Varying rates of Clostridium difficile-associated diarrhea at prevention epicenter hospitals

SeJean Sohn
Memorial Sloan-Kettering Cancer Center

Michael Climo
Hunter Holmes McGuire Veteran Affairs Medical Center

Daniel Diekema
University of Iowa Carver College of Medicine

Victoria Fraser
Washington University School of Medicine in St. Louis

Loreen Herwaldt
University of Iowa Carver College of Medicine

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation
Sohn, SeJean; Climo, Michael; Diekema, Daniel; Fraser, Victoria; Herwaldt, Loreen; Marino, Susan; Noskin, Gary; Perl, Trish; Song, Xiaoyan; Tokars, Jerome; Warren, David; Wong, Edward; Yokoe, Deborah S.; Zembower, Theresa; and Sepkowitz, Kent A., "Varying rates of Clostridium difficile-associated diarrhea at prevention epicenter hospitals." Infection Control and Hospital Epidemiology. 26, 8. 676-679. (2005). https://digitalcommons.wustl.edu/open_access_pubs/919

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
SeJean Sohn, Michael Climo, Daniel Diekema, Victoria Fraser, Loreen Herwaldt, Susan Marino, Gary Noskin, Trish Perl, Xiaoyan Song, Jerome Tokars, David Warren, Edward Wong, Deborah S. Yokoe, Theresa Zembower, and Kent A. Sepkowitz

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/919
Varying Rates of Clostridium difficile–Associated Diarrhea at Prevention Epicenter Hospitals

Author(s): SeJean Sohn, MPH, Michael Climo, MD, Daniel Diekema, MD, Victoria Fraser, MD, Loreen Herwaldt, MD, Susan Marino, MS, CIC, Gary Noskin, MD, Trish Perl, MD, MSc, Xiaoyan Song, MD, MS, Jerome Tokars, MD, MPH, David Warren, MD, MPH, Edward Wong, MD, Deborah S. Yokoe, MD, MPH, Theresa Zembower, MD, Kent A. Sepkowitz, MD

Reviewed work(s):

Source: Infection Control and Hospital Epidemiology, Vol. 26, No. 8 (August 2005), pp. 676-679

Published by: The University of Chicago Press on behalf of The Society for Healthcare Epidemiology of America

Stable URL: http://www.jstor.org/stable/10.1086/502601

Accessed: 19/04/2012 17:46

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press and The Society for Healthcare Epidemiology of America are collaborating with JSTOR to digitize, preserve and extend access to Infection Control and Hospital Epidemiology.
VARYING RATES OF CLOSTRIDIUM DIFFICILE–ASSOCIATED DIARRHEA AT PREVENTION EPICENTER HOSPITALS

SeJean Sohn, MPH; Michael Climo, MD; Daniel Diekema, MD; Victoria Fraser, MD; Loreen Herwaldt, MD; Susan Marino, MS, CIC; Gary Noskin, MD; Trish Perl, MD, MS; Xiaoyan Song, MD, MS; Jerome Tokars, MD, MPH; David Warren, MD, MPH; Edward Wong, MD; Deborah S. Yokoe, MD, MPH; Theresa Zembower, MD; Kent A. Sepkowitz, MD, for the Prevention Epicenter Hospitals

ABSTRACT

BACKGROUND: Clostridium difficile–associated diarrhea (CDAD) causes substantial healthcare-associated morbidity. Unlike other common healthcare-associated pathogens, little comparative information is available about CDAD rates in hospitalized patients.

OBJECTIVES: To determine CDAD rates per 10,000 patient-days and per 1,000 hospital admissions at 7 geographically diverse tertiary-care centers from 2000 to 2003, and to survey participating centers on methods of CDAD surveillance and case definition.

METHODS: Each center provided specific information for the study period, including case numbers, patient-days, and hospital characteristics. Case definitions and laboratory diagnoses of healthcare-associated CDAD were determined by each institution. Within institutions, case definitions remained consistent during the study period.

RESULTS: Overall, mean annual case rates of CDAD were 12.1 per 10,000 patient-days (range, 3.1 to 25.1) and 7.4 per 1,000 hospital admissions (range, 3.1 to 13.1). No significant increases were observed in CDAD case rates during the 4-year interval, either at individual centers or in the Prevention Epicenter hospitals as a whole. Prevention Epicenter hospitals differed in their CDAD case definitions. Different case definitions used by the hospitals applied to a fixed data set resulted in a 30% difference in rates. No associations were identified between diagnostic test or case definition used and the relative rate of CDAD at a specific medical center.

CONCLUSIONS: Rates of CDAD vary widely at tertiary-care centers across the United States. No significant increases in case rates were identified. The varying clinical and laboratory approaches to diagnosis complicated comparisons between hospitals. To facilitate benchmarking and comparisons between institutions, we recommend development of a more standardized case definition (Infect Control Hosp Epidemiol 2005;26:676-679).

Surveillance System for nosocomial gastroenteritis with previous antibiotic exposure. Diagnostic tests differed among the various hospitals. Enzyme immunoassay (EIA) testing for toxins A and B was used by four centers; each of the remaining three centers used cytotoxicity assay, EIA for toxin A, or EIA for toxin B. One hospital switched in 2002 from cytotoxicity assay to EIA for toxins A and B, whereas another switched in 2003 from EIA for toxins A and B to cytotoxicity assay.

Prevention Epicenter hospitals were surveyed regarding their criteria for classifying CDAD cases. Relevant variables included the length of time between patient admission and the collection of incident diagnostic specimens; consideration of hospital exposure prior to collection of positive specimens; the interval between a previous hospitalization and the point at which CDAD was diagnosed; definition of recurrent cases and second incident cases; and categorization of outpatient cases.

The annual percent change was estimated by fitting a least squares regression line to the natural logarithm of the rate using calendar year as a regressor variable (model: $y = mx + b$, where $y = \ln \text{[rate]}$ and $x = \text{calendar year}$). The estimated annual percent change is equal to $100 \times (e^m - 1)$. The null hypothesis of the annual percent change being equal to 0 (ie, no increase or decrease in the rate) was tested. The hypothesis test statistic uses the t distribution of $m \div \text{SE}_m$, where SE is the standard error of m and the number of degrees of freedom is equal to the number of calendar years minus 2. Data processing and analyses were performed using SPSS software (version 10.0; SPSS, Inc., Chicago, IL).

RESULTS

The Prevention Epicenter hospitals comprise 5,300 beds with 1.3 million annual patient-days. Approximately 1,750 cases of CDAD occur in the Prevention Epicenter
hospitals each year, for mean annual rates of 12.1 cases per 10,000 patient-days (mean range, 3.1 to 25.1) and 7.4 cases per 1,000 admissions (mean range, 3.1 to 13.1). During the 4-year period, no significant changes in C. difficile rates were seen for the Prevention Epicenter hospitals collectively or by individual medical centers, with one exception. Hospital B experienced an annual percent change of -2.22 in the CDAD rate per 10,000 patient-days that was statistically significant (Table 1). No associations were identified between the diagnostic test or case definition used and the relative rate of CDAD per medical center.

Prevention Epicenter hospitals differed in their case definitions of healthcare-associated disease. Six centers considered a case to be healthcare associated if the incident diagnostic specimen was collected more than 48 hours after patient admission; one center required the specimen to be obtained at least 72 hours after admission (Table 2). The Prevention Epicenter hospitals also were not in agreement about whether a recent hospitalization should be given consideration when classifying a CDAD case as healthcare associated. Only five of the seven hospitals accounted for prior hospital admissions. Furthermore, the interval from a previous discharge to the start of symptoms was not uniform across institutions, ranging from 3 to 60 days. The definition of recurrent cases varied widely among the individual Prevention Epicenter hospitals and only some of the hospitals included outpatient cases in overall healthcare-associated rates (Table 2).

To examine how extensively case definition might affect case rates, chart reviews were performed for all incident cases of CDAD at one Prevention Epicenter hospital during the 2-year period from January 1, 2002, to December 31, 2003 (n = 370). Six different definitions of healthcare-associated CDAD were applied to this cohort and the resultant case numbers and rates were determined (Table 3). When the strictest definition of healthcare-associated disease (a positive test specimen collected 3 or more days after admission) was applied, the rate was 8.67 per 10,000 patient-days. When more inclusive criteria were used (a positive test result 3 or more days after admission or a previous hospitalization within 30 days of the first positive test result), the rate increased to 10.45 per 10,000 days. With even more inclusive criteria (a positive test result more than 2 days after admission or a previous hospitalization within 30 days of the first positive test result), the rate rose to 11.33 per 10,000 days. Thus, the different definitions of healthcare-associated CDAD used by the Prevention Epicenter hospitals applied to a fixed data set resulted in a 30% difference in rates. Although these differences in definitions did not explain the wide variation of rates among the Prevention Epicenter hospitals, the variability in definitions complicates benchmarking.

DISCUSSION

In contrast to a recent report from the CDC that evaluated an earlier time period, we did not find significant increases in CDAD case rates during our 4-year interval either at individual centers or in the Prevention Epicenter hospitals collectively. These discrepant findings may be the result of differing methodologies. The CDC reports
calculated *C. difficile* rates using the International Classification of Diseases, 9th revision, code diagnoses per discharge, an approach that is influenced by additional factors not reflected in rates calculated using only laboratory and clinical hospital data. Alternatively, the hospital sample in this report may not be large enough to detect a national trend.

Direct comparisons among the Prevention Epicenter hospitals were hampered by several factors. First, the diagnostic tests used by the hospitals varied. No studies to date have shown that the use of different diagnostic tests for *C. difficile* has resulted in significant differences in CDAD rates. However, depending on the clinical and laboratory criteria used for the CDAD case definition, the sensitivities of cell culture cytotoxin detection and EIA toxin tests range from 67% to 100% and 63% to 99%, respectively. Clinical and laboratory criteria for assessment of *C. difficile* did vary across the Prevention Epicenter hospitals. We cannot assess whether these differences had an appreciable impact on CDAD rates.

Second, the case definition for healthcare-associated CDAD for each hospital was unique, particularly regarding four variables. These include the duration of hospitalization prior to incident sample collection, the time from previous hospital discharge until the development of symptoms, and whether CDAD diagnosed in outpatients was included in surveillance. Moreover, the definitions of recurrent CDAD and second incident cases varied substantially. For institutions with relatively high numbers of readmissions, the definition used for differentiation of recurrent CDAD versus incident CDAD could have a greater impact on the final calculation of incident and healthcare-associated rates. Each of these variables may influence the rate a given hospital reports and so may affect evaluation of an infection control program.

Other study limitations include the suboptimal sensitivity and specificity of the various diagnostic CDAD stand-alone tests and that most of the Prevention Epicenter hospitals are large, mostly urban, tertiary-care teaching facilities that may not be representative of hospitals nationally.

The 7 Prevention Epicenter hospitals documented mean annual healthcare-associated CDAD rates of 12.1 cases per 10,000 patient-days and 7.4 cases per 1,000 admissions, with wide but stable variations between sites. The definitions of healthcare-associated disease used by the participating facilities varied considerably. Inherent subtleties are involved in the interpretation and comparison of infection rates across institutions (eg, patient case mix and potential ascertainment bias of more intensive surveillance programs). The variations in operational case classification outlined here only further hinder the efforts to interpret interinstitutional rate differences and preclude the establishment of a meaningful national benchmark. There is no standard case definition of healthcare-associated CDAD in the published guidelines. We recommend that one be developed and that diagnostic tests and testing criteria be standardized to allow meaningful comparisons between hospitals. We also invite other medical centers to report healthcare-associated CDAD rates so that an expected annual rate of CDAD can be better defined.

Table 3

<table>
<thead>
<tr>
<th>Definition of Healthcare-Associated CDAD</th>
<th>No. of Cases</th>
<th>Rate per 10,000 Patient-Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = specimen ≥ 72 h after admission</td>
<td>225</td>
<td>8.67</td>
</tr>
<tr>
<td>B = A + specimen < 72 h after admission</td>
<td>257</td>
<td>9.91</td>
</tr>
<tr>
<td>C = A + specimen < 72 h after admission with hospitalization in previous 14 d (n = 32)</td>
<td>271</td>
<td>10.45</td>
</tr>
<tr>
<td>D = specimen ≥ 48 h after admission</td>
<td>267</td>
<td>10.29</td>
</tr>
<tr>
<td>E = D + specimen < 48 h after admission with hospitalization in previous 14 d (n = 20)</td>
<td>287</td>
<td>11.06*</td>
</tr>
<tr>
<td>F = D + specimen < 48 h after admission with hospitalization in previous 30 d (n = 7)</td>
<td>294</td>
<td>11.33*</td>
</tr>
</tbody>
</table>

CDAD = *C. difficile*-associated diarrhea.

Incidence rate ratio: 1.28 (95% confidence interval [CI]: 1.07–1.52).

Incidence rate ratio: 1.31 (CI: 1.10–1.54).

REFERENCES

4. McDonald L. Epidemiology and burden of *Clostridium difficile*–associated disease in US acute care hospitals: a case for new efforts in surveillance and control. Presented at the 14th Annual Meeting of the Society for Healthcare Epidemiology of America; April 17-20, 2004; Philadelphia, PA.

5. McDonald L. Increasing incidence of *Clostridium difficile*-associated disease in US acute care hospitals. Presented at the 14th Annual Meeting of the Society for Healthcare Epidemiology of America; April 17-20, 2004; Philadelphia, PA.

