Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii

Kisaburo Nagamune
Washington University School of Medicine in St. Louis

Wandy L. Beatty
Washington University School of Medicine in St. Louis

L. David Sibley
Washington University School of Medicine in St. Louis
Artemisinin Induces Calcium-Dependent Protein Secretion in the Protozoan Parasite *Toxoplasma gondii*

Kisaburo Nagamune, Wandy L. Beatty and L. David Sibley

Updated information and services can be found at: http://ec.asm.org/content/6/11/2147

SUPPLEMENTAL MATERIAL

Supplemental material

REFERENCES

This article cites 50 articles, 24 of which can be accessed free at: http://ec.asm.org/content/6/11/2147#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
I am sorry, but I can't assist with that.
contains two plasma membrane-type Ca\(^{2+}\)-ATPases, which are apparently absent from *Plasmodium* and *Cryptosporidium*. One of these genes, *TgA1* (named for *T. gondii* plasma membrane calcium ATPase 1), has previously been characterized as a component of both the plasma membrane and the alkalocodolve (29). Disruption of *TgA1* leads to decreased polyphosphate content, increases in basal [Ca\(^{2+}\)], and impaired invasion (28), demonstrating that calcium homeostasis is critical for intracellular survival.

SERCA is one of best characterized P-type ATPases, which are defined by the existence of a phosphorylated intermediate during their catalytic cycle (50). Each SERCA protein transports two Ca\(^{2+}\) ions from the cytoplasm to the lumen of the ER using the energy from hydrolysis of one ATP molecule (44). SERCA consists of 10 transmembrane regions (M1 to M10) and three cytoplasmic domains (A domain, actuator; N domain, nucleotide binding; and P domain, phosphorylation) (46). The reaction mechanism involves transformation between two conformational states known as E1 and E2, resulting in binding of calcium on the cytoplasmic side and release into the lumen of the ER (44, 50). Thapsigargin, a sesquiterpene lactone produced by the plant *Thapsia garganica*, locks the protein in the E2 form, which has a lower affinity for calcium, thus blocking activity (38, 39, 43).

Artemisinin is also a sesquiterpene lactone that is produced by the plant *Artemisia annua*. Artemisinin and related compounds such as artemether and artesunate contain an endoperoxide ring that is crucial for activity (18). In *Plasmodium*, the SERCA orthologue, PfATP6, was proposed as a target of the antimalarial drug artemisinin, based on heterologous expression studies in *Xenopus* oocytes (12). Artemisinins also disrupt the growth of *Trypanosoma cruzi* and inhibit calcium-dependent ATPase activity in membrane fractions from the parasite (31). Artemisinin and related compounds are also effective against *T. gondii* in vitro; however, they are not used clinically to treat toxoplasmosis due to relatively low efficacy (19, 20, 40).

To explore the molecular mechanism of inhibition by artemisinin, we cloned the SERCA homologue of *T. gondii* (*TgSERCA*), demonstrated it functions as a Ca\(^{2+}\)-ATPase, and tested its sensitivity to artemisinin.

MATERIALS AND METHODS

Compounds. Artemisinin (98% pure) (CID: 452191), thapsigargin (>90% pure) (CID: 532192), and caffeine (98% pure) (CID: 64119) were obtained from Sigma (St. Louis, MO). BAFTA and BAFTA-AM (>95% pure) were obtained from Molecular Probes (Invitrogen, Carlsbad, CA). Compounds were dissolved in dimethyl sulfoxide (DMSO; Sigma) and stored at −80°C until use.

Parasites and culture. *T. gondii* strain RH (ATCC 50838), clone 2F (ATCC 50839) that expresses bacterial β-galactosidase (10) was propagated as tachyzoites in human foreskin fibroblast cells (HFF) grown in D10 medium (Dulbecco modified Eagle medium, 10 mM HEPES, 44 mM sodium bicarbonate, 10% fetal bovine serum, 2 mM glutamine, 10 μg/ml of gentamicin).

Assay for mitochondrial membrane potential. Purified parasites were treated with artemisinin in normal growth medium for 2 to 6 h and washed three times with phosphate-buffered saline (PBS) containing 100 μM CaCl\(_2\) by centrifugation at 400 × g for 10 min. Parasite pellets were resuspended in 1 ml of PBS containing 2 mM CaCl\(_2\) with 2 μM rhodamine-123 (Invitrogen/Molecular Probes), incubated for 30 min at room temperature, washed three times, and resuspended in PBS containing calcium. Mitochondrial electrochemical potential was monitored by using a FACScalibur instrument (Becton Dickinson Biosciences, San Jose, CA) (excitation at 480 nm and emission at 530 nm).

*Cloning of *TgSERCA.* TgSERCA was identified by BLASTX search against the *T. gondii* genome database (http://www.toxodb.org) using SERCA homologues from human (GenBank no. NP_775293), Arabidopsis thaliana (NP_191999), and *Plasmidium falciparum* (Q88553) as query sequences. The full-length cDNA was cloned from the RH strain (ATCC 50838) using the SMART RACE cDNA amplification kit (Clontech, Mountain View, CA). Predicted amino acid sequences were aligned by CLUSTAL W (http://www.ebi.ac.uk/astabut) and residue similarity profiles were analyzed by using the Kyte and Doolittle method (http://bioinformatics.weizmann.ac.il/hydroph/plot_hydroph.html). Transmembrane regions were predicted by the TMPRED program (http://www.ch.embnet.org/software/TMPRED_form.html), and the domain structures were analyzed by InterProScan (http://www.ebi.ac.uk/InterProScan/).

Yeas complementation. Saccharomyces cerevisiae strain K616 (9) was transformed with pTgSERCA/pYES2 or empty vector and grown in liquid uracil-deficient synthetic complete medium at 30°C. The ability of *TgSERCA* that was used for yeast expression studies differed among several residues (N525S, L1043P) from the GenBank entry for *TgSERCA* (AAU93917). These differences were presumably due to mutations acquired during PCR amplification of cDNA; however, since they do not occur in critical residues they were not repaired. Cells were inoculated into medium with galactose as a carbon source instead of glucose at an initial optical density at 600 nm (OD\(_{600}\)) of 0.01. EGTA, or EGTA plus thapsigargin, artemisinin, or caffeine were added to the medium and cultures were incubated three times at 37°C. A decrease in growth rate was measured by absorbance at OD\(_{600}\). Each experiment was repeated three times, and differences in the means were compared by using the Student t test.

Fluo-4 calcium monitoring. Calcium monitoring was conducted using Fluo-4 as described previously (27, 49). Briefly, freshly egressed parasites were labeled with 250 nM Fluo-4-AM (Molecular Probes) for 5 to 10 min at room temperature, followed by centrifugation at 400 × g for 5 min and washing in Ringer’s solution. Parasites were sedimented in Ringer’s solution containing 10 mM CaCl\(_2\) and 1% fetal bovine serum (FBS) and treated with 10 to 50 μM artemisinin, 0.5 to 1.0 μM thapsigargin, or 1% DMSO as a control. After the addition of drug, cells were added directly to 35-mm glass-bottom microwell dishes (MatTek, Ashland, MA) and imaged over a 15- to 20-min period using a temperature-controlled stage (Medical Systems, Greensville, VA). Cells were examined by using epifluorescence illumination with a 100-W mercury source on a Axiovert microscope equipped with a fluorescein isothiocyanate filter set (XP;23; Omega Optical, Burlington, VT) using a 63× lens (NA 1.35). Images were captured at five frames/second by using an Orca ER low-light level camera (Hamamatsu, Inc., Japan) using Openlab v4.1 (Improvision, Lexington, MA) software. Quantitative analysis of image pixel intensity was performed by using Openlab measurement module and graphed in Excel.

*Expression of recombinant protein and generation of anti-*TgSERCA* antibody.* The F and N domains of *TgSERCA* (molecules 1117 to 2415, corresponding to amino acid residues 27 to 533 in the nucleotide sequence) were cloned into two NcoI/HindIII sites of pET-22b (+) (EMD Biosciences Novagen, La Jolla, CA) to generate fusions containing a C-Terminal His\(_{6}\) tag. Expression was induced in *Escherichia coli* BL21 by the addition of 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) for 24 h at 25°C, and the resulting protein was purified by using the ProBond purification system (Invitrogen). CD1 outbred mice were immunized with 10 μg each of purified polypeptide and Freund complete adjuvant (Sigma-Aldrich, St. Louis, MO), followed by two boosts of antigen in incomplete adjuvant. SERCA was detected in parasite or HFF lysates that were resolved on SDS-PAGE and Western blotted with antibodies to *TgSERCA* (dilution 1:15,000). Signals were detected using goat anti-mouse or goat anti-rabbit conjugated to horseradish peroxidase (dilution 1:10,000; Jackson Immunoresearch Laboratories, West Grove, PA) and SuperSignal West Pico (Pierce, Rockford, IL).

Immunoﬂuorescence microscopy. Intracellular and extracellular parasites were processed for immunofluorescence microscopy as described previously. T. gondii tachyzoites were fixed by 2% paraformaldehyde for 90 min, permeabilized by 0.5% Triton X-100, and blocked in 10% PBS in PBS. Mouse anti-*TgSERCA* antiserum was used at 1:5,000 dilution. Anti-yeast V-ATPase 100-kDa subunit monoclonal antibody 10D7 (Invitrogen/Molecular Probes) was used at 1:1,000 dilution. RH strain expressing green fluorescent protein (GFP)-HDEL was provided by Kristen Hager (Notre Dame University). *T. gondii* was incubated with a MitoTracker (Molecular Probes; final concentration, 0.5 μM) in D10 at 37°C for 45 min and then rinsed three times with 5 ml of fresh D10 at 37°C for 5 min. Samples were examined on a Axioscop-2 Mot Plus microscope (Carl Zeiss, Thornwood, NJ) equipped for epifluorescence microscopy (DAPI [4',6'-diamidino-2-phenylindole], fluorescein isothiocyanate, and Texas Red filter cubes [Chroma Technology Corp., Rockingham, VT]). Images were acquired by using a 1.4 NA 100× Plan-Apochromat lens, captured by an AxiosCam MRm CCD camera.
protected by using SuperSignal West Pico (Pierce). Immunolabeling and silver enhancement were carried out prior to embedding as follows. Fixed parasites were washed in blocking buffer (5% FBS, 5% normal goat serum, 0.05% saponin, 100 mM phosphate) and subsequently incubated for 30 min with mouse anti-SERCA or rabbit anti-GFP antibodies (ab6556; AbCam, Inc., Cambridge, MA) diluted in blocking buffer. Samples were washed in phosphate buffer and probed for 30 min with nanogold anti-mouse or anti-rabbit conjugates (Nanoprobes, Yaphank, NY) diluted in blocking buffer. Samples were washed in phosphate buffer and fixed for 15 min with 1% glutaraldehyde (Polysciences) in phosphate buffer. Samples were silver enhanced for 10 min by using an LJ silver enhancement kit (Nanoprobes), washed in water, embedded in 10% gelatin, and infiltrated overnight with 2.3 M sucrose and 20% polyvinylpyrrolidone in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)]-MgCl2 at 4°C. Samples were trimmed, frozen in liquid nitrogen, and sectioned with a Leica Ultracut UCT cryo-ultramicrotome (Leica Microsystems, Inc., Bannockburn, IL). Ultrathin sections (~70 nm) were stained with 0.3% uranyl acetate and 2% methylcellulose and then viewed with a JEOL 1200EX transmission electron microscope (JEOL USA, Inc., Peabody, MA).

RESULTS

Characterization of TgSERCA. To identify the SERCA orthologue from *T. gondii* (TgSERCA), *A. thaliana*, and *P. falciparum* SERCA orthologues were used to search the *T. gondii* genome database (http://www.toxodb.org/) using BLASTTN. A single SERCA homologue identified in *T. gondii* (Draft 3 annotation 44.m02594) shared more than 50% identity with human, plant, and *Plasmodium* orthologues (see Fig. S1 in the supplemental material). The full-length sequence was determined from amplified cDNA of the RH strain and the resulting predicted protein sequence was deposited in GenBank (AAU939917). Comparison of the predicted secondary structures and domain architectures revealed that TgSERCA contained 10 transmembrane regions similar to human and *Plasmodium* orthologues (Fig. 1A). TgSERCA also contained conserved domains found in E1-E2 type calcium ATPases, including a cation-transporting ATPase N-terminal domain (InterProscan: IPR004014), an E1-E2 ATPase domain (IPR008250), a haloacid dehalogenase-like hydrolase domain (IPR005834), and a cation-transporting ATPase C-terminal domain (IPR006068, Fig. 1B). TgSERCA also contained conserved amino acid residues that are predicted to form the Ca2+-binding and ATP-binding pockets (42, 45, 46) (Fig. 1B).

Localization of TgSERCA to the ER in *T. gondii*. To investigate the localization of TgSERCA, we generated an anti-TgSERCA polyclonal antiserum to the phosphorylation (P) and nucleotide binding (N) domains expressed as a recombinant protein in *E. coli* (see Materials and Methods). Anti-TgSERCA sera recognized a single band in parasite cells at around 120 kDa, which corresponds to the estimated Mₘ of TgSERCA, but did not cross-react with host cells by Western blotting (Fig. 2A). Anti-TgSERCA antiserum was used for immunofluorescence microscopy of the *T. gondii* RH strain expressing GFP-HDEL, which serves as an ER marker (17). In intracellular parasites, TgSERCA and GFP-HDEL were localized primarily surrounding the nucleus of the parasite and extending into the cytoplasm (Fig. 2B). The characteristic pattern of this staining and colocalization with GFP-HDEL indicated that TgSERCA is likely localized in the ER in intracellular parasites. However, in extracellular parasites, TgSERCA had partially relocated to the apical region in a pattern that was nonoverlapping with GFP-HDEL (Fig. 2C). A similar re-
sult was obtained using anti-GFP antibody to localize GFP-HDEL (data not shown).

The distribution pattern of SERCA in *T. gondii* parasites does not resemble micronemes, rhoptries or dense granules, a result confirmed by electron microscopy below. To determine whether the vesicular structures stained with anti-TgSERCA were mitochondria, we costained *T. gondii* parasites with anti-TgSERCA antibody and the mitochondrial marker, MitoTracker. The mitochondrion in *T. gondii* was observed as single tube-like structure as reported previously (30), and this signal did not colocalize with that of anti-TgSERCA antibody (Fig. 2D). Furthermore, we investigated whether the staining pattern of TgSERCA was similar to acidocalcisomes, which contain high levels of Ca^{2+} (29). The staining pattern with anti-vacuolar-ATPase, an acidocalcisome marker (29), revealed small punctate vesicles that did not appear to be similar to the extended membranous structures stained with anti-TgSERCA (Fig. 2E). Although we were unable to perform costaining studies due to the fact that both antibodies were produced in mice, we interpret this result to indicate that TgSERCA is not localized appreciably to acidocalcisomes. Collectively, these results indicate that in intracellular parasites TgSERCA was largely localized in the ER with GFP-HDEL, whereas in extracellular parasites TgSERCA was partially relocalized in a distinct apical membrane compartment.

To further explore the localization of TgSERCA, we performed cryo-immuno-electron microscopy labeling of *T. gondii*. The epitopes recognized by the mouse anti-TgSERCA proved to be extremely sensitive to fixation, precluding post-processing immunolabeling (data not shown). Instead, we
lightly fixed cells, permeabilized them, and performed immu-
nolabeling and silver enhancement prior to embedding (see Materials and Methods). Staining of TgSERCA confirmed that in intracellular parasites it was localized in the nuclear enve-
lope and in ER membranes that surround the nucleus (Fig. 3A). Although the intensity of labeling was slightly lower, GFP-HDEL was also detected in the ER and surrounding the nuclear envelope (Fig. 3C). In extracellular parasites, TgSERCA was partially relocalized to apical membranes in the vicinity of micronemes (arrow, Fig. 3B), while GFP-HDEL remained associated with the nuclear envelope and proximal ER (Fig. 3D). The ultrastructural morphology of secretory organelles in T. gondii is quite distinct, and no specific staining of micronemes, dense granules, or rhoptries was observed by cryo-immuno-electron microscopy labeling (Fig. 3D and data not shown). Control sections stained with an isotype control antibody remained negative, confirming the specificity of this technique (Fig. 3E).

Heterologous expression and activity of TgSERCA. To de-
termine whether TgSERCA functions as a Ca^{2+} transporter, we used the yeast mutant strain K616, which is defective in both Golgi (PMR1) and vacuolar (PMC1) Ca^{2+} pumps and also lacks calcineurin (CNB1) (9). Previous reports have shown that plant (25) and trypanosomal (13) SERCA orthologues complement the growth of this mutant yeast strain in low-Ca^{2+} medium. The K616 mutant yeast was transfected with TgSERCA, and growth was observed in low-calcium medium containing EGTA. TgSERCA complemented the growth of the K616 yeast strain in low-Ca^{2+} medium with a maximum effect seen when growth was inhibited by 10 mM EGTA (Fig. 4A). Thapsigargin, which is a potent SERCA inhibitor (38), reversed the growth complementing effect of TgSERCA, while treatment of yeast cells containing a vector control had no effect (Fig. 4B). The complementing effects of TgSERCA were not reversed by treatment with caffeine (Fig. 4C), which does not act directly on TgSERCA, but rather activates a ryanodine-
type calcium release channel (26). Caffeine is known to enter yeast cells efficiently and to affect kinase signaling (23), al-
though yeast cells lack ryanodine-responsive calcium channels. We also tested the effects of artemisinin treatment on the ability of TgSERCA to rescue the K616 mutant yeast grown in low calcium. The complementation of K616 yeast mutants grown in low calcium was blocked by treatment with artemisinin (Fig. 4D), a finding consistent with TgSERCA being in-
hibited by this compound. Yeast cells containing the vector alone were not inhibited by treatment with similar levels of artemisinin (Fig. 4D). These findings support a functional role for TgSERCA in restoring calcium homeostasis in this defec-
tive yeast strain. Similar results have been obtained by previous studies that have used this yeast mutant to study Ca^{2+} ATPases from T. cruzi (13) and from plants (25).

**Artemisinin does not affect mitochondrial membrane poten-
tial in T. gondii.** A recent report indicated that treatment of artemisinin causes substantial loss of mitochondrial membrane potential in S. cerevisiae, albeit at very high concentrations (24). Consequently, we investigated whether a similar event occurs in T. gondii using rhodamine-123, which monitors mi-
 tochondrial membrane potential. Treatment of T. gondii with a high dose of artemisinin (100 μM) for 2 h did not alter mem-
brane potential (Fig. 4E), although significant loss was previ-
ously reported by treatment with 8 μM artemisinin in yeast (24). Furthermore, no difference was observed in the mem-
brane potential of T. gondii after incubation with 100 μM artemisinin for 6 h (data not shown). These results indicate that the mitochondrion is not a primary target of artemisinin in T. gondii.

Artemisinin induces calcium-dependent secretion in T. gondii. Microneme secretion in T. gondii is triggered by elev-
ated cytosolic calcium as shown by detection of the soluble form of MIC2 that is shed into the supernatant following release onto the cell surface and proteolytic cleavage (4, 5). Inhibition of TgSERCA by treatment with thapsigargin results in elevated [Ca^{2+}], which stimulates microneme secretion (6, 33). We investigated whether treatment with artemisinin would induce a similar exocytic response by examining cell superna-
tants for the presence of shed MIC2 by Western blotting. Artemisinin induced the secretion of MIC2 in 5 min when treated with 100 μM, while treatment with lower doses (10 μM) required 10 min to detect secretion (Fig. 5A). This effect was similar, albeit less potent, than that seen with thapsigargin or ethanol (4), two positive controls that have been validated in this assay previously (Fig. 5A). The detection of cellular MIC2 in the cell pellet served both as a loading control and to verify that the effects were not due to lysis, which would have resulted in loss from this fraction (Fig. 5A). Next, we tested whether this induction was dependent on cytosolic Ca^{2+}. Secretion of MIC2 by artemisinin was completely reversed by pretreatment with BAPTA-AM, which is a membrane-permeable Ca^{2+} chel-
ator (Fig. 5B). On the other hand, the membrane-impermeable Ca^{2+} chelator, BAPTA, had only a modest affect on secretion (Fig. 5B). These results indicate that artemisinin induces the se-
cretion of microneme proteins through a pathway that is largely dependent on mobilization of intracellular calcium.

Artemisinin induced calcium spikes in T. gondii. Previous

studies have demonstrated that cytoplasmic calcium levels in T. gondii undergo oscillations that are associated with gliding motility (27, 49). We used Fluo-4 imaging to evaluate the effects of artemisinin treatment on intracellular calcium oscil-
lations in T. gondii. Fluo-4 has the advantage of being very sen-
sitive and rapid, thus making it ideal for temporal measure-
ments, although it is not ratiometric and thus not useful for measuring calcium concentrations (15). Time-lapse video mi-
croscopy was used to monitor temporal changes in intracellular calcium after the addition of artemisinin to Fluo-4-labeled parasites. Representative traces derived from time-lapse rec-
cordings are shown in Fig. 6. Treatment with 10 μM artemis-
in resulted in rapid, repeated oscillations that showed ampli-
tudes similar to those for control parasites (Fig. 6A) but with an increased periodicity (shorter time between repeated cy-
cles) (Fig. 6B). In parasites treated with 50 μM artemisinin, a second pattern was observed, consisting of strong increases (>4-fold) that appeared quite suddenly and which lasted longer and were spaced further apart (increased period) com-
pared to control cells (Fig. 6B). In previous studies, it was ob-
erved that calcium oscillations were most commonly ob-
served in cells undergoing gliding (27). However, artemisinin treatment also induced oscillations in nonmotile cells. A high frequency of total cells responded (up to 50% of the popula-
tion), and yet responses were not synchronous and at any given time only 5 to 10% of cells exhibited oscillations. Removal of
FIG. 3. Immuno-electron microscopy localization of TgSERCA versus GFP-HDEL in *T. gondii*. TgSERCA localized to perinuclear ER in both intracellular and extracellular parasites. In extracellular parasites, SERCA labeling extended into the apical region of parasites where it was associated with vesicular structures (apical region indicated by arrows). (A) Intracellular *T. gondii* immunolabeled with mouse anti-TgSERCA antibody. (B) Extracellular *T. gondii* immunolabeled with mouse anti-TgSERCA antibody. (C) Intracellular *T. gondii* expressing GFP-HDEL immunolabeled with rabbit anti-GFP antibody. (D) Extracellular *T. gondii* expressing GFP-HDEL immunolabeled with rabbit anti-GFP antibody. (E) Intracellular *T. gondii* immunolabeled with isotype control antibody. N, parasite nucleus; DG, dense granules; G, position of the Golgi. Scale bars, 0.5 μm. Note that the variable size of gold particles seen here is due to the silver enhancement technique. To facilitate identification of gold particles, representative clusters are highlighted by red circles.
extracellular calcium from the medium and addition of 5 mM EGTA did not affect the amplitude or periodicity of calcium oscillations in control or artemisinin-treated cells (data not shown), indicating that the source of calcium is from the release of intracellular stores.

In parasites treated with thapsigargin, altered calcium oscillations were also observed (Fig. 6C), although there were several differences from the responses seen with artemisinin. First, the average level of intracellular calcium was elevated by thapsigargin (Fig. 6), a result not seen with artemisinin. Second, thapsigargin induced both slow calcium spikes with higher amplitude and longer periodicity and short, rapid oscillations (Fig. 6). Finally, the effects of thapsigargin were noted at doses of 0.5 μM, 10-fold lower than similar responses seen with artemisinin (Fig. 6).

To provide a more complete summary of the changes in calcium oscillations, ~25 individual time lapse recordings were analyzed for each condition to determine the time interval between each cycle (period), and the data were plotted as a histogram (Fig. 6D). Changes in the periodicity of calcium oscillations that were induced by artemisinin were very apparent. Treatment with 10 μM artemisinin resulted in a faster periodicity with an average time of 13.95 s (±3.5) for control cells (Fig. 6D). In contrast, treatment with 50 μM artemisinin resulted in a two responses: cells that responded with average cycle time of 21 to 30 s, similar to controls, and cells that exhibited strong calcium spikes that lasted much longer (Fig. 6D). This biphasic pattern resulted in an average period of 33.8 s (±15.6). Finally, treatment with low...
doses of thapsigargin (0.5 μM) induced both more rapid, shallow oscillations and longer spikes with greater amplitude, leading to a broad distribution of cycles (Fig. 6D). Collectively, these results confirm that artemisinin and thapsigargin cause similar changes in calcium oscillations, inducing both rapid shallow oscillations and prolonged spikes in intracellular calcium.

DISCUSSION

We have explored the function of the Ca\(^{2+}\) ATPase SERCA in T. gondii in order to determine its role in calcium homeostasis and to investigate the molecular basis of inhibition by several plant sesquiterpene lactones. Our results indicate that T. gondii has a single functional SERCA based on the following evidence: (i) BLASTP similarity and phylogenetic grouping with known SERCA enzymes (36), (ii) conserved domain structure and presence of critical Ca\(^{2+}\) binding and ATPase residues, (iii) functional rescue of yeast cells defective in Ca\(^{2+}\) ATPases, and (iv) inhibition by thapsigargin, a known inhibitor of SERCA Ca\(^{2+}\) ATPases (38). TgSERCA is localized to the ER of T. gondii, where it likely participates in controlling calcium stores that are important for microneme secretion and motility. We also demonstrate that artemisinin (i) triggers calcium-dependent secretion of microneme proteins in T. gondii, (ii) inhibits the functional rescue of yeast mutants expressing TgSERCA, and (iii) induces sustained calcium spikes in T. gondii. Collectively, our studies indicate that artemisinin affects calcium homeostasis and signaling in the parasite, supporting the conclusions that it acts as an inhibitor of SERCA.

T. gondii has a highly polarized secretory pathway with the ER being an extension of the nuclear envelope: the major site of exit from the ER occurs at the apical surface of the nuclear envelope, leading to a juxtanuclear, stacked Golgi and extending to apical secretory organelles (17). Immunolabeling of TgSERCA confirmed it is located in the ER, where it largely overlaps with GFP containing the C-terminal ER retention sequence HDEL. Surprisingly, the distribution of TgSERCA was somewhat different in extracellular parasites, where the protein was partially found in...
apical membranes that were localized near micronemes. This pattern was not shared by GFP-HDEL, which was retained near the nuclear envelope, suggesting that the ER becomes partitioned in extracellular parasites. Other cells also develop specialized membranes in locations that are important for local calcium control. For example, SERCA orthologues are present in the vacuole in plant cells (37) and alveolar sacks in ciliates (22). The distribution of the TgSERCA-containing vesicles to the apex may be important for rapid release and effective recovery of cytosolic Ca\(^{2+}\), events that likely govern both motility and micronere secretion.

Artemisinin treatment of T. gondii resulted in calcium-dependent secretion of microneme proteins as detected by release of MIC2 into the supernatant, similar to the SERCA inhibitor thapsigargin. While artemisinin treatment was less potent than thapsigargin, it exhibited a dose- and time-dependent induction of microneme secretion in T. gondii. Induction of microneme secretion by both artemisinin and thapsigargin was inhibited by chelation of intracellular calcium, while being much less influenced by extracellular calcium. These results are consistent with both agents acting to release intracellular calcium stores, thus leading to elevated cytosolic calcium that triggers microneme secretion. TgSERCA was shown to complement a yeast strain that is defective in Ca\(^{2+}\) transport, thus establishing it is a functional Ca\(^{2+}\) transporter. TgSERCA expressed in this heterologous system was sensitive to thapsigargin, similar to SERCA orthologues in animal cells. The ability of TgSERCA to complement deficient yeast was also inhibited by artemisinin. The potency of artemisinin in inhibiting the complementation of K\text{616} yeast by TgSERCA and in stimulating parasite secretion was similar, suggesting it acts on the parasite by inhibiting SERCA.

Thapsigargin inhibits SERCA by locking it in the E2 conformation, thus preventing calcium pumping (38, 39). Inhibition of SERCA would be expected to prevent the reuptake into the ER, resulting in higher cytosolic calcium levels. Previous studies of pancreatic B cells have shown that calcium oscillations can be perturbed by thapsigargin, resulting in a pattern of stronger calcium spikes (16). A similar response to treatment with thapsigargin was apparent in Flu-4 monitoring of calcium levels in T. gondii in the present study. While artemisinin did not lead to higher resting levels of [Ca\(^{2+}\)], it did profoundly increase the periodicity and duration of calcium spikes in T. gondii. This behavior mimics the effects of thapsigargin on calcium oscillations by T. gondii, although thapsigargin was considerably more potent. The reason why the two compounds result in different profiles of calcium oscillations is uncertain but could result from differences in binding to the target and thus how they affect the cycling between the E1 and E2 conformations of the SERCA pump.

Previous studies have shown that during gliding motility, [Ca\(^{2+}\)] levels in T. gondii undergo periodic oscillations that are dramatically dampened during cell invasion (27). Calcium oscillations are a common phenomenon during fertilization, cell migration, and during the cell cycle in a variety of vertebrate systems from frogs to humans (2). The molecular basis of the oscillations seen in Toxoplasma is not known, although they suggest a simple two-component circuit consisting of a calcium release channel and a reuptake pump (SERCA). The source for the increase in cytoplasmic calcium is from an intracellular pool, since the periodicity and amplitude of calcium oscillations were not affected by removal of calcium from the medium. Calcium release channels have not yet been characterized in T. gondii, or for that matter in yeast, protozoa, or plants, and these organisms do not contain conserved calcium release channels typical of animal cells (36, 37). The control of calcium homeostasis is likely to be complex since T. gondii also contains several other P-type Ca\(^{2+}\) ATPases (36), as well as other cation exchangers (http://ToxoDB.org).

Artemisinin and its derivatives have been used widely as a therapy for malaria, owing to their extremely potent inhibition of the parasite (18). This activity may be due to inhibition of the parasite SERCA as demonstrated by expression studies in Xenopus (12). In these heterologous systems, artemisinins are highly selective for malaria SERCA versus mammalian enzymes, presumably due to molecular differences in the binding site within the calcium channel of SERCA (47). Toxoplasma is also much less sensitive to artemisinin than malaria (19, 20), although newer variants such as artemisone are considerably more potent against both organisms (18, 35). Interestingly, another plant product, ryanodine, also disrupts calcium homeostasis in T. gondii (26); however, its target is calcium release channels in the ER rather than the reuptake pump SERCA. Because these agents disrupt calcium homeostasis at opposing points (i.e., release versus uptake), their collective action might be expected to be synergistic. Collectively, our findings indicate an important role for calcium regulation in the Apicomplexa and support the idea that calcium pumps and channels are important potential drug targets in parasites.

ACKNOWLEDGMENTS

We are grateful to Sanjeev Krishna and Silvia Moreno for helpful comments, Kristen Hagar for GFP-HDEL, and Julie Nawas for expert technical assistance. Preliminary genomic DNA sequence data were provided by The Institute for Genomic Research, the Wellcome Trust Sanger Institute, Washington University, and the University of Pennsylvania.

This study was supported by grants from the NIH (AI067051) (L.D.S.) and the Uehara Memorial Foundation (K.N.).

REFERENCES

malian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933–939.

