

terminal, polybasic domain in suppressing the phenotype of

Tg(F35) mice, previous studies have investigated whether the N-

terminal domain of PrP can exert a neuroprotective activity. A

peptide corresponding to PrP residues 23–50 has been shown to

reduce the formation of reactive oxygen species in response to

serum deprivation in cultured cells [30]. Other studies have

analyzed the ability of two N-terminally deleted PrPs (D23–88 and

D25–50) to reverse neurodegeneration in mice ectopically

expressing Doppel [18,31]. Since it lacks the flexible N-terminus,

Figure 7. N-terminal deletion mutants do not suppress Tg(F35) neuropathology at time of terminal disease. Histological staining, order
of images, and scale bars are identical to Figure 5, except that animals were sacrificed when terminally ill. As for 10 week old animals, D23–3166 PrP
expression rescues loss of CGNs (I), but not white matter vacuolation (O), while co-expression of D23–3116, D23–11176, or D23–13416 PrP does not
prevent either CGN loss (G, H, J and K) or white matter vacuolation (M, N, P and Q).
doi:10.1371/journal.pone.0025675.g007

Figure 8. F35 does not interact with either WT PrP or D23–31
PrP in co-immunoprecipitation experiments. Brain lysates from
mice expressing F35 PrP in the presence or absence of either WT or
D23–31 PrP were immunoprecipitated with Dynabeads coupled to anti-
PrP antibody 6D11, or with naked beads as a control. Immunoprecip-
tated proteins were then analyzed by Western blotting with anti-PrP
antibody 6H4. The arrowhead indicates the position of F35 PrP. The
faint band appearing in lane 6 between 15 and 20 kDa is distinguish-
able from the F35 protein, and could represent a C-terminal fragment of
D23–31 PrP.
doi:10.1371/journal.pone.0025675.g008

N-Terminus Is Critical for PrP Neuroprotection

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e25675



Doppel is structurally similar to the F35 protein, implying that

these proteins may induce toxicity via a similar mechanism.

Interestingly, while D23–88 PrP completely lacked a neuropro-

tective ability, the expression of D25–50 PrP led to a rescue of

Doppel-induced neurodegeneration [18,31], suggesting that resi-

dues 23 and 24 by themselves, but not the octapeptide repeats,

may impart some protective activity. These data, taken together

with those in our study, suggest that the extreme N-terminus of

PrP represents a primary determinant of its neuroprotective

activity in both Doppel and Tg(F35) mice.

In addition to playing a role in neuroprotection, residues 23–31

also appear to be important in several neurotoxic activities of PrP. For

example, mice expressing D23–134 PrP, which is equivalent to the

F35 mutant missing residues 23–31, showed no evidence of

neurodegeneration [29]. Additionally, either deleting or mutating

residues 23–31 in the context of D105–125 PrP completely abrogates

the ion channel activating and aminoglycoside-sensitizing activities of

this protein in cells [29,32]. Collectively, these results demonstrate a

critical role for the N-terminal, polybasic domain in regulating both

the neurotoxic and neuroprotective functions of PrP.

White matter pathology and neuronal loss in F35 mice
are mechanistically distinct

We have observed that terminally ill Tg(F35) mice over-

expressing D23–31 PrP by six-fold displayed extensive white

matter pathology with little granule cell loss. The details of this

white matter pathology have not been dissected, and may be

related to either axon or myelin dysfunction. However, the general

theme of white matter pathology in the absence of CGN loss is

paralleled by several other transgenic models, including Tg(D94–

134) [11] and Tg(D105–125/Tga20) [12]. Moreover, it has been

reported that oligodendrocyte-specific expression of WT PrP

reversed white matter pathology and dramatically improved

survival in Tg(F35) and Tg(Dpl) mice without preventing neuronal

loss [33]. Collectively, these results suggest that white matter

abnormalities and neuronal loss are mechanistically distinct, and

that the former pathology may be the immediate cause of clinical

symptoms and death in several kinds of Tg mice expressing toxic

PrP mutants or Doppel. Interestingly, recent work has shown that

PrP may play a role in myelin maintenance [34], raising the

possibility that this functional role may be subverted by certain

mutations in the PrP molecule.

The naturally occurring, C1 proteolytic fragment of PrP is
not neuroprotective

The PrP molecule expressed by Tg(D23–111) mice is equivalent

to a physiologically occurring, C-terminal cleavage fragment of PrP

termed C1. C1 is produced by cleavage between residues 111 and

112 by the ADAM10 and ADAM17 proteases [35]. This cleavage

leaves the C-terminal half of PrP, composed of residues 112–230,

anchored to the plasma membrane, and releases an N-terminal

fragment called N1. Previous work has shown that Prn-p2/2 mice

display a chronic demyelinating polyneuropathy, and that this

pathology is rescued by co-expression of transgenes that result in

production of C1 but not by transgenes encoding PrP forms non-

permissive for cleavage [34]. These authors concluded that

regulated proteolysis of PrPC is essential for myelin maintenance.

In contrast, our data suggest that C1 (D23–111) is incapable of

preventing the neuropathological changes, including white matter

pathology, induced by F35 PrP. While it is possible that Tg(F35) and

Prn-p2/2 mice suffer from different types of white matter

dysfunction, an alternative hypothesis is that N1, rather than C1,

is necessary for the rescue effect in both kinds of mice. The lines

examined by Bremer et al. that are non-permissive for cleavage

would generate neither N1 nor C1, while our Tg(D23–111) lines

produce only a C1-like fragment. This explanation is supported by

previous experiments showing that N1 has a neuroprotective

function in retinal cells via modulation of the p53 pathway both in

vitro and in vivo [36]. Although more work remains to elucidate the

significance of the N1/C1 cleavage in the brain, we have shown that

the C1 protein is incapable of providing a neuroprotective effect in

the context of F35-induced neurodegeneration.

How do residues 23–31 play a role in the neuroprotective
activity of PrP?

One explanation is that these residues form part of a binding

site between PrP and an interacting molecule on the cell surface.

In this study, we provided evidence that WT and F35 PrP do not

physically interact, although it remains possible that these two

proteins engage in a weak or transient interaction that is not

detectable in the co-immunoprecipitation experiment we per-

formed. Previous work suggested that PrP is cabable of forming a

dimer [37,38,39], but the results of our co-immunoprecipitation

experiment indicate that such dimerization may not occur

between heterologous molecules of PrP, such as F35 and WT, at

least under the conditions we have used.

Our results raise the possibility that WT rescuing activity relies on

interaction with an alternative binding partner whose binding to

PrP is dependent on the presence of residues 23–31. Previous studies

have identified molecules (including proteins, glycans, and lipids)

that interact with PrP, some of which have been found to bind

specifically to the N-terminus of PrP. These include the low-density

lipoprotein receptor-related protein 1 (LRP1), which modulates the

endocytosis of PrP [40]. Disruption of this region prevents this

endocytosis of PrP [19,20,21,41], and influences its half-life and rate

of trafficking to the plasma membrane [41]. These residues are also

a binding site for GAGs [22,23,24], which can mediate binding

between PrP and the 37 kDa/67 kDa laminin receptor [42].

Additionally, the polybasic region is capable of interacting with the

plasma membrane as a protein transduction domain [25] or an

antimicrobial peptide [43], although several studies indicate that its

ability to insert into the membrane also requires the presence of the

octapeptide repeat region [44,45]. In PrP that is targeted to the

cytoplasm due to abnormal folding or processing, these residues can

function as a nuclear localization signal [46] and interact with

tubulin [47], although these interactions may not be physiologically

relevant in the presence of normally processed PrP, which is

localized primarily to the outer leaflet of the plasma membrane.

Whether these or other, undefined interactions are relevant to the

neuroprotective function of PrP remains unresolved.

Of note, a recent report identifies residues 23–27 of PrP as one

of the two sites that bind oligomers of the Alzheimer’s Ab peptide

[48], suggesting a role for this region in mediating the synaptotoxic

effects of these oligomers. Given the role of the N-terminal

polybasic domain in determining the neuroprotective properties of

PrP, as well as its binding to other toxic oligomers [49], this region

may prove to be an important therapeutic target in prion as well as

other neurodegenerative disorders.
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