A unique role for Stat5 in recovery from acute anemia

Gregory D. Longmore
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/1534

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.

Cell Calcium. 31:89–96.
The stress-induced erythropoietic response.

In addition to Stat5, also contribute to the negative regulatory domain (9), might, in which has been shown to function as a mechanism for potential differences in microenvironmental regulation. The recent reexamination of flexed-tail (f) mutant mice is particularly informative in this regard (12). Like Stat5a,b−/− and EpoR-HM mice, adult f/f mice exhibit normal steady-state erythropoiesis but do not respond to acute erythropoietic stress. Mutant f/f mice have a mutation in the Madh5 gene, a functional Smad molecule downstream of bone morphogenic protein (BMP) receptor signaling (Figure 1). BMP4 is rapidly, and transiently, induced in the splenic red pulp (site of erythropoiesis) in response to acute anemia and was found to stimulate immature progenitors to give rise to Epo-responsive progenitors. Importantly, only spleen, not bone marrow, progenitors responded to BMP4 in ex vivo cultures. This result suggests that the spleen does indeed contain a unique erythropoietic microenvironment that may distinctly influence erythroid progenitors present therein. Likely, BMP4 expression will be induced in the spleen of both EpoR-HM and EpoR-H mice, since BMP4 transcription appears to be regulated by hypoxia-responsive elements (11). Whether immature, Epo-nonresponsive splenic progenitors from EpoR-HM and EpoR-H mice differ in their response to BMP4 warrants testing, since BMP4 can affect CNS stem cell fate in a pathway activating Stat3 (13).

Finally, studies such as that of Menon et al. (3) highlight the importance of studying and disseminating genetically modi-
fied mice with minimal or no steady-state phenotype. In many ways these mice could be viewed as models for otherwise normal adult humans who exhibit exaggerated or unexpected responses to inflammation, infectious agents, or cancer progression. As such, they have the potential to identify and dissect regulatory pathways that influence but do not cause disease.

Acknowledgments
I would like to thank J. Palis for helpful comments.

Address correspondence to: Gregory D. Longmore, Departments of Medicine and Cell Biology, Division of Hematology, Washington University, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.

Phone: (314) 362-8834; Fax: (314) 362-8826; E-mail: glongmor@im.wustl.edu.


An unexpected role for the anaphylatoxin C5a receptor in allergic sensitization

Bart N. Lambrecht

Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

The anaphylatoxins complement component 3a and 5a (C3a and C5a, respectively) are classically seen as proinflammatory mediators of allergic asthma that recruit inflammatory cells, induce edema, and cause bronchoconstriction. A few years ago, controversy arose when it was shown that C5-deficient mice were more susceptible to experimental asthma compared with C5-sufficient mice. In a study by Kohl et al. in this issue of the JCI, it is shown in a series of truly “complementary” experiments that C5a receptor (C5aR) blockade promotes Th2 sensitization upon first exposure to inhaled allergen, whereas C5aR blockade during established inflammation suppresses the cardinal features of asthma (see the related article beginning on page 783). Blockade of C5aR alters the function of airway DCs, crucial for inducing and maintaining Th2 responses in the lung. Targeting C5aR as a treatment for established asthma could be beneficial, but might be accompanied by sensitization to novel antigens.

Allergy is mediated by Th2 cells

The incidence of allergic diseases is currently on the rise. In western societies, up to 25% of children are sensitized to allergens such as the house dust mite (HDM), pollen, animal dander, or food components. This sensitization is indicated clinically by the presence in the serum of allergen-specific IgE and by an immediate wheal and flare reaction after skin prick testing with these allergens. In most, but not all, sensitized individuals, natural allergen exposure via food or inhalation can lead to allergic diseases such as allergic asthma, allergic rhinitis, or atopic dermatitis. These diseases have an inflammatory component characterized by edema, plasma extravasation, accumulation of eosinophils and mast cells, and overproduction of mucus (1, 2). In the case of allergic asthma, an additional symptom is airway hyperresponsiveness (AHR) to all kinds of specific and nonspecific stimuli, which is caused by excessive smooth muscle contraction, resulting in airway narrowing. Allergic sensitization is the result of an aberrant Th2 response to allergens. Th2 lymphocytes produce cytokines that control Ig-class switching toward IgE production (e.g., IL-4), allergic eosinophilic inflammation (e.g., IL-5), and AHR (e.g., IL-9, IL-13). In support of a critical role for Th2 cells, experimental asthma does not develop in mice deficient in CD4 cells or most of the above cytokines (3).

The complement system in asthma

The complement system is crucial for innate host defense because of its formation of a lytic effector system that protects against pathogens. Serine proteases generated in response to classical and alternative activation of complement can cleave the anaphylatoxic peptides complement 3a (C3a) and C5a from C3 and C5, respectively (4). Various components of the complement pathway have been implicated in mediating allergic inflammation (5, 6). First, the anaphylatoxins C3a and C5a are found in increasing concentrations in the bronchoalveolar lavage fluid of asthm-