Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma

David H. Gutmann
Washington University School of Medicine in St. Louis

Michael D. McLellan
Washington University School of Medicine in St. Louis

Ibrahim Hussain
Washington University School of Medicine in St. Louis

John W. Wallis
Washington University School of Medicine in St. Louis

Lucinda L. Fulton
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Gutmann, David H.; McLellan, Michael D.; Hussain, Ibrahim; Wallis, John W.; Fulton, Lucinda L.; Fulton, Robert S.; Magrini, Vincent; Demeter, Ryan; Wylie, Todd; Kandoth, Cyriac; Leonard, Jeffrey R.; Guha, Abhijit; Miller, Christopher A.; Ding, Li; and Mardis, Elaine R., "Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma." Genome Research. 23, 431-439. (2013). https://digitalcommons.wustl.edu/open_access_pubs/1781

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma

Genome Res. 2013 23: 431-439 originally published online December 5, 2012
Access the most recent version at doi:10.1101/gr.142604.112

Supplemental Material
http://genome.cshlp.org/content/suppl/2013/01/02/gr.142604.112.DC1.html

References
This article cites 66 articles, 18 of which can be accessed free at:
http://genome.cshlp.org/content/23/3/431.full.html#ref-list-1

Creative Commons License
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to *Genome Research* go to:
http://genome.cshlp.org/subscriptions

© 2013, Published by Cold Spring Harbor Laboratory Press
Somatic neurofibromatosis type 1 (NFI) inactivation characterizes NFI-associated pilocytic astrocytoma

David H. Gutmann,1,2,7 Michael D. McLellan,3,4 Ibrahim Hussain,1 John W. Wallis,3,4 Lucinda L. Fulton,3,4 Robert S. Fulton,3,4 Vincent Magrini,3,4 Ryan Demeter,3,4 Todd Wylie,3,4 Cyriac Kandoth,3,4 Jeffrey R. Leonard,5 Abhijit Guha,6 Christopher A. Miller,3,4 Li Ding,3,4 and Elaine R. Mardis2,3,4,7

1Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 2Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 3The Genome Institute at Washington University School of Medicine, St. Louis, Missouri 63110, USA; 4Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 5Division of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 6Department of Neurosurgery, University of Toronto, Labatt Brain Tumor Centre, Toronto, Canada MSG 1X8

Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NFI) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NFI tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline NFI gene loss is coupled with bi-allelic somatic (glial progenitor cell) NFI gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NFI-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NFI-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NFI loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%–60% of cells in the tumor mass exhibited somatic NFI loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NFI loss is likely sufficient for PA formation in cooperation with a proper stromal environment.

[Supplemental material is available for this article.]

NFI is one of the most common autosomal dominant tumor predisposition syndromes in which affected individuals develop brain tumors. In this regard, 15%–20% of children with NFI develop World Health Organization (WHO) grade I pilocytic astrocytomas (PAs) (Listernick et al. 1994). These low-grade glial neoplasms typically arise in children <7 yr of age and most commonly occur in the optic pathway (optic nerves, chiasm, and tracts) or in the brainstem (Listernick et al. 1997). Similar to other tumor predisposition syndromes, children with NFI are born with one mutated, nonfunctional copy of the NFI gene, such that loss of the remaining allele in appropriate progenitor cells enables tumorigenesis. Consistent with this “two hit” hypothesis, previous studies of NFI-associated PA (NFI-PA) have demonstrated loss of heterozygosity at the DNA level (Kluwe et al. 2001; Gutmann et al. 2003) and loss of NFI protein (neurofibromin) expression (Gutmann et al. 2000).

While NFI loss in neuroglial progenitors is necessary for PA formation in individuals with NFI, genetically engineered mice (GEM) with conditional loss of NFI gene expression in neuroglial progenitor cells fail to develop brain tumors (Bajenaru et al. 2002; Zhu et al. 2005). This failure to develop gliomas reflects the need for cooperating NFI+/- non-neoplastic cells in the tumor microenvironment. In this regard, similar to children with NFI harboring one nonfunctional and one functional NFI allele in every cell of their bodies, NFI+/- mice (one functional and one inactivated NFI allele) with absent neuroglial progenitor NFI expression develop optic gliomas with nearly 100% penetrance (Bajenaru et al. 2003). Similar to their human counterparts, these murine brain tumors exhibit low levels of proliferation, increased numbers of endothelial cells and microglia, and nuclear pleomorphism (Bajenaru et al. 2005; Kim et al. 2010).

Interestingly, these mouse optic gliomas do not fully recapitulate the classic histopathological features of the human tumors, in that they lack Rosenthal fibers and eosinophilic granular bodies (Louis et al. 2007), raising the intriguing possibility that other genetic alterations exist in human NFI-PA. The purpose of the current study was to employ advanced whole-genome sequencing technologies to establish the genomic landscape of human NFI-PA to facilitate the development of improved approaches to the diagnosis and management of these brain tumors.

Results

Whole-genome sequencing (WGS) was performed on three PA-matched normal blood (PBMC) cases from individuals with NFI established using NIH Consensus Development Conference diagnostic criteria (Stumpf et al. 1988; Gutmann et al. 1997). These
tumors are difficult to obtain, as they are rarely surgically resected and, when removed, typically provide very limited amounts of frozen tissue for comprehensive analysis. Based on our previous studies (Leonard et al. 2006), we specifically selected three PA tumors that were atypical by virtue of patient age (>7 yr of age at the time of glioma discovery) and tumor location (outside of the optic pathway) to maximize our ability to detect additional causative mutations (Table 1). All of these tumors contained >90% tumor (and not normal surrounding brain) by routine hematoxylin and eosin histopathologic review, exhibited the classic histopathologic features of PA (eosinophilic granule bodies, Rosenthal fibers), had low proliferative indices, and lacked necrotic areas or mottic figures. Informed consent was obtained for all patients on an active protocol approved by the Washington University School of Medicine Institutional Review Board. We obtained paired end sequencing data to a minimum average depth of >32-fold haploid depth per genome. An overall concordance of >99% was obtained when comparing WGS-derived SNP genotypes with SNP array data at identical genome positions (Supplemental Table 1).

In all three patients, the germline NF1 mutations were identified based on their presence in both tumor and blood DNA (Table 1; Fig. 1): T01 had a point mutation (c.2002-14) in intron 17 (NM_001042492.2) previously demonstrated to create a novel splice variant (Spurlock et al. 2010); T02 had a germline splice site mutation (c.205-2), while T03 had a germline nonsense mutation (p.W1662*). Despite the use of both PCR and capillary sequencing as well as targeted capture-based sequencing from validation, we only identified a somatic NF1 gene mutation in T02 (frameshift mutation; p.C2426fs), suggesting that additional second hit mechanisms were responsible for low-grade astrocytoma formation in the other two tumors. Moreover, no mutations were identified in the putative promoter region encompassing 50 kb 5’ of the initiation codon.

To exclude the possibility that T01 and T03 retained NF1 gene expression, we performed immunohistochemistry to demonstrate loss of neurofibromin protein expression in all three NF1-PA tumors (Fig. 2A), a result consistent with complete NF1 inactivation in NF1-PA tumors (Fig. 2B). Further examination of supporting variant and reference allele frequencies indicated bi-allelic inactivation of the NF1 gene in this tumor occurred through duplication of the p.W1662* nonsense germline mutation and loss of the wild-type NF1 allele.

Since T01 had neither an identified somatic NF1 mutation nor clear evidence of LOH based on the VarScan analysis of 81 heterozygous sites within the NF1 gene (mean VAFs: 49.2% in the normal DNA and 55.6% in the tumor DNA), we examined methylation patterns. Using the Illumina Infinium HumanMethylation450 BeadChip, we assayed the three whole-genome-sequenced NF1-PA samples and two additional sporadic PA tumors. Genome-wide analysis comparing T01 with T02 and T03 identified 118 probes clustered in 105 regions that exhibited significantly different methylation (Supplemental Table 2). Upon further examination, no methylation alterations affected genes previously reported to be mutated in sporadic PA tumors (Wimmer et al. 2002b; Tada et al. 2003; Sharma et al. 2005; Deshmukh et al. 2008; Jones et al. 2008; Pfister et al. 2008). For most of the 42 probes localized within the NF1 gene region, we found that methylation patterns were similar in all five PA tumor samples analyzed. However, as a group, the NF1-PA tumors exhibited increased methylation (greater than two standard deviations) at probe cg21850879 (NCBI 36 chr17:26646069) compared with the sporadic counterparts. Interestingly, in T01 (the tumor lacking a second NF1 somatic mutation) there was increased methylation (greater than two standard deviations) at probe cg13759778 (NCBI 36 chr17:26648522) compared with T02 and T03. Probe cg13759778 is within 200 bp of the transcription start site of OMG, one of three antisense nested genes within intron 27b of the NF1 gene (intron 36 of NM_001042492.2) (Fig. 2C). While this methylation event occurs in intronic sequences within the NF1 locus and cannot be definitively demonstrated to cause NF1 gene silencing, the absence of neurofibromin expression in this tumor is consistent with loss of NF1 gene expression from this allele. Together, these data support the existence of multiple distinct mechanisms (mutation, LOH, and methylation) underlying somatic NF1 inactivation in NF1-PA tumors.

Using WGS, we were also able to accurately quantify the NF1 mutant allele frequencies and determine the relative clonality and cellular heterogeneity of these low-grade glial cell neoplasms (Ding et al. 2012). For clonality estimates, we evaluated data for somatic SNVs in nonrepetitive regions consisting of validated nonsynonymous coding variants, and high-confidence, manually reviewed events in potential regulatory regions, as well as the remaining nonrepetitive portion of the genome, representing a total of 133, 181, and 94 variants for tumors T01, T02, and T03, respectively (Supplemental Tables 3–5). Single clusters identified by kernel density estimation (Fig. 3A) indicated that each tumor consisted primarily of a single founding clone having no subclones. We used these analyses to calculate tumor purity, and found that these tumors were composed of 49%–64% non-neoplastic

<p>| Table 1. Clinical attributes and NF1 mutations in the three NF1-PA tumors |
|---|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Sex</th>
<th>Tumor location</th>
<th>Mutation class</th>
<th>NCBI 36 position</th>
<th>Alleles</th>
<th>Effect</th>
<th>Status</th>
<th>Validation VAF<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>T01</td>
<td>20</td>
<td>Male</td>
<td>Lower medulla</td>
<td>SNV</td>
<td>Chr17:26577565</td>
<td>C > G</td>
<td>p.D668fs</td>
<td>Germline</td>
<td>64.7%</td>
</tr>
<tr>
<td>T02</td>
<td>18</td>
<td>Female</td>
<td>Hypothalamus</td>
<td>Splice site</td>
<td>SNP</td>
<td>chr17:26510152</td>
<td>A > C</td>
<td>p.R67fs</td>
<td>Germline</td>
</tr>
<tr>
<td>T03</td>
<td>12</td>
<td>Female</td>
<td>Temporal lobe</td>
<td>Frameshift</td>
<td>DEL</td>
<td>chr17:26700349</td>
<td>T > —</td>
<td>p.C2426fs</td>
<td>Somatic</td>
</tr>
</tbody>
</table>

*Transcript NM_001042492.

^bVariant allele frequency.
cells. Based on the combination of tumor purity and the coverage obtained from WGS data, the estimated sensitivity of our somatic mutation detection process is 70%. The large contribution of *NF1*−/− non-neoplastic cells to the tumor cellularity is consistent with parallel microglia (CD68+ cells) immunostaining results (Fig. 3B), where 35%–55% of the cells in these PA tumors were microglia/macrophages. This level of stromal contamination with microglia/macrophages is similar to that observed in both sporadic low-grade and high-grade gliomas (Simmons et al. 2011).

Next, we evaluated that possibility of large-scale somatic rearrangements in other genes potentially cooperate with *NF1* loss during PA formation or growth by performing copy number alteration analysis of WGS read data using the cnvHMM algorithm (Chen et al. 2012). Importantly, read-count analysis showed no evidence of copy number aberrations (CNA) in the *NF1* gene regions in any tumor (Supplemental Fig. 1). We then employed BreakDancer (Chen et al. 2009) and SquareDancer (derived from CREST [Wang et al. 2011]) to predict structural variants (SVs). Based on the detection of aberrant mate-pair read mapping distance or orientation, BreakDancer predicted 921, 825, and 449 putative somatic SVs in samples T01, T02, and T03, respectively. None of the predicted somatic SVs were supported by reads containing a physical breakpoint identified by SquareDancer, no large deletions were accompanied by corresponding drops in coverage, and no SV events were validated by custom capture or PCR-based validation sequencing. In this analysis, no CNV or SV were confirmed in the *NF1*-PA tumors, thus excluding CNA and SV from possibly altering the *NF1* locus or its partners.

Predicted nonsynonymous somatic mutations that affect coding regions were validated using PCR followed by capillary sequencing (Supplemental Table 3). In contrast to previous reports on PA, we found no copy number changes or mutations in the *BRAF*, *RAS* (including *KRAS*, *NRAS*, and *HRAS*), *MATN2*, *HIPK2*, *PTEN*, *TP53*, *CDKN2A*, or *EGFR* genes (Tada et al. 2003; Fischbein et al. 2005; Sharma et al. 2005; Deshmukh et al. 2008; Jones et al. 2008; Pfister et al. 2008). However, nonsynonymous somatic mutations were identified in *DST* and *SVIL* in patient T01, *OR13C3* in T02, and *GAPDH2*, *FYTTD1*, *ACTBL2*, *PIK3R2*, and *ZNF257* in T03. To address the possibility that these somatically mutated genes could be involved in *NF1*-PA tumorigenesis, we used custom hybrid capture product sequencing to screen the coding exons of *ACTBL2*, *DST*, *GAPDH2*, *OR13C3*, *PIK3R2*, *SVIL*, *FYTTD1*, and *ZNF257* in PA tumor samples from three additional *NF1* patients. No additional somatic mutations were identified in these additional samples. Due to the low background mutation rate (BMR) in *NF1*-PA tumors compared with other solid tumor types, mutations identified in noncoding regions were not included in the recent screening efforts. Previous attempts to identify recurrent noncoding mutations in larger cohorts of solid tumors with higher BMRs have only identified a small number of recurrent mutations outside of coding regions (Ellis et al. 2012).

While these somatic mutations are novel, it is unlikely that they are pathogenic. First, the majority of the mutations identified (*OR13C3*, *ACTBL2*, *FYTTD1*, *PIK3R2*, and *ZNF257*) were revealed to be neutral (conservative changes in the protein sequence by in silico evaluation with Polyphen2 [Adzhubei et al. 2010], SIFT [Ng and Henikoff 2003], and Condel [Gonzalez-Perez and Lopez-Bigas 2011]) using pre-computed values from the Ensembl Variant Effects Predictor (Supplemental Table 3). Second, of the mutations in *DST*, *SVIL*, and *GAPDH2* predicted to be deleterious, none occurred in an annotated functional protein domain related to carcinogenesis (Sigrist et al. 2010). Third, none of these eight mutations were identified in more than a single tumor, and thus were not recurrent in the limited number of these uncommonly banked tumors. Fourth, none of these genes exhibited bi-allelic inactivation either by mutation or methylation.

Finally, it had been previously postulated that the mutation frequency was high in individuals with *NF1*, with estimates ranging between 1.4 × 10⁻⁴ (Crowe et al. 1956) and 6.5 × 10⁻⁵ gamete/generation (Samuelsson and Axelsson 1981; Huson et al. 1989; Clementi et al. 1990). Here, in contrast, using WGS data, we find that the mutation frequency in *NF1*-PA is relatively low, similar to that of other pediatric solid tumors where carcinogenesis often results from antecedent germline mutations. In T01, T02, and T03, the BMR, excluding noncoding repetitive sequence, was 9.0 × 10⁻⁶, 1.2 × 10⁻⁷, and 6.0 × 10⁻⁸ mutations per sequenced base, respectively, comparable with the BMRs of several pediatric retinoblastoma genomes (Zhang et al. 2012a) (2.0 × 10⁻⁸, 5.0 × 10⁻⁸, 8.0 × 10⁻⁸, and 9.0 × 10⁻⁹). These mutation frequencies differ slightly from hematological malignancies, such as pediatric TALL and the M1 and M3 subtypes of adult AML (2.0 × 10⁻⁸ to 4.1 × 10⁻⁸ mutations per base) (Mardis et al. 2009; Welch et al. 2012; Zhang et al. 2012b), and differ markedly from adult solid tumors, such as luminal breast cancer, that often have rates that are orders of magnitude higher (Fig. 3C; Mardis et al. 2009).
Figure 2. Mechanism of somatic NF1 inactivation. (A) Immunohistochemistry using rabbit polyclonal neurofibromin antibodies demonstrates positive immunoreactivity in the normal human brain (HBr). (Inset) Single neuron with neurofibromin expression. In each of the three NF1-PA specimens, no neurofibromin expression was detected. Scale bars, 100 μm. Magnification, 400×. (Inset, 600×. (B) In T03, a somatic copy-neutral LOH of the q arm of chromosome 17 from position 23.9 Mbp to the telomere results in duplication of the NF1 W1662* germline variant. Shown are the median variant allele frequencies of high-confidence germline heterozygous SNPs identified in the normal DNA in 100,000-bp bins across chromosome 17. The position of the NF1 gene is indicated. (C) Methylation changes in T01 relative to T02 and T03 from Illumina Infinium HumanMethylation450 arrays for 42 probes spanning the NF1 genomic region. T01 exhibits increased methylation (>2 standard deviations) at NCBI 36 chr17:26648522 (probe cg13797778). This location is within 200 bp of the transcription start site of OMG, one of three antisense nested genes within intron 36 of NF1 mRNA NM_001042492.2.
Second, we demonstrate that NF1-PA have a monoclonal origin, similar to their sporadic counterparts (Payton et al. 2011). While the majority of studies that examined clonal origins of glioma using single X-chromosome loci, fluorescent in situ hybridization, microsatellite markers, or single substitute mutation methods demonstrated a monoclonal pattern (Kattar et al. 1997; Zhu et al. 1997; Mueller et al. 2001), there are reports of gliomas exhibiting a multiclonal origin (Dong et al. 2002; Gomori et al. 2002; Vital et al. 2010). Since the few brain tumors with presumed polyclonal origins were high-grade gliomas, we favor a model of low-grade pediatric astrocytoma development in which tumors arise from a single population of glial progenitors during fetal or early postnatal life.

Third, we show that there exist multiple possible mechanisms of somatic NF1 gene silencing, including LOH, mutation, and methylation. While LOH and mutation have been reported in numerous NF1-associated tumor types, prior studies on another NF1-associated tumor (peripheral nerve sheath tumor; neurofibroma) revealed that NF1 promoter hypermethylation is a rare “second hit” event (Horan et al. 2000; Wimmer et al. 2002a; Harder et al. 2004; Fishbein et al. 2005). While we have not demonstrated a direct cause-and-effect relationship between NF1 locus hypermethylation and reduced NF1 gene expression, the finding that absent neurofibromin (immunohistochemistry) expression was observed in T01 is consistent with this conclusion. Our observations coupled with results on another childhood nervous system tumor, retinoblastoma (Zhang et al. 2012a), suggest that somatic tumor suppressor gene inactivation by methylation may represent another mode to achieve bi-allelic inactivation. However, it is possible that other mechanisms are operative, such as epigenetic silencing by microRNA.

Figure 3. NF1-PA tumor clonality, cellular heterogeneity, and mutation rate. (A) Somatic mutation clusters were defined based on allele-specific supporting read counts in whole-genome data for mutations identified in nonrepetitive genomic with diploid copy number. Kernel density estimation indicates a monoclonal origin for each tumor and reveals a substantial proportion of stromal cells in the tumor biopsy with estimated tumor purities of 35%, 51%, and 39% for T01, T02, and T03, respectively. (B) CD68 immunostaining confirms the marked cellular heterogeneity of NF1-PA tumors, with 35%=55% of the cells in these tumors representing microglia/macrophages. Representative photomicrographs are included for each NF1-PA tumor. Scale bar, 100 μm. Magnification, 400×. Insets, 600×. (C) BMRs are based on the total sum of somatic mutations identified in all nonrepetitive genomic regions from WGS of three NF1-PA tumors, and compared with pediatric retinoblastoma (N = 4) (Zhang et al. 2012a), pediatric TALL (N = 8) (Zhang et al. 2012b), the M1 and M3 subtypes of adult AML (N = 25) (Welch et al. 2012), and luminal breast cancer (N = 46).
Last, Nf1 GEM optic glioma models have been particularly instructive in elucidating the requirements for tumorigenesis. Collectively, these studies have revealed that the unique pattern of low-grade astrocytoma development (predominantly in the optic pathway/brainstem of children) reflects the coupling of at least two requirements: (1) Nf1 loss in specific neuroglial progenitor cells (third ventricle or brainstem) during a defined temporal window (embryonic development) (Lee et al. 2010, 2012) and (2) a supportive local microenvironment composed of critical molecular signals (Warrington et al. 2007, 2010) and non-neoplastic cell types (Daginakatte and Gutmann 2007; Daginakatte et al. 2008). The current study emphasizes the significant cellular heterogeneity in human Nf1-Pa, consistent with previous studies on glioma in which a large proportion of the cellular composition is non-neoplastic cells. One of these stromal cell types is microglia, an immune-like cell, analogous to macrophages outside of the central nervous system (Graeber et al. 2002; Watters et al. 2005). The importance of these stromal cells to Nf1 glioma growth is further supported by several studies using Nf1 GEM strains. In these experiments, pharmacologic or genetic silencing of microglia reduces glioma growth and proliferation (Daginakatte and Gutmann 2007; Daginakatte et al. 2008; Simmons et al. 2011). The mechanism underlying their glioma-promoting properties has not been fully elucidated, but likely involves the generation of growth factors and chemokines (Daginakatte and Gutmann 2007; Warrington et al. 2007; Wesolowska et al. 2008; Zhai et al. 2011). This potentially instructive contribution of microglia has recently prompted us to apply RNA sequencing methods to more comprehensively define the role of microglia in sporadic PA formation and continued growth.

Methods

Patients

Blood and tumor specimens were obtained from three patients diagnosed with NF1 according to established criteria (Stumpf et al. 1988; treated at Washington University School of Medicine or the University of Toronto under active Human Studies Protocols approved by the Institutional Review Board at the Washington University School of Medicine and the University of Toronto. WGS was performed for tumor and normal DNA from three children with pilocytic astrocytomas. Tumor samples were obtained from banked resected tumors characterized by pathologic examination. Matched nontumor samples were obtained from PBMCs by phlebotomy.

Custom capture hybridization and sequencing

Sequencing libraries were hybridized to biotinylated 120-mer oligonucleotide probes designed to cover all coding exons of target genes. Illumina library quantification was completed using the KAPA SYBR FAST qPCR Kit (KAPA Biosystems).

Capture alignment, de-duplication, and BAM file generation

Illumina reads were aligned individually to the Ensembl release 45 version of Human NCBI Build 36 using BWA 2 v0.5.7 with soft trimming (q 5) as previously reported (Mardis et al. 2009). For each sample, individual lane alignments in BAM format were merged together using SAMTools 3 r544. Duplicates were marked in the merged BAM files by the MarkDuplicates class of Picard 4 v1.17. Reads with mapping quality of zero, or that were marked as duplicates by Picard, were excluded from further analysis.

SNV and small indel detection

Candidate point mutations were predicted using SomaticSniper, previously referred to as gLiSomatic 1.5. Putative SNVs with somatic score ≥40 and average mapping quality ≥40 were considered high-confidence (HC); all others were deemed low-confidence (LC). Small indels were predicted using a combination of GATK 6 IndelGenotyper, Pindel 7, and a modified version of SAMtools 3. Both SNVs and indels were annotated using gene structure, conservation information, and regulatory potential, then binned as previously described (Mardis et al. 2009). High-confidence non-coding mutations in nonrepetitive genomic regions were visualized to filter false positives, while nonsynonymous coding mutations were selected for additional PCR- and custom-capture-based validation sequencing.

Copy number variation (CNV) analysis

Copy number calls from WGS data were generated using the cnvHMM algorithm (http://genome.wustl.edu/software/cnvHMM). First, cnvHMM divided the genome into nonoverlapping windows 10 kbp in size. For each window, the raw copy number was estimated as the number of reads confidently mapped (mapping quality ≥35) divided by the median of such value across all windows in the genome, then multiplied by two (to reflect diploid genomes). A hidden Markov model (HMM) was then used to perform the segmentation. Each state in the HMM corresponds to a discrete copy number value. The emission probability was modeled as a single Gaussian probably density function. A standard Viterbi algorithm was used to estimate the HMM parameters and determined the segmentation. We derived copy number altered regions (CNARs) by comparing the segmentation of the tumor genome versus that of the normal genome. A log likelihood ratio (LLR) score was computed for each CNAR to quantify the possibility of being a true CNAR from being the null (copy number neutral) hypothesis. Calls with LLR score <20 were dropped from further consideration.

Structural variation (SV) analysis

Structural variants (SVs) were predicted by BreakDancer 9 with TIGRA_SV assembly 10, SquareDancer (Wang et al. 2011), and Pindel (Ye et al. 2009). Copy number differences with regions of SV were determined by BreakDancer (Chen et al. 2009). Putative SVs from BreakDancer were chosen for localized, de novo assembly if they (1) had at least two supporting discordant read pairs in the tumor, but none in the normal, (2) were supported by a copy number change of >0.5 in the SV region, (3) affected a coding exon, or (4) had one or more breakpoints in any part of a known cancer gene. SV regions were defined as ≥500 bp from the predicted breakpoints. The depth-weighted average contig length was used as a quality measure of the assembly:

\[
q = \frac{\sum_{i=0}^{M-1} d_i}{\sum_{i=0}^{M-1} d_i l_i},
\]

where \(l_i\) and \(d_i\) are the length and the average depth of contig \(i\), respectively, and \(M\) is the total number of contigs in the TIGRA assembly. Short contigs (<30 bp) that are assembled from the homopolymer reads are excluded in the calculation. We found this statistic properly summarizes both the size and the coverage and therefore is more informative to measure the assembly quality than the N50 size. Based on our manual examination of the alignment results, we found that the high-quality assemblies that
contain valid sequence frequently have a > 100 bp. Once assem-
bled, contigs were aligned to their respective local reference se-
quences (SV region ≥700 bp; NCBI Build b36) using cross_match
v1.080721 with the parameters “-bandwidth 20 -minmatch 20
-minscore 25 -penalty -10 -discrep_lists -tags -gap_init -10 -gap_ext
-1”. Contigs whose alignments had more than two segments or
were significantly different from the reference (one segment with
substitution >0.006 or indel rate of >0.002; or two segments with
substitution rate >0.005, indel rate of >0.001, or more than five
inserted/deleted bases) were removed. A complementary in-house
algorithm, SquareDancer, was used to identify candidate SVs by
utilizing soft-clipping information from the BWA aligner. Large
deletions and moderately sized insertions were also predicted us-
ing a modified version of the Pindel 7 tool. Pindel calls with read
support in the tumor but not the normal, as well as calls supported
by copy number evidence from cnvHMM (copy number
inserted/deleted bases) were removed. A complementary in-house
Pindel SV regions from different methods that overlapped
identified. Candidate SVs from BreakDancer, SquareDancer, and
Pindel SV regions from different methods that overlapped >75%
(allowing a buffer of ≥50 bp) were merged into a single event.

PCR-based validation and screening
Using Primer3, universal-tailed PCR primers were designed to
amplify all coding exons of NF1 in addition to the localized region
surrounding all predicted nonsynonymous coding variants. Tu-
mor DNA was PCR-amplified using AmpliTaq Gold PCR Master
mix and sequenced using BigDye 3.1 Sequencing Kits and loaded
on ABI 3730xl capillary sequencers. Data were assembled using
Consed and putative mutations identified using Polyscan and
Polyphred. All putative variants were visually reviewed to elimi-
nate artifacts.

Hybridization validation data analysis
To validate predicted nonsynonymous coding SNVs and small (<3
bp) indels, we used VarScan 2.2.11 with the following parameters:

\[-mncov 30 \-mncov-freq 0.08 \-p value 0.10 \-somatic-P-value
0.01 \-validation 1.\]

To validate low-frequency (2%–8%) SNVs, we reran VarScan with adjusted parameters: \[-mncov 100 \-mncov-freq 0.02 \-p value 0.10 \-somatic-P-value 0.01 \-validation 1.\] In
validation mode, VarScan reads data from tumor and normal
samples simultaneously, performing pairwise comparisons at
every position covered in both samples. Each position is classi-
fied as Reference (wild type), Germline, LOH, or Somatic, based
upon a comparison of the consensus genotypes and supporting
read counts (Fisher’s exact test). Positions called Somatic are
further subjected to our internally developed false-positive filter
that removes sequencing- and alignment-related artifacts using
several criteria (read count, mapping quality, average read posi-
tion, strand representation, homopolymer-like sequence con-
text, mismatch quality sum difference, trimmed read length, Q2
distance).

Mutation and spectrum analysis
Mutation rate analyses utilized validated nonsynonymous coding
SNVs, high-confidence SNVs in potential regulatory regions, and
SNVs in nonrepetitive regions that passed visual inspection. For
the mutation rate calculation, the number of SNVs in each bin was
compared to the overall size of the exome, noncoding genome
with regulatory potential, and remaining nonrepetitive genome,
which on NCBI Build 36, consisted of 43.89 Mbp, 248.21 Mbp, and
1198.99 Mbp, respectively. The individual mutation rates (muta-
tions per megabase) were calculated independently then com-
bined for all three bins to determine the overall mutation rate.

Methylation analysis
Methylation state was determined using the Infinium Human-
Methylation450 BeadChip Kit (Gu et al. 2010; Bibikova et al.
2011; Sandoval et al. 2011). The HumanMethylation450 chip
arrays >485,000 methylation sites per sample at single-nucleo-
tide resolution. Aside from covering 96% of CpG islands, sites are
also associated with regions of biological interest—e.g., miRNA
promoter regions, differentially methylated sites identified in
tumor versus normal (multiple forms of cancer) and across
several tissue types—for epigenome-wide association studies
(EWAS). Of the >485,000 sites on the Infinium array, 42 of the
probes are located within the NF1 gene footprint (including
upstream promoter region). The NF1 probes include UCSC-de-

cined CpG island annotation (i.e., island, shore, and shelf des-

ignations). The 42 probes culled from the NF1 gene footprint
have 13 probes associated with genes on the opposite strand of
NF1: six for OMGI, two for EVI2B, and five for EVI2A. These 42
probes were reviewed for methylation state across three different
pilocytic astrocytomas from patients with known NF1 defects
and two spontaneous pilocytic astrocytomas without NF1 de-

ects. Infinium chip Beta-values (the ratio of the methylated
probe intensity and the overall intensity: the sum of methylated
and unmethylated probe intensities) were converted to M-values

(log2 ratio of the intensities of methylated probe versus unmeth-
ulated probe) using the MethyLumi package from Bioconductor19
(Davis et al. 2012). Illumina’s raw IDAT files were fed to the
MethyLumi package for value conversion. Resulting M-values
were tracked/interrogated across our samples by converting to
YAML format, with subsequent parsing mediated by Perl scripts
developed in-house. In this manner, M-values related to the 42
NF1-specific probes were collected and contrasted for our sam-

ples. Values were imported and manually reviewed as custom
tracks in the UCSC Genome Browser (Kent et al. 2002) as meth-

ylation probe tracks, as well as M-value heat map blocks across
our tumor and sporadic samples. Differences in M-values (∆
M-values) were calculated across our samples, in a pairwise round-

robin fashion, with standard deviation used to assess significance
in differential change. As values were assessed localized to the
42 probe NF1 gene region, a follow-up global assessment was
undertaken for all 485,000+ probes across all samples, to review
global significance of change, as ∆M-values, between samples.
Our five tumor samples were evaluated in an all-versus-all fash-

ion with 4,855,770 comparison values sampled in total. The
mean ∆M-value was 0.52, standard deviation being 0.58.
Any change in M-value >2.24 would be 3 standard deviations.
For our purposes, we scaled back to an absolute ∆M-value of ≥2.0
in value being “significant”. This provided 137,628 comparisons
matching the criteria (or only 2.83% of the total 4,855,770 cross-
comparisons being relatively significant). Accepting these values
as being representative of the sensitivity for the technology (i.e.,
not “error”), any ∆M-value ≥2.0 within NF1 would be consid-
ered significant. In addition, we performed a t-test to identify
regions genome-wide exhibiting significantly differential methyl-
ation per probe. We clustered together probes 200 bp or closer with
P ≤ 0.05 and determined 118 such probes in 105 clusters that
exhibited significantly differential methylation. These regions
were further annotated by identifying all genes occurring within
10 kbp (Supplemental Table 2).

Immunohistochemistry and qRT-PCR
Immunohistochemistry and real-time quantitative RNA RT-PCR
were performed as previously reported (Gutmann et al. 2000;
Sharma et al. 2007).
Data access

Acknowledgments
We thank Mr. Ryan Emnett for expert technical assistance and Sonika Dahlia for neuropathological consultation. We acknowledge the efforts of the following people and groups at The Genome Institute for their contributions to this manuscript: the Analysis Pipeline group for developing the automated analysis pipelines that generated alignments and somatic variants; the LIMS group for developing tools to manage validation array ordering, capture, and sequencing; Joelle Veizer and Heather Schmidt for manual review of predicted mutations; and Joshua F. McMichael and Charles Lu for their assistance preparing the tables and figures.

This work was supported by a Doris Duke Fellowship (to I.H.) and core facilities in the Washington University CTSA (UL1RR024992). We dedicate this work in memory of our dear colleague and friend, Abhijit Guha, who died during the final preparation of this manuscript.

References

Received May 7, 2012; accepted in revised form November 26, 2012.