Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E

Panisadee Avirutnan
Washington University School of Medicine in St. Louis

Lijuan Zhang
Washington University School of Medicine in St. Louis

Nuntaya Punyadee
Mahidol University, Bangkok, Thailand

Ananya Manuyakorn
Mahidol University, Bangkok, Thailand

Chunya Puttikhunt
National Science and Technology Development Agency NSTDA, Pathumthani, Thailand

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation

Avirutnan, Panisadee; Zhang, Lijuan; Punyadee, Nuntaya; Manuyakorn, Ananya; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Atkinson, John P.; and Diamond, Michael S., "Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E." PLoS Pathogens. 3, 11. e183. (2007).
https://digitalcommons.wustl.edu/open_access_pubs/828

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Secreted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sulfate E

Panissadee Avirutnan1,2, Lijuan Zhang3, Nuntaya Punyadee2, Ananya Manuyakorn4, Chunya Puttikhunt5, Watchara Kasinrerk6,7, Prida Malasit2, John P. Atkinson1,3,7, Michael S. Diamond1,3,7*

1 Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America, 2 Medical Molecular Biology Unit, Office for Research and Development, Mahidol University, Bangkok, Thailand, 3 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America, 4 Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, 5 Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathumthani, Thailand, 6 Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand, 7 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Dengue virus (DENV) nonstructural protein-1 (NS1) is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds directly to the surface of heparan sulfate and chondroitin sulfate E. DENV NS1 binds preferentially to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition of anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.

Introduction

Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) are severe and potentially fatal complications of infection by dengue virus (DENV), a mosquito-borne RNA virus of the Flaviviridae family. Globally, DENV infects 25 to 100 million people per year, but the life-threatening complications primarily occur in school-age children [1]. Four serotypes of DENV exist, and DHF/DSS is commonly associated with secondary infection with a different virus serotype [2,3]. In the most severe cases, clinical deterioration is characterized by a rapid decline after several days of continuous high fever, thrombocytopenia, and selective vascular leakage at serosal sites [4]. The vascular leakage syndrome results in hemoconcentration, pleural effusions and ascites, and hypotension [4]. An effective strategy for disease prevention or treatment is currently lacking.

The pathogenesis of DHF/DSS reflects a complex interplay of the host immune response and the viral determinants of virulence [5–7]. A model of immunopathogenesis has been suggested based on an increased risk of DHF with secondary infection and in children within the first year of life born to DENV-immune mothers [8,9]. From this, the hypothesis of antibody-dependent immune enhancement of infection emerged. In support of it, enhancement of DENV infection in monocytes in vitro with pre-illness serum correlates with increased risk of DHF in vivo [9,10], and peak viremia is higher in patients with severe secondary DENV infection [11–13]. Differences in specific genetic determinants among viral isolates [14–16] also modulate virulence, as some DENV strains fail to cause severe disease [17,18]. A pathologic cytokine response that occurs after extensive T cell activation also likely contributes to the syndrome [5]. Elevated levels of cytokines including IFN-α, TNF-α, and IL-10 correlate with...
Mechanism NS1 Attachment to Cells

Uninfected cells were tested for the ability to bind soluble DENV NS1. Incubation with either purified DENV NS1 or supernatants from BHK DENV-2 Rep cells resulted in rapid binding of NS1 to many cell types (Figure 2 and Table 1). Binding of NS1 to Chinese hamster ovarian epithelial (CHO)-K1, Vero, and 4/4 RM4 cells was dose-dependent and saturable, and maximum binding was achieved at a concentration of 20 μg/ml, which is in the range reported in vivo during secondary infection [11,28]. DENV NS1 bound to the surface of several types of epithelial and fibroblast transformed cell lines (BHK, CHO-K1, Vero, 293T, HepG2, Hep3B, and L929) including those of human and nonhuman origin. NS1 also bound to primary, untransformed cells including keratinocytes (HaCat, CCD-1102), skin and lung fibroblasts (Detroit-551 and IMR-90), and freshly isolated tonsillar epithelial cells.

As high levels of soluble NS1 are detected in the blood of DHF patients [11,28,33], we extended our analysis to human peripheral blood cells. Notably, DENV NS1 failed to bind to the surface of freshly isolated peripheral blood mononuclear cells or erythrocytes. Similar negative results were obtained with purified CD14+ monocytes, CD19+ B lymphocytes, and CD4+ T lymphocytes. Moreover, DENV NS1 only weakly binds to the cell surface, suggesting that it may play a role in the initial stages of flavivirus infection.
bound to the surface of monocyte-derived macrophages. In contrast to that observed with primary lymphocytes, DENV NS1 bound strongly to the surface of several malignant T cell lines, including Jurkat, H9, and EL-4 (Figure 2 and unpublished data).

As vascular leakage is a hallmark of DHF/DSS, and endothelial cells are believed to be targets of immune-mediated damage, we analyzed the binding of NS1 to human endothelial cells. Interestingly, DENV NS1 bound strongly to human dermal and lung microvascular endothelial cells (HMEC) and HMEC-lung blood (HEMC-LB), modestly to aortic endothelial cells, but minimally to primary or
immortalized human umbilical vein endothelial cells (HUVEC or Eahy926).

Soluble DENV NS1 Binds to GAG

As our data indicated that soluble DENV NS1 bound a subset of uninfected mammalian cells of different lineages, we sought to identify the mechanism of attachment. We hypothesized that NS1 might interact with a highly conserved moiety, such as a GAG. To test this, we compared DENV NS1 binding to wild-type CHO-K1 cells and seven different CHO cell lines (Table 2) that are either defective in GAG biosynthesis or express GAG with distinct structural specificities. CHO-745 cells, which genetically lack xylosyltransferase, the enzyme required for biosynthesis of both HS and CS [46], showed a 60%–70% reduction ($p < 0.0001$) in binding of DENV NS1 (Figure 3A and Table 2). Similarly, CHO-M1 cells, which are defective in HS biosynthesis [47], exhibited a 50% reduction ($p = 0.02$) in DENV NS1 binding. However, CHO-H8 cells [48], which are a variant of CHO-M1 HS-deficient cells overexpressing CS 2-O-sulfotransferase (2-OST) (producing a 30-fold increase in double sulfated disaccharide residues on CS), showed levels of DENV NS1 binding that were similar to CHO-K1 wild-type cells. Thus, both HS and CS sustain cell surface binding to DENV NS1, at least on CHO cells.

To determine if DENV NS1 required modification of HS structures for binding, we tested CHO cell lines that overexpress different 3-O-sulfotransferases (3-OST) (Figure 3A and Table 2). All 3-OSTs transfer sulfate moieties to the 3-O-position of N-sulfated glucosamine (GlcNS) and generate a highly sulfated HS motif with distinct biological properties (Table 2). CHO-K1.5 cells overexpress 3-OST-1, which adds 3-O-sulfate to GlcNS in a glucuronic acid (GlcA)-GlcNS α6S sequence context, and facilitate high affinity antithrombin III binding [49]. CHO-K1.N7 cells overexpress 3-OST-3, which adds 3-O-sulfate to GlcNS in a GlcA2S/IdoA2S-GlcNS α6S sequence context, and promote herpes simplex virus (HSV) glycoprotein D binding and entry [50]. By contrast, overexpression of 3-OST-5 (CHO-3-OST-5 cells) adds 3-O-sulfate to GlcNS in both GlcA-GlcNS α6S and GlcA2S/IdoA2S-GlcNS α6S sequence contexts. Notably, all CHO cell lines expressing distinct 3-OST showed enhanced DENV NS1 binding by 30%–50% ($p < 0.05$) without a preference for any of the distinct 3-OST-modified HS structures. Thus, unlike other glycoproteins, DENV NS1...
Table 1. DENV NS1 Binds to a Variety of Cell Types

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Cell Description</th>
<th>Mean Fluorescent Intensity</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No DENV NS1 + Anti-NS1 mAb</td>
<td>DENV NS1 + Isotype Control mAb</td>
</tr>
<tr>
<td>BHK</td>
<td>Hamster kidney fibroblast</td>
<td>5.4 ± 0.3</td>
<td>4.1 ± 0.5</td>
</tr>
<tr>
<td>CHO-K1</td>
<td>Chinese hamster ovarian epithelium</td>
<td>4.3 ± 0.3</td>
<td>3.8 ± 0.6</td>
</tr>
<tr>
<td>Vero</td>
<td>Monkey kidney epithelium</td>
<td>3.3 ± 0.1</td>
<td>3.6 ± 0.3</td>
</tr>
<tr>
<td>293T</td>
<td>Human kidney epithelium</td>
<td>3.8 ± 0.2</td>
<td>3.1 ± 0.1</td>
</tr>
<tr>
<td>IMR-90</td>
<td>Human lung fibroblast</td>
<td>4.0 ± 0.4</td>
<td>3.6 ± 0.7</td>
</tr>
<tr>
<td>Detroit-550</td>
<td>Human skin fibroblast</td>
<td>3.4 ± 0.7</td>
<td>3.6 ± 0.5</td>
</tr>
<tr>
<td>CDD-1102</td>
<td>Human keratinocytes</td>
<td>3.5 ± 0.4</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td>HepG2</td>
<td>Human hepatocellular carcinoma</td>
<td>4.2 ± 0.6</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>4/4 RM4</td>
<td>Rat visceral mesothelium</td>
<td>4.2 ± 0.1</td>
<td>4.0 ± 0.9</td>
</tr>
<tr>
<td>HUVEC</td>
<td>1' human umbilical cord vein EC</td>
<td>3.4 ± 0.1</td>
<td>3.5 ± 0.1</td>
</tr>
<tr>
<td>HMEC</td>
<td>Human dermal microvascular EC</td>
<td>3.8 ± 0.2</td>
<td>3.6 ± 0.1</td>
</tr>
<tr>
<td>HMEC-LB</td>
<td>1' Human lung blood</td>
<td>5.0 ± 0.4</td>
<td>4.6 ± 1.0</td>
</tr>
<tr>
<td>HAEC</td>
<td>1' Human aortic EC</td>
<td>3.9 ± 0.2</td>
<td>ND</td>
</tr>
<tr>
<td>Eahy926</td>
<td>Human umbilical cord vein EC</td>
<td>3.7 ± 0.1</td>
<td>3.1 ± 0.2</td>
</tr>
<tr>
<td>U937</td>
<td>Human mononuclear cell</td>
<td>3.8 ± 0.2</td>
<td>2.8 ± 0.1</td>
</tr>
<tr>
<td>MEG-01</td>
<td>Human megakaryoblast</td>
<td>4.9 ± 0.4</td>
<td>3.1 ± 0.5</td>
</tr>
<tr>
<td>Human monocytes</td>
<td>Peripheral blood</td>
<td>3.5 ± 0.1</td>
<td>2.0 ± 0.4</td>
</tr>
<tr>
<td>Human macrophages</td>
<td>Peripheral blood*</td>
<td>5.9 ± 0.0</td>
<td>5.6 ± 1.3</td>
</tr>
<tr>
<td>Human platelets</td>
<td>Peripheral platelets</td>
<td>2.2 ± 0.2</td>
<td>ND</td>
</tr>
<tr>
<td>Human CD19⁺ B lymphocytes</td>
<td>Peripheral blood</td>
<td>5.5 ± 0.6</td>
<td>ND</td>
</tr>
<tr>
<td>Human CD4⁺ T lymphocytes</td>
<td>Peripheral blood</td>
<td>5.1 ± 0.7</td>
<td>ND</td>
</tr>
<tr>
<td>Human peripheral blood mononuclear cells</td>
<td>Peripheral blood</td>
<td>4.3 ± 0.6</td>
<td>3.6 ± 0.7</td>
</tr>
<tr>
<td>Human erythrocytes</td>
<td>Peripheral blood</td>
<td>4.2 ± 0.4</td>
<td>3.2 ± 0.6</td>
</tr>
</tbody>
</table>

Cells were incubated with serum-free supernatants from BHK DENV-2-Rep (DENV NS1) or BHK (negative control, No DENV NS1) cells for 1 h at 4°C. Bound DENV NS1 was detected by anti-DENV NS1 mAb (2G6) followed by secondary antibody. Analysis was performed on gated viable cells (10,000 events) by flow cytometry. Data are mean ± SD of three independent experiments. p-Values were determined by a one-way ANOVA test after comparing the MFI of the cells after incubation with control protein or DENV NS1 with anti-NS1 antibody or DENV NS1 with isotype control antibody. Among these cell types, BHK, Vero, 293T, HepG2, HUVEC, Eahy926, U937, monocytes, and macrophages can be infected with highly passaged (e.g., strains 16681 or New Guinea C) DENV-2 isolates [73]. However, only a subset of cells (BHK, Vero, HepG2, and monocytes) are infected with primary DENV-2 isolates [73].

*Macrophages were generated from peripheral blood monocytes cultured for 7 d in medium containing 50 ng/ml of GM-CSF.

Mechanism NS1 Attachment to Cells

On CHO cell lines, the specificity of the GAG had a more dominant effect on regulating NS1 binding than the absolute level. Using a previously developed high-pressure liquid chromatography method [51], we quantified the amount of cell surface HS and CS GAG in different CHO cell lines and compared it to NS1 binding (Table 2). Although CHO-M1 cells expressed twice the amount of total GAG compared to CHO-745 cells (unpublished data) but bound NS1 less well compared to CHO-K1 cells (Figure 2 and Table 2).

A requirement of GAG for DENV NS1 binding to the cell surface was confirmed independently by enzymatic treatment of BHK and CHO-K1 cells with specific heparin lyases and chondroitinases (Figure 3B). Treatment of BHK or CHO-K1 cells with heparin lyases I, II, and III, which specifically remove HS, reduced DENV NS1 binding (~50%–60%, p < 0.05) to the levels observed in GAG-negative CHO-745 cells.

In contrast, DENV NS1 attachment was not significantly affected by treatment with chondroitinase ABC, which degrades all types of CS [52]. As expected, treatment with both enzymes had no effect on DENV NS1 binding to CHO-745 cells, which lack GAG. Nonetheless, a small amount of NS1 binding to CHO-745 cells was observed, presumably through a subordinate GAG-independent pathway. Overall, the analysis of CHO cell mutants and enzymatic treatments suggested that HS and highly sulfated forms of CS were the primary cell surface GAG that sustained DENV NS1 binding on CHO and BHK cells.

As an additional confirmation, we performed competitive binding assays with soluble GAG. Pre-incubation with soluble CS-E or heparin (HP) substantially decreased (~50%, p < 0.005) whereas CS-C and -D showed no significant effect (p > 0.2). Similarly, pre-incubation with CS-E and HP reduced DENV NS1 attachment to HMEC cells (~40%, 0.01 μg/ml, p < 0.01) (Figure 4D–4F). In a more direct in vitro binding ELISA, an interaction between DENV NS1 and HS or CS-E was established, whereas only...
Table 2. Description of Wild Type and Mutant CHO Cells

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Description</th>
<th>GAG Phenotype</th>
<th>Biological Effects</th>
<th>Surface GAG Quantity ($\mu g/1 \times 10^7$ cells)a</th>
<th>Specific DENV NS1 Bindingb</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>Wild type</td>
<td>70% HS and 30% CS</td>
<td>Binds to many HS binding proteins but does not possess special GAG biological activities requiring HS 3-O-sulfation or CSE-like structures [49,50]</td>
<td>HS: 8 ± 0.3 CS: 12 ± 1 (n = 5)</td>
<td>19 ± 6</td>
</tr>
<tr>
<td>K1.5</td>
<td>Overexpresses 3-O-sulfotransferase-1</td>
<td>Six 3-O-sulfated GlcNS residues in GlcA-GlcNS ± 6S per HS chain (~200 repeating disaccharides per CHO HS chain)</td>
<td>HS that binds antithrombin III [49]</td>
<td>HS: 7 CS: 5 (n = 1)</td>
<td>26 ± 5</td>
</tr>
<tr>
<td>K1.N7</td>
<td>Overexpresses 3-O-sulfotransferase-3</td>
<td>Twelve 3-O-sulfated GlcNS residues in Ido2A5/GlcA2S-GlcNS ± 6S context per HS chain</td>
<td>HS that binds HSV glycoprotein gD and allows HSV-1 entry [74,75]</td>
<td>D: 7 CS: 7 (n = 1)</td>
<td>29 ± 12</td>
</tr>
<tr>
<td>PPP6</td>
<td>Overexpresses 3-O- and 6-O-sulfotransferase-1</td>
<td>Six 3-O-sulfated GlcNS residues per HS chain with increased 6-O-sulfated GlcNAc residues</td>
<td>HS that binds antithrombin III [49]</td>
<td>ND</td>
<td>25 ± 10</td>
</tr>
<tr>
<td>3OST5-1</td>
<td>Overexpresses 3-O-sulfotransferase-5</td>
<td>3-O-sulfation occurs on both GlcA-GlcNS ± 6S and Ido2A5/GlcA2S-GlcNS ± 6S sequence context</td>
<td>HS that binds both antithrombin and HSV-1 glycoprotein gD [61,70]</td>
<td>D: 7 CS: 5 (n = 1)</td>
<td>24 ± 7</td>
</tr>
<tr>
<td>M1</td>
<td>Defective in N-acetylgalcosaminyl transferase/glucuronyl transferase</td>
<td>3-fold increase in CS biosynthesis</td>
<td>HS-deficient [47]</td>
<td>HS: 2 ± 0.2 CS: 28 ± 2 (n = 2)</td>
<td>11 ± 4</td>
</tr>
<tr>
<td>H8</td>
<td>Overexpresses CS 2-O-sulfotransferase in M1</td>
<td>30% repeating disaccharides contain GlcA/Ido2A5-GalNAc4S residues</td>
<td>Binding to heparin co-factor II [48]</td>
<td>HS: 0.9 ± 0.1 CS: 24 ± 3 (n = 4)</td>
<td>18 ± 9</td>
</tr>
<tr>
<td>745</td>
<td>Defective in xylosyltransferase</td>
<td>Fails to assemble the first HS and CS linkage tetrasaccharide</td>
<td>GAG-deficient, lacking both HS and CS [46]</td>
<td>HS: 2 ± 0.1 CS: 4 ± 0.1 (n = 2)</td>
<td>7 ± 2</td>
</tr>
</tbody>
</table>

aCHO cell variants were cultured as described in Materials and Methods. Surface GAG levels were determined by a published high-pressure liquid chromatography method [51]. The data are derived from between one and five independent experiments and the standard deviations were from varying numbers (n) of independent GAG isolations.

bDENV NS1 binding was performed as described in Figure 2. The MFI of DENV NS1 binding is derived from the difference in MFI values of cells incubating with and without DENV NS1. Data are the mean of three independent experiments ± SD.

doi:10.1371/journal.ppat.0030183.t002

weak or no appreciable binding was detected with CS-A, -B, -C, and -D (Figure 5). Taken together, these results suggest that NS1 interacts more strongly with HP, HS, and CS-E and more weakly with CS-A and CS-B. CS-A consists of mainly GlcA-GalNAc4S repeating disaccharides, CS-B contains both IdoA-GalNAc4S and GlcA-GalNAc4S as dominant repeating disaccharides, and CS-C consists of mainly GlcA-GalNAc6S repeating disaccharides. CS-D and CS-E are enriched in disulfated disaccharides, GlcA2S-GalNAc6S and GlcA-GalNAc4S6S, respectively. CS-E is unique, as two sulfates are present in the same GalNAc residue compared to other CS, and suggests that clustered sulfates rather than net negative charge on the disaccharide backbone facilitate DENV NS1 binding.

GAG Sulfation Is Critical for DENV NS1 Cellular Attachment

The specificity of GAG-protein interactions often depends on the position and degree of sulfation (reviewed in [53–55]). To clarify if GAG sulfation is required for cell binding of DENV NS1, we treated BHK and CHO-K1 cells with the reversible sulfation inhibitor, sodium chlorate [56] (Figure 6A and 6B). This treatment did not alter cell viability, as analyzed by propidium iodide exclusion (unpublished data). However, binding of DENV NS1 to BHK cells was abolished by the addition of sodium chlorate (>5 mM). In contrast, at comparable doses, DENV NS1 binding to wild-type CHO-K1 was reduced to the level observed with CHO-745 cells lacking GAG. Importantly, the phenotype was reversed by the addition of excess exogenous (10 mM) sodium sulfate (Figure 6C and 6D). Thus, GAG sulfation is required for optimal binding of soluble DENV NS1 to cells.

Expression of DENV NS1 on the Surface of DENV-Infected Cells Is Largely GAG-Independent

Although our data suggests that soluble DENV NS1 binds to the cell surface of uninfected cells via HS and CS-E, we evaluated if this was the dominant mechanism of attachment of NS1 to DENV-infected cells. Previous studies have suggested that flavivirus NS1 may be displayed on the cell surface of infected cells by a GPI anchor or transmembrane linkage [43], even though the protein lacks anchor attachment sequences or consensus membrane spanning domains. To evaluate this, BHK cells were infected with DENV-2 and cultured in the presence of high concentrations of soluble HP. No reduction of DENV NS1 surface expression on infected cells was observed (Figure 7A). These results were confirmed by studies with the sulfate inhibitor, sodium chlorate. In contrast to the inhibitory effect of sodium chlorate on soluble NS1 binding (Figure 6), no reduction of DENV NS1 expression on the surface of infected BHK cells was observed (Figure 7B). Similar studies with BHK DENV-2 Rep cells also showed no change in surface NS1 expression after sodium chlorate treatment (Figure 7C). Finally, in direct contrast to that observed with soluble NS1 and uninfected cells (Figure 3B), treatment of DENV-infected cells with heparin lyases and/or chondroitinase ABC did not decrease...
A soluble DENV NS1 binds selectively to subsets of human endothelial cells. We hypothesized, that in vivo, a preferential interaction of DENV NS1 with specific endothelium could contribute to tissue-specific vascular leakage after immune recognition. This mechanism would not require direct DENV infection of endothelial cells, which has been difficult to establish in vivo by pathological criteria [57,58].

To assess this, sections of uninfected mouse tissues were incubated with soluble DENV NS1 and analyzed by immuno-fluorescence and confocal microscopy. Histological analysis was performed on parallel hematoxylin and eosin–stained sections (unpublished data). Specific NS1 binding to endothelial cells lining blood vessels of lung and liver was observed, based on costaining with mAbs against DENV NS1 and the endothelial cell–specific marker CD31 (Figure 8A and 8B). Differences in the pattern of DENV NS1 binding within the same organ were also observed. For example, DENV NS1 bound primarily to endothelial cells lining vessels along the bronchial tree, yet bound poorly to those lining alveolar capillaries. Strong binding of DENV NS1 to the cells lining the outer layer of the adventitia of pulmonary vessels was also apparent (Figure 8A). In the liver, hepatic arteriolar and sinusoid endothelial cells bound DENV NS1 weakly, whereas those within central veins showed strong binding (Figure 8B). As controls, no appreciable staining was observed if sections were incubated with bovine serum albumin (BSA) followed by anti-NS1 mAbs or with purified DENV NS1 and isotype control mAbs. The selectivity of soluble NS1 binding to endothelium in situ was also demonstrated by an absence of NS1 binding to endothelium in the large intestine (Figure 8C) and brain (unpublished data) of mice. Finally, binding of DENV NS1 to endothelium in situ also was confirmed in human lung tissues (Figure 9).

Next, soluble GAG and DENV NS1 competitive binding assays were performed on lung tissues and images were analyzed by confocal microscopy and Volocity software. Pre-incubation of DENV NS1 with soluble CS-E or HP reduced binding to lung endothelium in situ (CS-E: ~40%, p < 0.0001; HP: ~30%, p = 0.0002). In contrast, CS-C marginally decreased DENV-NS1 attachment to lung endothelium (~8%, p = 0.18). Significant binding of DENV NS1 to serosal surfaces of the lung (pleura) and intestine (peritoneum) was also observed (Figure S2A and S2B). Based on histological analysis, mesothelial cells were also targets for DENV NS1 binding in the lung and intestine. Binding of DENV NS1 to mesothelial cells was specific as negative results were obtained when the sections were incubated with NS1 followed by isotype control mAbs or without NS1 followed by anti-NS1 mAbs. In competitive binding experiments, soluble HP and CS-E, but not CS-C, also decreased DENV NS1 binding to lung mesothelial cells (unpublished data).

Discussion

In this study, we demonstrate that soluble DENV NS1 binds to a subset of uninfected cells via interactions with GAG, primarily HS and CS-E. In cell culture, NS1 bound strongly to epithelial cells and fibroblasts, and weakly, if at all, to freshly isolated human peripheral blood leukocytes. Substantial variability was observed in NS1 binding to cultured endothelial cells and endothelium in situ. Experiments with the
sulfation inhibitor sodium chlorate established that highly sulfated forms of GAG are required for optimal binding of soluble DENV NS1. Finally, our experiments suggest that NS1 on the surface of DENV-infected cells is linked primarily by a distinct, GAG-independent mechanism.

Two major types of GAGs, HS and CS, are produced by cells in the form of proteoglycans as linear polymers of repeating disaccharides of uronic acids and glucosamines or galactosamines. For HS, sulfation of glucosamine and uronic acid moieties may occur in a clustered manner to generate highly sulfated domains or in a dispersed pattern to generate less sulfated or non-sulfated domains. Moreover, GlcNS, IdoA, and GlcA can be sulfated at multiple positions. Differential sulfation of GAG results in preferential binding of growth factors, cytokines, chemokines, enzymes, extracellular matrix, and other proteins to these structures [59]. Cell type–specific expression of GAG modifying enzymes and proteoglycan core proteins results in the display of unique GAG structures on different types of cells [60]. Consistent with this, our studies demonstrate that DENV NS1 binding to GAG occurs in a cell type–specific manner.

The specificity of GAG interactions is determined by the pattern of the disaccharide units, the degree of sulfation, and the spacing of basic amino acid residues in GAG-binding domains of ligands (reviewed in [53–55]). We observed that highly sulfated GAG, including HS, HP, and CS-E, demonstrated the strongest binding for soluble DENV NS1. The use of mutant CHO lines expressing different levels and forms of GAG established that specific HS and CS structures modified by 2-O- and 3-O-sulfotransferases promoted DENV NS1 binding to cell surfaces. These results are analogous, although not identical, to studies with HSV glycoprotein D, which show enhanced cell surface binding when HS is modified by some, but not all 3-OST [50,61]. Sulfation was critical for soluble DENV NS1 binding to cell surfaces, especially for BHK cells.

Figure 4. Soluble HP and CS-E Block DENV NS1 Binding to the Surface of BHK and HMEC

DENV NS1 was incubated with three concentrations of indicated soluble GAG prior to incubation with (A–C) BHK or (D–F) HMEC. DENV NS1 was detected by flow cytometry (as described in Figure 2). Data are expressed as the specific MFI of staining as described in Figure 3. The error bars indicate SD corresponding to three independent experiments. Asterisks denote NS1 binding that is statistically different from untreated cells (*p < 0.05, **p < 0.005). Examples of histogram profiles in which soluble HP and CS-E at 1 µg/ml concentration block DENV NS1 binding to the surface of (B–C) BHK and (E–F) HMEC are depicted. doi:10.1371/journal.ppat.0030183.g004
as treatment with the sulfate inhibitor sodium chlorate abolished DENV NS1 attachment.

Also consistent with our results, CS-E, but not CS-A, -B, or -C, interfered with HSV binding to the target cells [62]. Using radioactive binding or gel mobility shift assays, we observed similarly strong binding between West Nile virus NS1 and HS or CS-E (L. Zhang, K. Chung, and M. Diamond, unpublished data). As binding of soluble DENV NS1 to GAG requires sulfation, it is plausible that the interaction is primarily electrostatic in nature and depends on the relative degree of negative charge on a GAG motif. The major repeating disaccharides in HP are IdoA2S-GlcNS6S (~2.7 sulfates/disaccharide), whereas the major repeating disaccharides in CS-D and CS-E are GlcA2S-GalNAc6S and GlcA-GalNAc4S6S, respectively (~1.7 sulfates/disaccharide) [62]. Because NS1 preferentially interacts with CS-E and HP compared to CS-D, we hypothesize that NS1 binding may prefer closely spaced sulfates within the same sugar residue. Since HP and CS-E have distinct sugar sequences, the combination of disaccharide unit and position of sulfation on an individual GAG may determine the strength of DENV NS1 binding.

The linear sequences XBBXB and XBBBXB (where B is a basic Arg or Lys amino acid) are common HP binding motifs in proteins [55]. However, GAG binding sites may not be exclusively defined by linear sequences but also can include conformational epitopes that juxtapose basic amino acids from different segments of a protein [55]. Amino acid sequence analysis of DENV NS1 reveals no apparent canonical GAG binding motifs. Although reverse genetic strategies are planned, the identification of the amino acids involved in GAG recognition may await solution of the NS1 structure.

Our data showing that soluble NS1 can bind to the surface of the GAG-deficient line, CHO-784, albeit at significantly lower levels, suggest that additional molecules also serve as ligands for DENV NS1 attachment. This secondary attachment ligand may be expressed only on subsets of cells as addition of sodium chlorate completely abrogated soluble NS1 binding to BHK cells. Consistent with this, soluble HS and CS-E only partially reduced DENV NS1 binding to HMEC. Thus, different cell types may express multiple ligands for attachment of soluble DENV NS1.

The expression of NS1 on the surface of DENV-infected cells was insensitive to treatments that reduce GAG levels. This also suggests the existence of an alternate mechanism of cell surface NS1 attachment. Some have speculated that a transmembrane form of NS1 exists, although the protein sequence lacks a canonical hydrophobic membrane-spanning domain [42]. Others have postulated that at least some fraction of cell surface NS1 is linked via a GPI anchor [43,63]. Based on our data, we hypothesize that DENV NS1 is expressed on cell surfaces by at least two mechanisms: on uninfected cells soluble NS1 binds to the surface via a GAG-dependent and GAG-independent mechanism, whereas on infected cells NS1 attaches via a GAG-independent mechanism, possibly via a membrane or GPI anchor. What remains uncertain, and is a direction for future research, is whether the mechanism of cell surface attachment of NS1 has unique functional consequences, especially in terms of immune recognition or evasion.

Our studies demonstrate that soluble DENV NS1 differentially binds to cultured endothelial cells in vitro and endothelium in situ in human and mouse tissues. In contrast, others have shown that intravenous injection of C57BL/6 x SJL mice with high concentrations (250 μg/ml) of soluble DENV-1 NS1 results in binding to and accumulation in hepatocytes but not to other cell types in the liver or other tissues [40]. A possible reason for the disparity in results is that the route of antigen administration may modulate NS1 binding: intravenous injection could prompt rapid first-pass clearance of antigen by the liver. Although further studies are necessary, our data are consistent with specific GAG modification by subsets of endothelial cells in different tissues modulating the level of bound NS1. Indeed, tissue-specific expression of different isoforms of enzymes in GAG biosynthesis has been reported [64,65]. Selective IL-8 binding to endothelial cells has been observed [66] and could be due to subtle differences in the display of GAG on the surface of cells. In favor of this hypothesis, IL-8 selectively binds to subsets of HP and HS [67].

The pathologic mechanism underlying selective vascular leakage at serosal sites during DHF/DSS [4] remains unknown. High levels of intravascular soluble NS1, as observed in DENV-infected patients, could promote binding and surface expression of NS1 on selective endothelium without a requirement for direct viral infection, which has been difficult to establish histopathologically in fatal DHF cases [57,58]. In addition, specific binding to mesothelial cells that line pleura and peritoneum, as observed in our DENV NS1 binding experiments in situ, could contribute to the pleural effusions or ascites that are observed in DHF/DSS patients. Although more experiments are necessary, preferential binding of soluble NS1 to subsets of endothelial and mesothelial cells in vivo could lead to tissue-specific vascular leakage that occurs during severe secondary DENV infection after recognition by anti-NS1 antibodies, immune complex formation, and inflammatory damage [28,68].
Materials and Methods

Reagents. CS-A, -B, -C, -D, -E, HP, HS, heparin lyases I, II, and III, chondroitinase ABC, anti-heparin lyase-digested HS (3G10), and anti-chondroitinase ABC-digested CS (2B6) antibodies were all purchased (Seikagaku). DENV-2 NS1–specific monoclonal antibodies (mAb hybridomas 2G6, 1A4, 1B2, 1F11, 2E3, and 2E11 [69], and unpublished data) were purified by protein G affinity chromatography. Mouse polyclonal anti-DENV-2 NS1 was produced after BALB/c mice were intraperitoneally immunized three times with purified DENV-2 NS1 (10 μg/dose) at a 2-wk interval. Mice were subsequently treated with pristane followed by injection with myeloma cells to induce ascites formation. Ascites fluid containing anti-NS1 polyclonal antibody was collected, and antibodies were purified by protein-G affinity chromatography. Mouse polyclonal anti-DENV-2 NS1 was produced after BALB/c mice were intraperitoneally immunized three times with purified DENV-2 NS1 (10 μg/dose) at a 2-wk interval. Mice were subsequently treated with pristane followed by injection with myeloma cells to induce ascites formation. Ascites fluid containing anti-NS1 polyclonal antibody was collected, and antibodies were purified by protein-G affinity chromatography. Anti-mouse IgG conjugated with Alexa Fluor 647, Alexa Fluor 488, or Cy3 were purchased from Invitrogen. Sodium chlorate and sodium sulfate were obtained commercially (Sigma).

Cell culture. The following transformed cell lines were obtained from the ATCC: BHK fibroblasts cells, African green monkey Vero cells, HEK-293T human embryonic kidney carcinoma cells, L929 mouse fibroblasts, IMR-90 human lung fibroblasts, Detroit-550 human skin fibroblasts, CCD-1102 human keratinocytes, HepG2 and Hep3B human hepatocellular carcinoma cells, 4/4RM4 rat lung mesothelial cells, Eahy926 HUVEC, MEG-01 human megakaryoblast cells, Jurkat human leukemic T lymphoblasts, H9 human T lymphoma cells, EL-4 mouse T lymphoma cells, and U937 human myelomonocytic cells. HMEC and keratinocytes (HaCat) were gifts (M. Caparon).

Figure 6. Sulfation Is Required for Soluble DENV NS1 Binding to Cells

(A–B) BHK, wild-type CHO-K1, and GAG-deficient mutant CHO-745 were cultured overnight in sulfate-free medium in the presence of indicated amounts of sodium chlorate. Cells were harvested and tested for NS1 binding by flow cytometry as described in Figure 2. No appreciable cell death was observed by this treatment as judged by exclusion of propidium iodide. Data (A) are expressed as the specific MFI of staining as described in Figure 3. The error bars indicate SD corresponding to three independent experiments. Asterisks denote NS1 binding that is statistically different from untreated cells (**p < 0.005).

(C–D) Addition of sodium sulfate (10 mM) restores binding of NS1 to cells. Cells were cultured overnight in sulfate-free medium and 25 mM sodium chlorate or with or without 10 mM sodium sulfate (as indicated). Cells were processed for DENV NS1 binding and analyzed by flow cytometry (see Figure 2). Data (C) are expressed as the specific MFI of staining as described in Figure 3. The error bars indicate SD corresponding to three independent experiments. Asterisks denote NS1 binding that is statistically different from untreated cells (**p < 0.005).

doi:10.1371/journal.ppat.0030183.g006
H9 were cultured in RPMI 1640 medium with 10% FBS, 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 100 units/ml penicillin G, and 100 μg/ml streptomycin sulfate. EL-4 cells were propagated in Iscove’s medium supplemented with 10% FBS, 1% non-essential amino acids, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin G, and 100 μg/ml streptomycin sulfate. HMEC were grown in MCDB 131 (Invitrogen) supplemented with 10% FBS, 2 mM L-glutamine, 0.3% NaHCO3, 1 μg/ml hydrocortisone (Sigma), 10 ng/ml epidermal growth factor (Sigma), 100 units/ml penicillin G, and 100 μg/ml streptomycin sulfate. All CHO cell lines were grown in Ham’s F12 medium containing 10% FBS, 100 units/ml penicillin G, and 100 μg/ml streptomycin sulfate, except for CHO-30STS–1 cells, which were cultured in CHO medium supplemented with 400 μg/ml of G418 sulfate (Cellgro).

Primary human tonsil epithelial cells were isolated according to a published protocol [71] and cultured in keratinocyte serum-free medium supplemented with keratinocyte growth factor (Invitrogen). Primary HMEC-LB and aortic endothelial cells were purchased from Clonetics (Cambrex Bio Science) and maintained according to the manufacturer’s protocol. HUVEC were grown in RPMI 1640 containing 10% FBS on 1% gelatin-coated surfaces. Primary human peripheral blood mononuclear cells were isolated from buffy coats obtained from the blood bank or healthy volunteers by Ficoll-Hypaque (Pharmacia) density gradient centrifugation. Human CD14+ monocytes, CD19+ B cells, and CD4+ T lymphocytes were purified from primary human peripheral blood mononuclear cells via positive selection using antibody-coated magnetic beads (Miltenyi Biotec). To generate macrophages, monocytes were cultured for 7 d in RPMI 1640 supplemented with 50 ng/ml of GM-CSF, 10% FBS, 2 mM glutamine, 1% nonessential amino acids, 1% sodium pyruvate, 100 units/ml penicillin G, and 100 μg/ml streptomycin sulfate. Human platelets were isolated from whole blood of healthy volunteers. After centrifugation at 750 x g for 20 min at 22°C, platelet-rich plasma was collected and centrifuged at 1,200 x g for 15 min at 22°C to obtain platelets. Human erythrocytes were obtained from healthy donors following a published protocol [72]. All primary cells were cultured for five or fewer passages for the NS1 binding experiments.

Mechanism NS1 Attachment to Cells

Purification of DENV NS1. BHK cells that stably propagate a DENV-2 subgenomic replicon (BHK DENV-2 Rep cells [45]) were grown to 80%–90% confluence in DMEM containing 10% FBS and 3 μg/ml puromycin (Sigma). Cell monolayers were washed several times with DMEM and the cells were cultured for another 3 d in serum-free DMEM supplemented with 3 μg/ml puromycin. DENV NS1 secreted in the supernatants of BHK DENV-2 Rep was quantified by ELISA as previously described [28]. Supernatants were collected and centrifuged at 1,200 x g for 15 min at 22°C to obtain supernatants. Human erythrocytes were obtained from healthy donors following a published protocol [72]. All primary cells were cultured for five or fewer passages for the NS1 binding experiments.

Figure 7. Expression of DENV NS1 on the Surface of Infected Cells Is Not Dependent on GAG

(A) BHK cells were infected with DENV-2 at the MOI of 3 and cultured for 24 h in the presence of indicated concentrations of soluble HP or CS-C. Cells were then harvested for analysis of surface NS1 expression.

(B) BHK cells were infected with DENV-2 at the MOI of 3 and cultured for 24 h in the presence of 25 mM sodium chloride. DENV NS1 expression was determined and analyzed by flow cytometry using anti-DENV NS1 mAb (2G6) or polyclonal anti-DENV NS1.

(C) BHK DENV-2 Rep cells were cultured in medium containing 25 mM sodium chloride for 48 h. Expression of NS1 on the cell surface was determined by using anti-DENV NS1 mAb (2G6) and analyzed by flow cytometry.

(D) BHK cells were infected with DENV-2 at the MOI of 3. At 24 h after infection, the cells were treated with a mixture of heparinases I, II, III (H. lyases) or chondroitinase ABC (ABCase). NS1 expression was analyzed by flow cytometry using the 2G6 anti-DENV NS1 mAb. Data are the mean ± SD of three independent experiments as described in Figure 6.

doi:10.1371/journal.ppat.0030183.g007
Purified DENV NS1 from DENV-infected mammalian cells was purified protein were determined by the bicinchoninic acid assay. Purity and immunoreactivity of DENV NS1 were confirmed by SDS-salt gradient (0–1 M NaCl) over 20-column volumes at 1 ml/min.

Figure 8. Binding of DENV NS1 to Mouse Tissues
Cryo-sections of mouse (A) lung, (B) liver, and (C) intestine were incubated with 20 μg/ml of purified DENV-2 NS1 or BSA for 1 h at room temperature. Bound NS1 was detected by a mixture of NS1 mAbs (1A4, 1F11, 2G6, 1B2) followed by Cy3-conjugated goat anti-mouse IgG. Co-staining with endothelial cell marker was subsequently performed by incubating the sections with rat anti-mouse CD31 (PECAM-1) followed by Cy3-conjugated donkey anti-rabbit IgG. Nuclei were stained with a DNA-specific dye (Hoechst) and the sections were analyzed by confocal microscopy. Sections incubated with purified DENV NS1 and stained with isotype mAbs served as a negative control.

doi:10.1371/journal.ppat.0030183.g008

Figure 9. Binding of DENV NS1 to Human Lung
Cryo-sections of human lung tissue were incubated with 20 μg/ml of purified DENV-2 NS1 or BSA for 1 h at room temperature. Bound NS1 was detected by staining with a mixture of DENV NS1 mAbs (1A4, 1F11, 2G6, 1B2) followed by Alexa Fluor 488 conjugated with goat anti-mouse IgG. Subsequently, the sections were co-stained with rabbit anti-human CD31 (PECAM-1) followed by Cy3-conjugated donkey anti-rabbit IgG. Nuclei were stained with a DNA-specific dye (Hoechst) and the sections were analyzed by confocal microscopy. Sections incubated with purified DENV NS1 and stained with isotype mAbs served as a negative control.

doi:10.1371/journal.ppat.0030183.g009

Mechanism NS1 Attachment to Cells

DENV NS1 binding to cells. Adherent cells were removed from tissue culture plates after incubation with an EDTA solution (4 mM EDTA plus 10% FBS in PBS). Cells (5 × 10^5) in suspension were incubated on ice for 1 h with 100 μl of purified DENV NS1 at indicated concentrations or 300 μl of serum-free supernatants from BHK DENV-2 Rep cells. After washing once with 3 ml of medium, 50 μl of DENV-2 NS1 specific mAb 2G6 (25 μg/ml) or an isotype-matched negative control mAb was added to the cells and incubated on ice for 45 min. After subsequent washing, bound primary mAbs were detected after 30-min incubation with a 1:500 dilution of Alexa Fluor 647-conjugated anti-mouse IgG (Invitrogen). Of note, experiments were also performed in parallel with serial washing steps and no significant difference in binding or background was observed. Propidium iodide (0.2 mg/ml) was added immediately before flow cytometry to exclude dead cells.

Soluble GAG and DENV NS1 competitive binding assays. Cell suspensions were incubated with DENV NS1 in the presence or absence of varying concentrations of soluble GAG for 1 h on ice. Bound DENV NS1 was detected after antibody staining as described above and analyzed by flow cytometry.

Enzymatic digestion of GAGs from cellular surfaces. Cell suspensions were centrifuged at 290 x g for 2 min and were resuspended in PBS containing 0.1% BSA. Heparin lyases I, II, III (0.06 U/ml final concentration) or chondroitinase ABC (0.1 U/ml final concentration) was added to a 50-μl of cell suspension and incubated at 37 °C in a shaking incubator for 1 h. After three washes with cold DMEM, the cells were incubated sequentially with DENV NS1 and DENV NS1 mAbs and analyzed by flow cytometry.

Quantification of surface GAG levels. Different types of CHO cells were cultured as described above. CHO cells were rinsed and detached from cell culture dishes after incubation in PBS/EDTA for 15 min. Cells (10^6) were treated with 2 ml trypsin-EDTA (1X solution, Mediatech) at 37 °C for 10 min, which released cell surface proteoglycans. These were collected and used for cell surface GAG isolation and quantification by high-pressure liquid chromatography as reported previously [51].

DENV NS1 and GAG binding ELISA. Maxi-Sorp microtiter plates (Nalge Nunc International) were adsorbed with soluble GAG (1 mg/ml) in PBS at 4 °C overnight. After four washes with PBS (500 μl/well), nonspecific binding sites were blocked with 1% heat-inactivated (65 °C, 15 min) BSA in PBS for 2 h at 37 °C and followed by five washes with PBS. Clarified serum-free supernatants from BHK or BHK DENV-2 Rep cells (100 μl diluted 1:1 in PBS) were added to each well and incubated for 2 h at room temperature. Plates were then washed five times with PBS containing 0.05% Tween-20 followed by a 1-h incubation at room temperature with 100 μl of purified DENV NS1 specific mAbs mixtures (1A4, 1B2, 1F11, 2G6, and 2E3; 1 μg/ml of each

salt gradient (0–1 M NaCl) over 20-column volumes at 1 ml/min. Purity and immunoreactivity of DENV NS1 were confirmed by SDS-PAGE with silver staining and western blot. Concentrations of purified protein were determined by the bicinchoninic acid assay. Purified DENV NS1 from DENV-infected mammalian cells was obtained as previously described [28].

DENV NS1 binding to cells. Adherent cells were removed from
in PBS containing 0.1% BSA. After washing, biotinylated goat anti-
mouse IgG (1 µg/ml) and horseradish peroxidase-conjugated strepta-
vidin were added sequentially for 1-h incubations at room temper-
ature. After six final washes with PBS, signal was detected by adding
150 µl of TMB substrate (DakoCytomation) and 50 µl of 0.1 N H2SO4
stop solution to each well. Plates were evaluated at 450 nm on a 96-
well plate reader (Genios Pro; Tecan).

Sodium chloride treatment of cell cultures. Sulfation was inhibited
by sodium chloride treatment [56]. BHK and CHO cells were cultured
in sulfate-free Joklik Modification Minimum Essential Medium Eagle
(Sigma) or Ham’s F12 medium (Tissue culture support center,
Washington University) supplemented with 10% dialyzed FBS
(Sigma) containing different concentrations (1–75 mM) of sodium
chlorate. In some experiments, 10 mM sodium sulfate was added to
replenish sulfate to the cells. After overnight culture, cells were
processed for DENV NS1 binding as described above.

Analysis of NS1 expression on the surface of DENV-infected cells.
BHK cells (1.6 × 10^5/well) were seeded onto 12-well tissue culture
plate (Costar). 24 h later, cells were infected with DENV-2 (strain
16681) at a multiplicity of infection (MOI) of 3. After a 2-h incubation at
37 °C, cell monolayers were extensively washed and cultured in
DMEM containing 4% FBS. In some experiments, DENV-infected cells
were cultured in medium containing 1, 10, or 100 µg/ml of HP or
CS-C or 25 mM sodium chloride. At specific intervals post-infection,
cells were harvested from culture plates with an EDTA solution (4
µM EDTA in PBS). DENV NS1 on the cell surface was determined by
incubation of 5 × 10^4 cells with anti-DENV-2 NS1 mAb clone 2G6 or
mouse polyclonal anti-DENV-2 NS1 (20 µg/ml final concentration) for
1 h at 4 °C. After three washes, cells were incubated with Alexa Fluor 647-conjugated anti-mouse IgG (1:500) and analyzed by flow cytometry. In some experiments, DENV-
infected cells were treated with a mix of brefeldin I, II, III or
chondroitinase ABC prior to detection of surface NS1.

DENV NS1 binding to tissues. Human lung tissue: The protocol to
obtain human lung tissues from patients was approved by the
Institutional Review Board at the Faculty of Medicine Siriraj
Hospital, Mahidol University. A human lung, surgically removed with
consent from a patient with lung cancer, was evaluated
macroscopically for cancer-free regions. Selected tissues, cut from the
central part of the cancer-free region of the lung, were cryoprotected
in 30% sucrose for generation of 6- to 7-µm thick frozen sections.
Cryosections were thawed, fixed in 4% paraformaldehyde (Sigma)
in PBS at room temperature for 10 min, and washed extensively with
PBS. Tissues were incubated with purified DENV NS1 or BSA at 20
µg/ml for 1 h at room temperature and followed by three washes with
0.1% BSA in PBS 5 min each. Sections were incubated with a mixture of
Abs (1A4, 1F11, 2G6, 1B2; 20 µg/ml final concentration) against
DENV NS1. A mixture of IgGl (MOPC-21, Sigma) and IgG2a (UPC-10,
Sigma) at 20 µg/ml was used as isotype control Abs. After three
incubations, sections were incubated with Alexa Fluor 488 conjugated
anti-mouse IgG primary antibody (Invitrogen) and followed by
incubation with rabbit anti-rabbit IgG (Jackson Immuno Research
Laboratories, PA). Nuclei staining was achieved by incubation for 15 min with 1:100 dilution of
Hoechst dye (Invitrogen) and visualized using a Zeiss 510 Meta LSM
confocal microscope.

Mouse tissues: To obtain tissues from mice, 4- to 6-week-old
uninfected C57BL/6 mice were anesthetized with ketamine and
xylazine and perfused with 20 ml of PBS. Tissues were dissected and
cryoprotected in 30% sucrose for generation of frozen sections.
Serial 6-µm cryosections were air-dried for 1 h at room temperature
followed by washing with PBS. Sections were fixed with 50% acetone
in PBS for 10 min on ice, incubated with PBS containing 2 M NaCl
(pH 7.4) for 10 min at room temperature, and blocked in PBS
containing 0.5% BSA for 1 h at room temperature or overnight at
4 °C. Subsequently, sections were incubated with serum-free supernatants from BHK DENV-2 Rep or BHK cells for 1 h at room temperature. After extensive washing, bound NS1 was
detected by a mixture of NS1-specific mAbs (1A4, 1F11, 2G6, 1B2) followed by
Cy3-conjugated goat-antimouse IgG. Costaining with endothelial cell
marker was subsequently performed by incubating the sections with
sections with rat anti-mouse CD31 (PECAM) followed by Alexa Fluor 488-
conjugated goat anti-rat IgG. Nuclei were stained with a DNA-
specific dye TO-Pro-3. Sections incubated with DENV NS1 followed
by an isotype control Ab served as a negative control. Analysis was
performed by confocal microscopy. Arrowheads denote a single layer of
mesothelial cells lining pleura (A) or peritoneum (B).

Supporting Information

Figure S1. Immunoreactivity of Purified DENV-2 NS1 with mAbs

Purified NS1 from BHK DENV-2 Rep cells (rNS1) or DENV-2 infected
cells (iNS1) (250 ng/well) was maintained at room temperature or
heated (at 95 °C for 5 min) in SDS nonreducing sample buffer
immunostaining negatively to serum-free supernatants from BHK
DENV-2 Rep or BHK cells for 1 h at room temperature. After extensive washing, bound NS1 was
detected by a mixture of NS1-specific mAbs (1A4, 1F11, 2G6, 1B2) followed by
Cy3-conjugated goat-antimouse IgG. Costaining with endothelial cell
marker was subsequently performed by incubating the sections with
rat anti-mouse CD31 (PECAM) followed by Alexa Fluor 488-
conjugated goat anti-rat IgG. Nuclei were stained with a DNA-
specific dye TO-Pro-3. Sections incubated with DENV NS1 followed
by an isotype control Ab served as a negative control. Analysis was
performed by confocal microscopy. Arrowheads denote a single layer of
mesothelial cells lining pleura (A) or peritoneum (B).

Figure S2. Binding of DENV NS1 to Mesothelial Cells Lining Pleura and

Peritoneum

Cryo-sections of mouse (A) lung, (B) intestine were incubated with
serum-free supernatants from BHK DENV-2 Rep or BHK cells for 1 h
at room temperature. After extensive washing, bound NS1 was
detected by a mixture of NS1-specific mAbs (1A4, 1F11, 2G6, 1B2) followed by
Cy3-conjugated goat-antimouse IgG. Costaining with endothelial cell
marker was subsequently performed by incubating the sections with
sections with rat anti-mouse CD31 (PECAM) followed by Alexa Fluor 488-
conjugated goat anti-rat IgG. Nuclei were stained with a DNA-
specific dye TO-Pro-3. Sections incubated with DENV NS1 followed
by an isotype control Ab served as a negative control. Analysis was
performed by confocal microscopy. Arrowheads denote a single layer of
mesothelial cells lining pleura (A) or peritoneum (B).

Acknowledgments

We thank H. Liapis for reviewing the results of NS1 binding on tissues
and R. Hauhart, S. Thiemmeca, S. Noisakran, M. Samuel, K. Liszewski,
J. Price, A. Fuchs, C. Kemper, D. Spitzer, X. Wu, P. Bertram, D. Gill,
and W. Beatty for experimental help and advice.

Author contributions. PA and LZ conceived, designed, and
performed experiments. NP, AM, CP, WK, PM, JPA, and MSD
conceived and designed experiments. PA, LZ, PM, JPA, and MSD
performed the work.

Funding. This work was supported by a Burroughs Wellcome Fund
Clinical Translational Award to MSD; the National Center for
Genetic Engineering and Biotechnology (BIOTEC), Thailand to PA
and PM; the Senior Research Scholar Program of the Thailand
Research Fund TRF to PM; the National Institutes of Health
(GM069968) to LZ; and the Midwest Regional Centers for Excellence
for Biodefense and Emerging Infectious Disease Research (U54-
AI057160) to JPA and MSD. PA has been supported by an NIH
postdoctoral training grant from the Division of Dermatology of the
Department of Medicine, Washington University School of Medicine
and a pre-clinical grant from the Faculty of Medicine Siriraj Hospital,
Mahidol University.

Competing interests. The authors have declared that no competing
interests exist.

