Prevalence of the use of central venous access devices within and outside of the intensive care unit: Results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention

Michael Climo
H.H. McGuire Veterans Affairs Medical Center

Dan Diekema
University of Iowa College of Medicine

David K. Warren
Washington University School of Medicine in St. Louis

Loreen A. Herwaldt
University of Iowa College of Medicine

Trish M. Perl
Johns Hopkins Medical Institutions

Recommended Citation
Climo, Michael; Diekema, Dan; Warren, David K.; Herwaldt, Loreen A.; Perl, Trish M.; Peterson, Lance; Plaskett, Theresa; Price, Connie; Sepkowitz, Kent; Solomon, Steve; Tokars, Jerry; Fraser, Victoria J.; and Wong, Edward, "Prevalence of the use of central venous access devices within and outside of the intensive care unit: Results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention." Infection Control and Hospital Epidemiology. 24, 12. 942-945. (2003).
https://digitalcommons.wustl.edu/open_access_pubs/907

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Prevalence of the Use of Central Venous Access Devices Within and Outside of the Intensive Care Unit: Results of a Survey Among Hospitals in the Prevention Epicenter Program of the Centers for Disease Control and Prevention •

Author(s): Michael Climo, MD, Dan Diekema, MD, David K. Warren, MD, Loreen A. Herwaldt, MD, Trish M. Perl, MD, MSce, Lance Peterson, MD, Theresa Plaskett, MPH, Connie Price, MD, Kent Sepkowitz, MD, Steve Solomon, MD, Jerry Tokars, MD, MPH, Victoria J. Fraser, MD, Edward Wong, MD

Reviewed work(s):
Source: Infection Control and Hospital Epidemiology, Vol. 24, No. 12 (December 2003), pp. 942–945
Published by: The University of Chicago Press on behalf of The Society for Healthcare Epidemiology of America
Stable URL: http://www.jstor.org/stable/10.1086/502163
Accessed: 15/04/2012 18:20

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Central venous catheters (CVCs) are essential in today's healthcare environment. CVCs are extremely prevalent in intensive care units (ICUs), with mean utilization rates ranging between 32% and 80% among adult ICU patients. CVC use has increased in frequency in ICU settings during the past decade with a concomitant rise in bloodstream infections (BSIs) among ICU patients. Improvements in catheter insertion techniques and care, maximal barriers use during CVC insertion, and choice of catheter types have been employed among ICU patient populations with success. The identification of these specific risk factors has led to various strategies to prevent catheter-associated BSIs among ICU patients. Improvements in catheter insertion techniques and care, maximal barriers use during CVC insertion, and choice of catheter types have been employed among ICU patient populations with success. Because of the increasing acuity of the conditions of hospitalized patients, patients on the wards and not just in the ICU are increasingly requiring CVCs. However, little is known about the epidemiology of CVC use outside of ICUs. We therefore conducted a survey of CVC use among adult inpatients at six medical centers participating in the Prevention Epicenter Program of the Centers for Disease Control and Prevention (CDC).
METHODS

The study consisted of a 1-day point-prevalence survey at six major medical centers. Each is a large, academic-affiliated, tertiary-care referral center participating in the Prevention Epicenter Program of the CDC. The Prevention Epicenter Program is a consortium of seven academic medical centers coordinated and funded by the Division of Healthcare Quality Promotion of the CDC to study the prevention of healthcare-associated complications and promotion of patient safety. At each medical center, trained personnel visually examined all hospitalized patients for the presence of an indwelling CVC. For uniformity, the survey was conducted on a midweek day during a 3- to 12-hour period.

All rooms and beds of each hospital, including those of the ICU and the inpatient wards (non-ICU), were surveyed. Emergency departments, outpatient wards, recovery rooms, operating rooms, outpatient procedural rooms, obstetric wards, ophthalmology wards, all pediatrics units (including nursery and neonatal ICU), psychiatry wards, and dialysis units were excluded from surveillance because of the high use of specialized catheters in dialysis units. Categorical data were analyzed using the chi-square test, with a \( P \) value of less than .05 considered significant.

RESULTS

Prevalence of CVCs

At the six medical centers, 2,459 patients were surveyed and overall 29% had CVCs (Table 1). Between 9.38% and 40.27% (mean, 27.91%) of the patients surveyed within the participating medical centers had CVCs. CVC utilization rates were higher among the ICUs than among the non-ICU wards. CVC utilization rates averaged 0.554 for ICU patients and only 0.244 for non-ICU patients. Among the ICU patients, 212 (55.4%) of 383 had one or more CVCs. The prevalence of CVCs was lower among patients not located within the ICUs: 506 (24.4%) of 2,076 ward patients had one or more CVCs present. Despite the lower rate of use on non-ICU wards, the actual number of patients with CVCs outside the ICUs exceeded that from the ICUs: 506 patients (70% of the total patients with CVCs) outside the ICUs had CVCs, whereas only 212 patients (30% of the total patients with CVCs) in the ICUs had CVCs (Table 2). Additionally, there were more than twice as many CVCs among ward patients compared with ICU patients (523 vs 238 CVCs, respectively).

Site of CVC Insertion

Most catheters were inserted in the subclavian, jugular, femoral, or peripheral for PICCs. Although access devices inserted in the femoral area may not be considered to be contained within the central venous system, data on their use were collected because their higher risk of infection has been reported to exceed that of true central lines. Categorical data were analyzed using the chi-square test, with a \( P \) value of less than .05 considered significant.

### TABLE 1

<table>
<thead>
<tr>
<th>Medical Center</th>
<th>No. of Patients With CVCs/Total</th>
<th>ICU No. of Patients Device Utilization Ratio</th>
<th>Non-ICU No. of Patients Device Utilization Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24/256 (9.38%)</td>
<td>16/240 (0.066)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>144/431 (33.41%)</td>
<td>106/360 (0.294)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>163/472 (34.53%)</td>
<td>79/354 (0.223)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>154/554 (27.80%)</td>
<td>110/478 (0.230)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>151/375 (40.27%)</td>
<td>139/360 (0.386)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>82/371 (22.10%)</td>
<td>56/284 (0.197)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>718/2,459 (29.20%)</td>
<td>506/2,076 (0.244)</td>
<td></td>
</tr>
</tbody>
</table>

ICU = intensive care unit; CVC = central venous catheter.
commonly used in non-ICU patients (Fig. 1). More than 80% of CVCs in ward patients were subclavian or PICCs.

**CVC Types**

The most commonly used catheters were nontunneled CVCs (349 of 756, 46%) followed by tunneled CVCs (176 of 756, 23%), totally implanted devices (120 of 756, 16%), and PICCs (111 of 756, 15%) (Fig. 2). In the ICUs, 74% of catheters used were nontunneled CVCs. The use of tunneled CVCs, totally implanted devices, and PICCs was seen more often among non-ICU patients (346 of 517, 67%).

**DISCUSSION**

CVCs provide much needed vascular access in critically ill patients, but their use can lead to serious complications, including BSIs. In the past, research on the prevention of complications largely focused on the population of patients with the highest use of CVCs (ie, patients in the ICU). Because of the increasing acuity of the conditions of patients admitted to hospitals, we believe that CVCs are increasingly being used outside of the ICU. The lack of information on the frequency of such use prompted us to perform a 1-day prevalence survey among hospitals participating in the Prevention Epicenter Program.

Not surprisingly, our study found that the overall rate of CVC use was highest among patients in the ICUs (mean device utilization rate, 55.4%). However, there was considerable variation in the utilization rates among the participating medical centers, which ranged from a low of 30% to a high of 80%, even though all six were large tertiary-care referral hospitals. In contrast to the ICUs, the wards had a much lower rate of CVC use. This is not an unexpected finding. However, it is notable that, despite the lower utilization rate among non-ICU patients, the actual number of CVCs identified in patients on the wards was more than twice that for ICU patients (523 vs 238, respectively, or 2.2 times higher). In addition, most of the CVCs used outside of the ICUs were tunneled, totally implanted, or peripherally inserted, devices traditionally used for longer durations and associated with different risk factors for BSI compared with nontunneled CVCs. This may affect future prevention efforts aimed at non-ICU CVCs.

**TABLE 2**

<table>
<thead>
<tr>
<th>Medical Center</th>
<th>No. of Patients With CVCs</th>
<th>No. of CVCs</th>
<th>No. of Patients Without CVCs</th>
<th>No. of CVCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24/256</td>
<td>8 (33%)</td>
<td>16 (67%)</td>
<td>27/256</td>
</tr>
<tr>
<td>B</td>
<td>144/431</td>
<td>38 (26%)</td>
<td>106 (74%)</td>
<td>155/431</td>
</tr>
<tr>
<td>C</td>
<td>163/472</td>
<td>84 (52%)</td>
<td>79 (48%)</td>
<td>177/472</td>
</tr>
<tr>
<td>D</td>
<td>154/554</td>
<td>44 (29%)</td>
<td>110 (71%)</td>
<td>163/554</td>
</tr>
<tr>
<td>E</td>
<td>151/375</td>
<td>12 (8%)</td>
<td>139 (92%)</td>
<td>151/375</td>
</tr>
<tr>
<td>F</td>
<td>82/371</td>
<td>26 (32%)</td>
<td>56 (68%)</td>
<td>88/371</td>
</tr>
<tr>
<td>Total</td>
<td>718/2,459</td>
<td>212 (30%)</td>
<td>506 (70%)</td>
<td>761/2,459</td>
</tr>
</tbody>
</table>

CVC = central venous catheter; ICU = intensive care unit.
We believe that this is one of the first large-scale prospective studies to identify the high number of CVCs being used outside of the ICU. Our findings have several important implications. Because central vascular catheterization is a known risk factor for BSIs, we should expect that a significant number of infections will occur in patients on the wards who have CVCs. A study of hospital-acquired bacteremias in English hospitals between 1997 and 2000 reported that 40% of nosocomial bacteremias occurred in general surgery and general medicine patients. Given our results, we should actually expect the number of nosocomial BSIs coming from patients on the wards to exceed that from patients in the ICU. Indeed, Lyytikainen et al., in a study of four Finnish hospitals during 1999 to 2000, found that 74% of their BSIs were seen outside of the ICU. Recent data from a statewide candidemia surveillance program revealed that more than half (56%) of Candida BSIs in a survey of Iowa hospitals occurred among patients on general wards rather than in ICUs. In another center participating in the Prevention Epicenter Program, 75% of all nosocomial BSIs within a 6-month period occurred outside of the ICU. Fifty-two percent of these were catheter associated (data not shown).

The prevention of catheter-associated BSI has been addressed by recent CDC guidelines. The guidelines recommend (1) educating and training healthcare providers who insert and maintain catheters; (2) using maximal sterile barrier precautions during CVC insertion; (3) using a 2% chlorhexidine preparation for skin antisepsis; (4) avoiding routine replacement of CVCs as a strategy to prevent infection; and (5) using antiseptic or antibiotic-impregnated short-term CVCs only if the infection rate is high despite adherence to other strategies (ie, education and training, maximal sterile barrier precautions, and 2% chlorhexidine for skin antisepsis). These guidelines are largely based on studies performed on ICU patients with CVCs. We have shown that there are differences in the epidemiology of CVCs in patients within and outside of the ICU: femoral CVCs are found more frequently in ICU patients, and PICCs are used more frequently in ward patients. We anticipate that there will also be differences in host risk factors and how long catheters stay in place among patients in ICUs and patients in non-ICU wards, although these features were not explored in our point-prevalence survey. Are guidelines for the prevention of catheter-associated BSIs applicable to CVCs maintained on the wards, as they were developed based on the experience in the ICU? Our study suggests that additional surveillance of CVC use outside of the ICU is needed. Such data will allow healthcare workers to develop protocols that decrease the risk of CVC-associated BSIs in non-ICU patients and thereby reduce morbidity and mortality.

REFERENCES