The value of intraoperative gram stain in revision total knee arthroplasty

Patrick M. Morgan
Washington University School of Medicine in St. Louis

Peter Sharkey
Thomas Jefferson University Medical School

Elie Ghanem
Thomas Jefferson University Medical School

Javad Parvizi
Thomas Jefferson University Medical School

John C. Clohisy
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/1106
Authors
Patrick M. Morgan, Peter Sharkey, Elie Ghanem, Javad Parvizi, John C. Clohisy, R. Stephen J. Burnett, and Robert L. Barrack
The Value of Intraoperative Gram Stain in Revision Total Knee Arthroplasty

By Patrick M. Morgan, MD, Peter Sharkey, MD, Elie Ghanem, MD, Javad Parvizi, MD, FRCS, John C. Clohisy, MD, R. Stephen J. Burnett, MD, FRCS(C), and Robert L. Barrack, MD

Investigation performed at the Washington University School of Medicine, St. Louis, Missouri, and Thomas Jefferson University Medical School, Philadelphia, Pennsylvania

Background: The accurate preoperative diagnosis of infection is an essential component of decision-making prior to revision total knee arthroplasty. When preoperative modalities used to detect infection reveal equivocal findings, the surgeon may rely on intraoperative testing. While intraoperative Gram stains are routinely performed during revision total knee arthroplasty, their value remains unclear.

Methods: We retrospectively reviewed the records on 945 revision total knee arthroplasties performed at three university institutions to which patients were referred for total joint arthroplasty; the results of an intraoperative Gram stain were available for review in 921 cases (97.5%). Of these knees, 247 were classified as infected on the basis of (1) the presence of the same organism in two cultures; (2) growth, on solid media, of an organism as well as other objective evidence of infection; (3) histologic evidence of acute inflammation; (4) gross purulence; and/or (5) an actively draining sinus. We reviewed the results of preoperative laboratory studies, which included measurements of the erythrocyte sedimentation rate, C-reactive protein values, and white blood-cell count in 90%, 76%, and 98% of cases, respectively. Preoperative aspiration to obtain a specimen for culture and a cell count was performed routinely at one center and selectively at the other two centers, and the results were available for review in 439 (48%) of the 921 cases.

Results: Intraoperative Gram staining was found to have a sensitivity of 27% and a specificity of 99.9%. The positive and negative predictive values were 98.5% and 79%, respectively. The test accuracy was 80%. Patients with a true-positive Gram stain had a significantly higher preoperative white blood-cell count, C-reactive protein level, and nucleated cell count in the aspirate when compared with patients with a false-negative Gram stain (p < 0.001). In no case did the results of the intraoperative Gram stain alter treatment.

Conclusions: The intraoperative Gram stain was found to have poor sensitivity and a poor negative predictive value, and its results did not alter the treatment of any patient undergoing revision total knee arthroplasty because of a suspected infection. These data do not support the routine use of intraoperative Gram staining in revision total knee arthroplasty; instead, they suggest a much more limited role for this test.

Level of Evidence: Diagnostic Level I. See Instructions to Authors for a complete description of levels of evidence.
the single most common cause of early failure
the single most common cause of early failure. Two-stage exchange arthroplasty is generally considered the preferred method of treatment of periprosthetic joint infection.

A preoperative evaluation that incorrectly identifies the presence or absence of infection can lead to either inappropriate surgical intervention or a delay in appropriate treatment. Currently, however, there is no gold standard for the diagnosis of an infection at the site of a total knee arthroplasty. An equivocal result of a preoperative workup may, therefore, require the surgeon to depend on intraoperative tests to determine that infection is absent. While the efficacy of frozen-section analysis has been established by several authors, the value of an intraoperative Gram stain remains unclear. Although the test is routine at many centers, its sensitivity has been consistently reported to be low and previous studies have been hampered by small sample sizes or by the authors combining the results of both hip and knee revision surgery.

This study was designed to determine the sensitivity, specificity, accuracy, and positive and negative predictive values of intraoperative Gram stains in a large cohort of patients undergoing revision total knee arthroplasty. We also undertook a review of the preoperative and intraoperative findings to determine whether there were instances in which the intraoperative Gram stain may have provided valuable information to the surgeon. In doing so, we hoped to identify the role that an intraoperative Gram stain plays in determining the correct course of treatment.

Materials and Methods

The data for this study were prospectively gathered at three university-affiliated institutions over a six-year period and entered into an institutional review board-approved, multi-institution database of information on all revision total knee arthroplasties. This database was queried retrospectively for information relevant to the study question. Routine preoperative testing included measurement of the erythrocyte sedimentation rate, C-reactive protein level, and white blood-cell count (Table I). Preoperative aspiration was performed routinely at one center, and it was carried out selectively at the other two institutions when infection was suspected on the basis of clinical or radiographic findings. Aspirates were sent for aerobic and anaerobic culture and, when sufficient fluid was available, for a cell count and differential. Aspiration results were available for 439 patients (48%). An intraoperative culture of synovial fluid was performed in all cases, and additional tissue was sent for culture in all but three cases. The results of the preoperative and intraoperative cultures and the medium on which the bacteria were identified (solid, or enhanced broth) were documented. Clinical follow-up notes were reviewed for evidence of infection.

Knees were classified as infected when three of the five following criteria described by Leone and Hanssen were met: (1) the presence of the same organism in two cultures, (2) growth of an organism on solid media as well as other objective evidence of infection such as elevated levels of inflammatory markers in the absence of systemic inflammatory disease or an elevated cell count and percentage of polymorphonuclear leukocytes in aspirated joint fluid, (3) histologic evidence of acute inflammation, (4) gross purulence at the time of surgery, or (5) an actively draining sinus. Threshold values for evidence of infection based on results of blood tests and synovial fluid analysis were derived from the published literature and included an erythrocyte sedimentation rate of >30 mm/hr, a C-reactive protein level of >10 mg/L, a synovial fluid nucleated cell count of >1000 cells/μL, a white blood-cell count of >11.0 × 10³/μL, and a synovial fluid leukocyte differential of >65% polymorphonuclear leukocytes. A normal result of a preoperative workup was defined as one in which all of its components were within these defined normal limits.

Statistical Analysis

The Mann-Whitney one-tailed t test with Gaussian approximation, and calculations of sensitivity, specificity, accuracy, and positive and negative predictive values, were performed with use of GraphPad Prism, version 5.01 for Windows (GraphPad Software, San Diego, California). Descriptive analysis was performed with use of univariate statistics for the continuous variables and frequency distribution for the categorical variables. Results for the continuous variables are reported as means and range distributions. Gaussian distribution was evaluated to determine if there was a normal distribution of the data. Chi-square analysis was carried out to determine the sensitivity, specificity, accuracy, and positive and negative predictive values. With use of one-tailed Mann-Whitney statistics, the means and standard deviations for the continuous variables, including the erythrocyte sedimentation rate, C-reactive protein level, white blood-cell count, cell count in the aspirate, and percentage of

Table I: Preoperative Testing Performed on Patients with an Intraoperative Gram Stain

<table>
<thead>
<tr>
<th>Result of Gram Stain</th>
<th>White Blood-Cell Count</th>
<th>Erythrocyte Sedimentation Rate</th>
<th>C-Reactive Protein</th>
<th>Aspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>True-positive (67 patients)</td>
<td>67</td>
<td>66</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>False-negative (180 patients)</td>
<td>177</td>
<td>175</td>
<td>157</td>
<td>142</td>
</tr>
<tr>
<td>True-negative (673 patients)</td>
<td>658</td>
<td>589</td>
<td>481</td>
<td>238</td>
</tr>
<tr>
<td>False-positive (1 patient)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total (921 patients)</td>
<td>903 (98%)</td>
<td>831 (90%)</td>
<td>697 (76%)</td>
<td>439 (48%)</td>
</tr>
</tbody>
</table>

...
polymorphonuclear leukocytes in the aspirate, were compared between the patients with a true-positive result and the ones with a false-negative result. The Mann-Whitney statistic is a non-parametric test and was used for this analysis as the data were collected from independent samples and were not normally distributed. The results of these comparisons are reported as p values.

Source of Funding
No funding was received specifically for this study; however, funds were received in general support of the total joint registries that were the sources of the data presented in the study. The funding sources were Smith and Nephew Orthopaedics and the Orthopaedic Foundation at Rothman Institute. Funding for total joint research was also received from Stryker Orthopaedics.

Results
The records on 945 consecutive revision total knee arthroplasties performed over a six-year period were reviewed; the results of an intraoperative Gram stain were available for review in 921 (97.5%) of these cases. Two hundred and forty-seven knees were classified as infected, and all had an intraoperative Gram stain available for review. Of the 698 knees determined not to be infected, 674 had a Gram stain available for review; the Gram stain was reported to be negative in 673 of these cases and positive in one. In the positive case, all other tests (white blood-cell count and measurements of the erythrocyte sedimentation rate and level of C-reactive protein) demonstrated normal results and an intraoperative frozen section showed no acute inflammation. A revision was performed with no subsequent evidence of infection, so the Gram stain was classified as false-positive. Intraoperative Gram staining was found to have a sensitivity of 27% and a specificity of 99.9%. The positive and negative predictive values were 98.5% and 79%, respectively (Table II). Intraoperative Gram staining did not influence treatment in any case.

There were sixty-seven true-positive and 180 false-negative Gram stains (Table III). The white blood-cell count, C-reactive protein level, and aspirate cell count were significantly higher in the group of infected knees with a true-positive Gram stain than they were in the group with a false-negative Gram stain (p < 0.001). The erythrocyte sedimentation rate and differential cell count (percentage of polymorphonuclear leukocytes) in the joint fluid aspirate did not differ significantly between the two groups (p = 0.3 and p = 0.4, respectively) (Table III). The erythrocyte sedimentation rate, C-reactive protein level, aspirate cell count, and percentage of polymorphonuclear leukocytes in the aspirate were all significantly higher in the infected knees with a negative Gram stain (false-negative cases) than they were in the uninfected knees with a negative Gram stain (true-negative cases) (p < 0.01); this finding was consistent with the results in a large body of literature\[2,12,13,24\]. Of the sixty-seven patients with a true-positive Gram stain, only one had normal results of the preoperative workup (white blood-cell count, erythrocyte sedimentation rate, and C-reactive protein level). A preoperative aspiration had not been performed in that patient, and purulent fluid was encountered. On the basis of the intraoperative appearance of the tissue, a frozen-section analysis was performed and it showed acute inflammation (>10 polymorphonuclear leuko-

TABLE II 2 × 2 Table for Results of Gram Staining for Diagnosis of Infection During Revision Total Knee Arthroplasty

<table>
<thead>
<tr>
<th>Gram Stain</th>
<th>Infection Confirmed*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>67 true-positive 1 false-positive</td>
</tr>
<tr>
<td>Negative</td>
<td>180 false-negative 673 true-negative</td>
</tr>
</tbody>
</table>

*True-positive = infection present and Gram stain positive, false-positive = infection absent and Gram stain positive, false-negative = infection present and Gram stain negative, and true-negative = infection absent and Gram stain negative. Sensitivity = true-positive/(true-positive + false-negative) or true-positive/total with disease = 0.27 (95% confidence interval, 0.22 to 0.33). Specificity = true-negative/(false-positive + true-negative) or true-negative/total without disease = 0.999 (95% confidence interval, 0.99 to 1.00). Positive predictive value = true-positive/(true-positive + false-positive) or true-positive/all with positive test = 0.985 (95% confidence interval, 0.92 to 1.00). Negative predictive value = true-negative/(false-negative + true-negative) or true-negative/all with negative test = 0.79 (95% confidence interval, 0.76 to 0.82).

TABLE III Comparison of Preoperative Laboratory Results for Infected Knees with Positive and Negative Intraoperative Gram Stains

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True-Positive* (N = 67)</th>
<th>False-Negative* (N = 180)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood-cell count (× 10^9/L)</td>
<td>11.8 ± 5.159 (4.4-35.6)</td>
<td>8.6 ± 3.802 (3.4-38.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate (mm/hr)</td>
<td>81.15 ± 32.66 (4-141)</td>
<td>72.7 ± 30.12 (1-140)</td>
<td>0.3</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)</td>
<td>22.8 ± 20.28 (0.5-100)</td>
<td>15.23 ± 66.08 (0.5-149)</td>
<td><0.001</td>
</tr>
<tr>
<td>Aspirate nucleated cell count (cells/μL)</td>
<td>60,000 ± 120,000 (175-585,000)</td>
<td>27,600 ± 100,000 (330-850,000)</td>
<td>0.001</td>
</tr>
<tr>
<td>Aspirate polymorphonuclear leukocytes (%)</td>
<td>86.27 ± 12.97 (17-100)</td>
<td>85.7 ± 16.38 (4-99)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*The values are given as the mean and standard deviation with the range in parentheses.
cytes per high-power field). A two-stage exchange arthroplasty was performed.

Discussion

Described by Hans Christian Gram in 1884, the Gram stain exploits biochemical differences between bacterial cell walls to broadly classify many bacteria as either gram-positive or gram-negative. This categorization is based on a number of morphological characteristics of the bacterium, including the relative thickness of the bacterial peptidoglycan layer and the presence or absence of an outer membrane. We are not aware of any available data concerning the average bacterial load seen within the tissues of an infection at the site of a total knee arthroplasty. Periprosthetic infection often occurs with a low organism burden in the synovial fluid. This is influenced by the formation of biofilms, which have a higher organism burden, and this may in part explain the variable sensitivity of the present study indicate that an intraoperative Gram stain is also low (27%) in our series of 921 revision total knee arthroplasties.

Preoperative planning of the treatment of a failed total knee arthroplasty depends in part on the results of a preoperative workup, in which identification of infection is important. The intraoperative use of a Gram stain had little or no diagnostic role for the patients with positive results of the preoperative workup for infection in our series. The sensitivity of the intraoperative Gram stain also was too low to be considered reliable for the patients with equivocal results of the preoperative workup. In addition, the Gram stain proved to be of no value for the patients with completely normal results of the preoperative workup since no true-positive cases were identified within this group and there was one false-positive case.

There is a potential for substantial variability in the interpretation of the Gram stain by the laboratory personnel performing the test. There is the potential for error in both the staining process and the interpretation of the slides, problems that may have contributed to the prevalence of false-negative results observed in this study. False-negative cases were rare in this series (only one case), but less experienced technicians could overinterpret Gram-stain results, leading to more false-positive findings. Specimen contamination can also result in a false-positive finding. Previous investigators have reported that intraoperative Gram staining has a very high specificity for a positive result. Our study confirms this finding. Of the sixty-seven patients with a true-positive Gram stain, only one had normal findings on the preoperative workup, which was incomplete. The patient was an eighty-year-old man who was noted to have purulent joint fluid at the time of surgery; a preoperative joint aspiration had not been performed. An intraoperative frozen-section analysis was performed, and reimplantation was aborted because of the gross purulence. Therefore, the intraoperative Gram stain did not alter the treatment of any patient.

TABLE IV Results of Intraoperative Gram Staining for the Detection of Periprosthetic Infection as Reported in the Literature

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>No. of Cases</th>
<th>Site</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athanasou et al.</td>
<td>1995</td>
<td>106</td>
<td>Hip/knee</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>Atkins et al.</td>
<td>1998</td>
<td>297</td>
<td>Hip/knee</td>
<td>12</td>
<td>98</td>
</tr>
<tr>
<td>Barrack et al.</td>
<td>1997</td>
<td>69</td>
<td>Knee</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Bauer et al.</td>
<td>2006</td>
<td>168</td>
<td>Hip/knee</td>
<td>22 and 35*</td>
<td>100</td>
</tr>
<tr>
<td>Chimento et al.</td>
<td>1996</td>
<td>194</td>
<td>Hip/knee</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Della Valle et al.</td>
<td>1999</td>
<td>413</td>
<td>Hip/knee</td>
<td>14.7</td>
<td>98.8</td>
</tr>
<tr>
<td>Feldman et al.</td>
<td>1995</td>
<td>33</td>
<td>Hip/knee</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>Ko et al.</td>
<td>2005</td>
<td>40</td>
<td>Hip/knee</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kraemer et al.</td>
<td>1993</td>
<td>144</td>
<td>Hip</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>Pandey et al.</td>
<td>1999</td>
<td>602</td>
<td>Hip</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td>Spangehl et al.</td>
<td>1999</td>
<td>202</td>
<td>Hip</td>
<td>19</td>
<td>98</td>
</tr>
</tbody>
</table>

Tissue and fluid, respectively.
The study had some weaknesses. First, as a result of its retrospective nature, there may have been some variability in data collection. Second, because it was a multi-institutional study, it is possible that the protocols for the workup and management differed among the patients. In fact, this was the case with respect to aspiration of the joint. All knees scheduled to undergo revision arthroplasty were aspirated routinely in one institution and only selectively in the others. This resulted in a lack of availability of aspiration data for some patients. Also, because of differences in the workup of these patients, serological tests such as measurement of the C-reactive protein level were not performed for all patients. Such variability in the management of these patients presents the possibility of bias; specifically, it is possible that the relative value of diagnostic tests other than the Gram stain may have been incorrectly exaggerated or diminished. This study, however, was not designed or intended to establish the value of either measurement of the C-reactive protein level or preoperative aspiration in the diagnosis of periprosthetic infection.

A complete preoperative workup for periprosthetic infection in a patient with a failed total knee arthroplasty includes serological testing, synovial fluid analysis, and radiographic imaging. We consider preoperative aspiration to be particularly useful. The accuracy of preoperative aspiration for the diagnosis of infection prior to revision of a failed total knee arthroplasty has been reported to be very high, approaching 100% in some series, but generally ranging from 75% to 80% if the patient is not being treated with antibiotics. In our series, in which strict criteria were employed for the definition of periprosthetic infection, intraoperative Gram staining played no role in the diagnosis of infection in patients who had had a full preoperative workup and the selective use of intraoperative frozen-section analysis. We suggest that the practice of routinely performing a Gram stain at the time of revision total knee arthroplasty may safely be abandoned.

References

