The impact of universal glove and gown use on Clostridioides difficile acquisition: A cluster-randomized trial

Daniel J Morgan
Erik R Dubberke
Tiffany Hink
Gwen Paszkiewicz
Carey-Ann D Burnham

See next page for additional authors
Authors
Daniel J Morgan, Erik R Dubberke, Tiffany Hink, Gwen Paszkiewicz, Carey-Ann D Burnham, Lisa Pineles, Larry Magder, J Kristie Johnson, Surbhi Leekha, and Anthony D Harris
The Impact of Universal Glove and Gown Use on Clostridioides Difficile Acquisition: A Cluster-Randomized Trial

Daniel J. Morgan,1 Erik R. Dubberke,2 Tiffany Hink,2 Gwen Paszkiewicz,3 Carey-Ann D. Burnham,4 Lisa Pines,5 Larry Magder,5 J. Kristie Johnson,3 Surbhi Leekha,5 and Anthony D. Harris5

1Department of Epidemiology and Public Health, University of Maryland School of Medicine and VA Maryland Healthcare System, Baltimore, Maryland, USA; 2Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; 3Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA; 4Departments of Pathology and Immunology, Medicine, Molecular Microbiology, and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; and 5Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA

Background. Clostridioides difficile is the most common cause of healthcare-associated infections in the United States. It is unknown whether universal gown and glove use in intensive care units (ICUs) decreases acquisition of C. difficile.

Methods. This was a secondary analysis of a cluster-randomized trial in 20 medical and surgical ICUs in 20 US hospitals from 4 January 2012 to 4 October 2012. After a baseline period, ICUs were randomized to standard practice for glove and gown use versus the intervention of all healthcare workers being required to wear gloves and gowns for all patient contact and when entering any patient room (contact precautions). The primary outcome was acquisition of toxigenic C. difficile determined by surveillance cultures collected on admission and discharge from the ICU.

Results. A total of 21,845 patients had both admission and discharge perianal swabs cultured for toxigenic C. difficile. On admission, 9.43% (2060/21,845) of patients were colonized with toxigenic C. difficile. No significant difference was observed in the rate of toxigenic C. difficile acquisition with universal gown and glove use. Differences in acquisition rates in the study period compared with the baseline period in control ICUs were 1.49 per 100 patient-days versus 1.68 per 100 patient-days in universal gown and glove ICUs (rate difference, −0.28; generalized linear mixed model, P = .091).

Conclusions. Glove and gown use for all patient contact in medical and surgical ICUs did not result in a reduction in the acquisition of C. difficile compared with usual care.

Clinical Trials Registration. NCT01318213.

Keywords. antibiotic-resistance; barrier precautions; contact precautions; Clostridioides difficile.

Clostridioides difficile is the most common cause of healthcare-associated infections in the United States, causing at least 450,000 infections and 29,000 associated deaths per year [1]. Current C. difficile infection (CDI) prevention strategies focus on preventing C. difficile transmission only from patients with symptomatic CDI and ignore the much more common asymptomatic C. difficile carriers [2, 3]. Asymptomatic C. difficile carriers have been shown to contaminate the hospital environment, transfer C. difficile spores to healthcare personnel hands, and introduce strains associated with subsequent CDI cases [1]. In addition, recent studies suggest that at least 30% to 50% of new CDI cases may be the result of transmission from asymptomatic C. difficile carriers [4–6].

However, the potential impact of interventions directed at asymptomatic C. difficile carriers has not been adequately studied. One such strategy to prevent C. difficile transmission among hospitalized patients would be the use of gloves and gowns (contact precautions) for patients asymptomatically colonized with C. difficile. Identifying reductions in C. difficile transmission from asymptomatic carriers with contact precautions would change the paradigm of C. difficile prevention. Small observational studies have explored this approach with active surveillance testing at admission and found associations with lower rates of CDI [7, 8]. However, no randomized trials have assessed the impact of contact precautions on C. difficile acquisition.

Controversy exists about the relative advantages and disadvantages of contact precautions [9, 10]. Previously, we published a cluster-randomized trial titled the Benefits of Universal Glove and Gowning Study (BUGG), which showed that wearing gloves and gowns for all patients resulted in a reduction in methicillin-resistant Staphylococcus aureus (MRSA) acquisition but no effect on the composite primary outcome of MRSA or vancomycin-resistant Enterococcus.
(VRE) acquisition [11]. The study also showed no increase in adverse events and improved hand hygiene compliance on room exit with the intervention. Likewise, no statistically significant impact was seen on acquisition of gram-negative pathogens [12].

In the current study, we used previously collected and stored perianal samples from the BUGG cluster-randomized trial to assess if wearing gloves and gowns for all patient contact in the intensive care unit (ICU) reduces acquisition rates of *C. difficile*.

METHODS

Study Design

This study is a secondary analysis of specimens collected in the BUGG study, a 20-hospital cluster-randomized trial of universal glove and gown use compared with standard practice. The study was conducted in medical, surgical, and medical-surgical ICUs varying in size from 9 to 36 beds and located across the United States in rural, urban, academic, and nonacademic settings. The primary outcome of the original trial was acquisition of MRSA or VRE. Details of the original study design have been previously published [11]. The study had a baseline period from 1 September 2011 to 31 December 2011. After the baseline period, ICUs were randomized to either the intervention or control arm. The study period was from 4 January 2012 to 4 October 2012. The trial was conducted in accordance with the Consolidated Standards of Reporting Trials (CONSORT) guidelines (Supplementary Figure 1) [13].

A total of 45,821 perianal swabs were obtained in the BUGG study. These perianal cultures were collected on admission and discharge for all eligible participants and shipped to the University of Maryland laboratory. We previously published this microbiology shipping and processing methodology, demonstrating excellent recovery of bacteria [14, 15]. All perianal swabs were frozen in tryptic soy broth containing 15% glycerol at −80°C to allow for future recovery of organisms. Recovery of organisms from frozen swabs has been shown by our group and others to be between 91% and 98%. We cultured each frozen swab for *C. difficile* in anaerobic conditions. All *C. difficile* isolates were then frozen and shipped to Washington University for toxin and tcdC gene characterization. Isolates with tcdA and/or tcdB detected were categorized as toxigenic. Isolates were subcultured on pre-reduced blood agar and identification was confirmed with matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) (VITEK MS; bioMérieux, Durham, NC, USA). The presence of tcdA, tcdB, cdtA, and cdtB were determined by multiplex polymerase chain reaction (PCR) as previously described [16, 17]. In addition, primers for tcdC were added as described by Persson et al [18]. The PCR products were analyzed with the Agilent DNA 1000 assay and 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) to determine the length of the tcdC amplicon.

Isolates with all of the following criteria were categorized as 027-like: tcdA, tcdB, cdtA, cdtB, and a tcdC amplicon size of 144 base pairs [17].

Intervention and Control Arms

The intervention occurred at the level of the ICU. During the baseline period, all ICUs followed their usual standard of care, which consisted of healthcare workers following Centers for Disease Control and Prevention (CDC) contact precautions guidelines (gloves and gowns) for patients known to have antibiotic-resistant bacteria such as VRE, MRSA, and active CDI [19]. After the baseline period, ICUs were randomized, and during the study period all healthcare workers (nurses, physicians, respiratory therapists, etc) in the 10 ICUs assigned to the intervention arm were required to wear gloves and gowns for all patient contact and when entering any patient room [19, 20]. The 10 control ICUs followed their usual standard of care during the study period. Compliance with glove and gown use was measured by 30-minute direct observation periods on a random sample of rooms in both intervention units (any patient) and control units (patient on contact precautions). No hospitals performed active surveillance for *C. difficile*. All hospitals used contact precautions for the care of patients with clinical *C. difficile* infection. Twelve hospitals performed chlorhexidine bathing (5 in the control arm and 7 in the intervention arm) [21].

Outcomes

For each eligible patient, acquisition was defined as having a baseline ICU surveillance perianal culture that was negative for toxigenic *C. difficile* with a subsequent discharge surveillance perianal culture within the same ICU admission that was positive for toxigenic *C. difficile* bacteria. Results of clinical *C. difficile* testing results were not known to the study team and did not contribute to this definition.

Secondary analyses were conducted for factors associated with acquisition including ribotype 027–like *C. difficile* acquisition, colonization pressure, type of hospital ICU (medical, surgical, or medical-surgical), hand hygiene, glove compliance, gown compliance, if patients were isolated for other reasons, and month of intervention.

Statistical Analysis

The statistical analysis plan was written and sealed prior to the analysis. The analysis was based on the outcome (acquisition yes/no) for each person seen in the study ICUs at either the baseline period (when standard contact precautions were used in all ICUs) or the study period (when half of the ICUs used universal contact precautions). The probability that each person was classified as having acquired an infection during their ICU stay is a function of the acquisition rate in that ICU at that period and the number of days between admission specimen collection and discharge specimen collection, which...
was approximately equal to the patient ICU length of stay. The rate of acquisition in an ICU at a given period was modeled as a multiplicative function of parameters related to period (baseline or study), contact precautions (whether that ICU was using universal or selective precautions during that period), and ICU (treated as a random effect). This corresponds to using a generalized linear mixed model for a binary outcome with a complementary log-log link, random effects for ICUs, and the log of the number of days between swabs as an offset term. The model was fit by maximum likelihood estimation using SAS Proc GLIMMIX (SAS Institute, Cary, NC, USA). The model resulted in estimates of the mean rate of acquisition during the baseline period, the mean rate during the study period in ICUs that performed selective precautions, the mean rate during the study period in ICUs that performed universal precautions, and the rate ratio due to the intervention.

For ease of interpretation, we also present a rate difference, which is the difference in acquisition rates due to the intervention based on the model evaluated at the average ICU. Confidence intervals (CIs) for the rate differences were calculated using the delta method based on the parameter estimates and standard errors from the multiplicative model that we fit. The in-hospital colonization pressure was calculated for each patient as the proportion of other patients at their ICU who were positive for \textit{C. difficile} during their stay (not including the patient themselves). Patients positive on admission were assumed to be positive during their entire hospital stay. Patients who acquired \textit{C. difficile} on discharge were assumed to acquire infection halfway through their stay.

\textbf{Power Calculations}

Using assumptions based on the primary study, we assumed standard weighted averages of 0.12 and 0.13 in control and intervention ICUs with a baseline rate of 2% acquisition. We projected 80% power to detect an impact if the intervention reduced rates by 41% using a 2-sided 0.05-level test.

\textbf{RESULTS}

Twenty ICUs participated in the study and none withdrew. Of the 26749 patients enrolled in the study, 4904 were excluded due to missing the admission or discharge culture result. A total of 21845 patients had both admission and discharge perianal swabs tested for toxigenic \textit{C. difficile}, including 5912 patients during the baseline period and 15933 patients during the study period. On admission, toxigenic \textit{C. difficile} was isolated from the rectal swab of 9.43% (2060/21845) patients. These were excluded from the analysis of hospital acquisition. During the study, compliance with obtaining perianal cultures at admission was 94.9%. Compliance with obtaining perianal cultures at discharge was 85.1%.

Compliance with wearing gloves in the intervention ICUs was 86.2% (2787/3234), and compliance with gowns was 85.1% (2750/3230). In the control group, 10.52% of patients were on contact precautions. In the control ICUs, for patients on contact precautions, compliance with wearing gloves was 84.11% (556/661) and compliance with gowns was 81.21% (536/660). Of patients who were found to be asymptotically colonized with \textit{C. difficile} on admission, in the baseline period 21% (176/822) were on contact precautions for various reasons. During the intervention period 18% (139/794) were on contact precautions for clinical reasons in control ICUs and 100% (902/902) were on contact precautions in intervention ICUs.

Figure 1 shows the baseline and study period rates of acquisition based on dividing the number of acquisitions by the days at risk in each ICU. Of the 19785 patients who were not positive for \textit{C. difficile} on admission, 6.6% (1296/19785) acquired \textit{C. difficile}.

Table 1 summarizes the primary outcome: rate of acquisition in intervention and control ICUs. During the study period, the rate of acquisition declined slightly in the control ICUs and increased slightly in the intervention ICUs compared with the baseline period. Table 1 also provides the estimated rate difference due to the intervention based on the generalized linear mixed model. The estimated rate difference was −0.28, reflecting a lower rate in the control ICUs \(P = .091\).

Secondary analyses were conducted to evaluate factors associated with acquisition. The colonization pressure experienced by each patient was defined as the proportion of other patients at the patient’s site who were presumed positive for \textit{C. difficile} during the days that patient was in the ICU. Every 10% increase in colonization pressure was associated with 1.09 (1.02, 1.17) odds of increase in acquisition after adjusting for study period and calendar month, \(P = .014\).
Table 2 shows the relationship between other predictors and *C. difficile* acquisition for the entire study cohort. Time of year was also associated with *C. difficile* acquisition, with the highest rates of acquisition observed in December and January—2.71 and 2.79 per 100 patient days ($P < .001$).

We evaluated the impact of universal gowns and gloves on 027-like *C. difficile* and found there was no significant difference between intervention and control ICUs. Rates of 027-like *C. difficile* in control ICUs were 0.28 per 100 patient-days (36 acquisitions) during the baseline period and 0.13 per 100 patient-days (39 acquisitions) during the study period compared with 0.30 per 100 patient-days (34 acquisitions) during the baseline period and 0.16 per 100 patient-days (50 acquisitions) during the study period in the intervention ICUs (rate difference).

<table>
<thead>
<tr>
<th>Predictor and Subgroup</th>
<th>Number of Patients</th>
<th>Acquisitions</th>
<th>Patient-Days at Risk</th>
<th>Rate (per 100 Patient-Days)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of ICU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICU</td>
<td>8757</td>
<td>595</td>
<td>38 625</td>
<td>1.54</td>
<td>.15</td>
</tr>
<tr>
<td>MICU/SICU</td>
<td>4679</td>
<td>300</td>
<td>15 695</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>SICU</td>
<td>6349</td>
<td>401</td>
<td>25 879</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>Hand hygiene at entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\geq 55%$</td>
<td>10939</td>
<td>747</td>
<td>41 821</td>
<td>1.79</td>
<td>.15</td>
</tr>
<tr>
<td>$< 55%$</td>
<td>8846</td>
<td>549</td>
<td>38 277</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Glove compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\geq 75%$</td>
<td>16 889</td>
<td>1127</td>
<td>67 756</td>
<td>1.66</td>
<td>.21</td>
</tr>
<tr>
<td>$< 75%$</td>
<td>2896</td>
<td>169</td>
<td>12 342</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Gown compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\geq 75%$</td>
<td>16 028</td>
<td>1070</td>
<td>62 120</td>
<td>1.72</td>
<td>.03</td>
</tr>
<tr>
<td>$< 75%$</td>
<td>3757</td>
<td>226</td>
<td>17 978</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Patient isolateda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>11 007</td>
<td>693</td>
<td>43 060</td>
<td>1.61</td>
<td>.99</td>
</tr>
<tr>
<td>Yes</td>
<td>8725</td>
<td>599</td>
<td>36 847</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>Year/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2011</td>
<td>67</td>
<td>3</td>
<td>291</td>
<td>1.03</td>
<td><.001</td>
</tr>
<tr>
<td>September 2011</td>
<td>1020</td>
<td>63</td>
<td>4882</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>October 2011</td>
<td>1361</td>
<td>58</td>
<td>5674</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>November 2011</td>
<td>1340</td>
<td>106</td>
<td>5932</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>December 2011</td>
<td>1349</td>
<td>147</td>
<td>5422</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>January 2012</td>
<td>1516</td>
<td>170</td>
<td>6104</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>February 2012</td>
<td>1460</td>
<td>133</td>
<td>7190</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>March 2012</td>
<td>1718</td>
<td>98</td>
<td>6764</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>April 2012</td>
<td>1601</td>
<td>90</td>
<td>6404</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>May 2012</td>
<td>1648</td>
<td>72</td>
<td>6752</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>June 2012</td>
<td>1717</td>
<td>97</td>
<td>6764</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>July 2012</td>
<td>1646</td>
<td>116</td>
<td>6427</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>August 2012</td>
<td>1738</td>
<td>64</td>
<td>6701</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>September 2012</td>
<td>1513</td>
<td>79</td>
<td>4874</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>October 2012</td>
<td>91</td>
<td>1</td>
<td>120</td>
<td>0.84</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ICU, intensive care unit; MICU, medical intensive care unit; MRSA, methicillin-resistant *Staphylococcus aureus*; SICU, surgical intensive care unit; VRE, vancomycin-resistant Enterococcus.

aReasons for isolation included MRSA, VRE, *C. difficile* infection. Fifty-three patients were missing isolation status.
Other factors associated with days in the baseline and study periods for the control and intervention ICUs.

While this argues against a priori–defined secondary analysis identified an absolute reduction in MRSA (4.03% absolute risk reduction; \(P = .046 \)) and no impact on VRE acquisition. Gram-negative bacteria were likewise not statistically significantly impacted by universal gown and glove use (6.48% absolute risk increase; \(P = .09 \)) [12].

Although our study had strengths coming from the 20-ICU randomized controlled trial design, there were limitations as part of the limited identifying information of the trial, including that we did not have individual patient-level data for CDI or antibiotic use. Likewise, we used perianal swabs that are less sensitive than stool or rectal swabs. We do not think any of these limitations would be differential between groups.

In conclusion, in a cluster-randomized trial of universal glove and gown use, we found no benefit related to the isolation of patients asymptomatically colonized with \(C. difficile \) compared with standard practice of isolating patients with CDI. This supports the current practice of patient isolation for symptomatic CDI.
Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyrighted and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes

Disclaimer. The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or in the preparation, review, and approval of the manuscript; and decision to submit the manuscript for publication. Statements in the manuscript do not necessarily represent the official views of, or imply endorsement by, the Agency for Healthcare Research and Quality (AHRQ) or the Department of Health and Human Services (HHS).

Financial support. This work was supported by the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services (HHS) (grant number R01HS025456-01 to D. J. M.).

Potential conflicts of interest. E. R. D. reports grants or contracts from Synthetic Biologics, Ferring, and Pfizer, outside of the submitted work, and consulting fees from Seres, Merck, Pfizer, Abbott, and Ferring. S. L. reports grants/contracts to their institution under the CDC Prevention Epicenters and Broad Agency Agreement mechanisms in the broad field of infection prevention and control and the Centers for Disease Control and Prevention and a contract for Maryland hospital collaboratives on C. difficile and COVID-19 prevention from the Maryland Department of Health, all outside of the submitted work. T. H. reports grants or contracts paid to their institution from Synthetic Biologics, Inc, and CDC Epicenters, both outside of the submitted work. D. J. M. reports grants or contracts unrelated to this work from the National Institutes of Health, CDC, and Veterans Affairs Health Services Research and Development; reimbursement for travel from IDWeek and the Society for Healthcare Epidemiology of America (SHEA); and unpaid positions as Chair of the IDWeek SHEA Committee and as lead of the SHEA Diagnostic Stewardship Taskforce. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References