Uniformity of Glycyl Bridge Lengths in the Mature Cell Walls of Fem Mutants of Methicillin-Resistant Staphylococcus aureus

Sharif, Shasad
Washington University in St Louis

Kim, Sung Joon
Baylor University

Labischinski, Harald
MerLion Pharmaceuticals GmbH

Chen, Jiawei
Washington University in St Louis

Schaefer, Jacob
Washington University in St Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Sharif, Shasad; Kim, Sung Joon; Labischinski, Harald; Chen, Jiawei; and Schaefer, Jacob, "Uniformity of Glycyl Bridge Lengths in the Mature Cell Walls of Fem Mutants of Methicillin-Resistant Staphylococcus aureus." Journal of Bacteriology. 195, 7. 1421-1427. (2013).
https://digitalcommons.wustl.edu/open_access_pubs/2019

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Uniformity of Glycyl Bridge Lengths in the Mature Cell Walls of Fem Mutants of Methicillin-Resistant Staphylococcus aureus

Shasad Sharif, Sung Joon Kim, Harald Labischinski, Jiawei Chen and Jacob Schaefer

Updated information and services can be found at: http://jb.asm.org/content/195/7/1421

These include:

SUPPLEMENTAL MATERIAL

Supplemental material

REFERENCES

This article cites 31 articles, 11 of which can be accessed free at: http://jb.asm.org/content/195/7/1421#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more »](http://jb.asm.org/content/195/7/1421#ref-list-1)

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Peptidoglycan (PG) composition in intact cells of methicillin-resistant *Staphylococcus aureus* (MRSA) and its isogenic Fem mutants has been characterized by measuring the glycine content of PG bridge structures by solid-state nuclear magnetic resonance (NMR). The glycine content estimated from integrated intensities (rather than peak heights) in the cell walls of whole cells was increased by approximately 30% for the FemA mutant and was reduced by 25% for the FemB mutant relative to expected values for homogeneous structures. In contrast, the expected compositions were observed in isolated cell walls of the same mutants. For FemA mutant whole cells, the increase was due to the presence of triglycyl bridge PG units (confirmed directly by mass spectrometric analysis), which constituted 10% of the total PG. These species were coalesced in some sort of a lattice or aggregate with spatial proximity to other PG bridges. This result suggests that the triglycyl-bridged PG units form a PG-like structure that is not incorporated into the mature cell wall.

Materials and Methods

Bacterial strains and growth conditions. Strains used are listed in Table 1. Starter cultures of the strains were prepared by inoculating 5 ml of Trypticase soy broth (TSB) in a test tube with a single colony obtained from a nutrient agar plate. The starter cultures were shaken at 200 rpm in an Environ-Shaker (Lab-Lines Instruments, Inc., Melrose Park, IL),
Sharif et al.

The crude cell wall pellets were resuspended in a sterile 10 mM triethanolamine hydrochloride buffer (pH 7.0, adjusted with 1 M NaOH), to which 100 ml of boiling 4% sodium dodecyl sulfate (SDS) was added dropwise with continuous stirring. After boiling for 30 min, the suspension was allowed to cool for 2 h with stirring, after which it was allowed to stand unirrnted overnight at room temperature and sedimented by centrifugation at 38,000 × g for 1 h at room temperature in a Sorvall SS-34 rotor. SDS was removed by rinsing the cell walls with 100 ml of triethanolamine buffer at least four times, with centrifugation after each rinse, until no SDS could be observed. The pellet was resuspended in 60 ml of 0.01 M Tris buffer (pH 8.2) containing 1 mg per 100 mg cells (dry weight) of DNase I and 3.2 mg per 100 mg cells (dry weight) of trypsin (type II-S, from bovine pancreas; Sigma-Aldrich) and chymotrypsin (type II, from bovine pancreas; Sigma-Aldrich). The suspension was incubated at 37°C, shaken at 150 rpm in an Environ-Shaker for 16 h, and then sedimented at 38,000 × g for 1 h at 20°C and washed at least four times with buffer, with centrifugation after each rinse. Cell walls were then resuspended in 10 ml of the triethanolamine buffer, followed by rapid freezing and lyophilization. The resulting isolated cell walls weighed approximately 150 mg. Cell wall isolation for all bacterial strains was processed under identical conditions.

Electron microscopy. Starter cultures of wild-type S. aureus (BB255) and its FemA mutants grown in TSB overnight were used to inoculate 40 ml of sterile SASM (1% final volume) in 125-ml flasks. Cells were grown at 37°C, shaken at 200 rpm in an Environ-Shaker, and harvested at log phase at an OD_{560} of 0.2 by centrifugation at 2,750 × g for 20 min at 4°C (Eppendorf 5810R centrifuge). For ultrastructural analysis, bacteria were fixed in 1 ml of 2% paraformaldehyde-2.5% glutaraldehyde (Polysciences, Inc.) in 100 mM phosphate buffer (pH 7.2) for 3 h at room temperature. Samples were washed in phosphate buffer and postfixed in 1% osmium tetroxide (Polysciences, Inc.) for 1 h. Samples were then rinsed extensively in distilled water prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella, Inc.) for 1 h. Following several rinses in distilled water, samples were dehydrated in a graded series of ethanol and embedded in Eponate 12 resin (Ted Pella, Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems, Inc.), stained with uranyl acetate and lead citrate, and viewed on a Jeol 1200 EX transmission electron microscope (Jeol USA, Inc.).

Solid-state nuclear magnetic resonance (NMR) samples. The intact-cell and isolated cell wall samples were obtained from the same growth to exclude variation in growth of the mutants from batch to batch. The intact-cell spectra were scaled according to sample weight and total number of scans (see the supplemental material). As for the isolated cell wall spectra, because residual broken glass beads from cell isolation could contribute to the sample weight, the spectra were normalized with respect to the natural-abundance aliphatic-carbon peak heights. However, all cell wall isolations were processed under identical conditions so that normalization to weight and scans or normalization to peak height gave the same results (see the supplemental material).

TABLE 1. Staphylococcus aureus strains and their sensitivity to methicillin

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Relevant genotype</th>
<th>MIC (μg/ml) of methicillin<sup>a</sup></th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB255</td>
<td>Wild type</td>
<td>NCTC 8325</td>
<td>0.75</td>
<td>1, 2</td>
</tr>
<tr>
<td>BB270</td>
<td>Isogenic MRSA</td>
<td>NCTC 8325 mec</td>
<td>6.00</td>
<td>1, 2</td>
</tr>
<tr>
<td>UT34-2</td>
<td>FemB</td>
<td>NCTC 8325 mec ΔO2006 (femB::Tn551)</td>
<td>0.75</td>
<td>12</td>
</tr>
<tr>
<td>UK17</td>
<td>FemA</td>
<td>NCTC 8325 mec ΔfemA (ochre)</td>
<td>0.19</td>
<td>8, 14</td>
</tr>
<tr>
<td>AS145</td>
<td>FemAB</td>
<td>NCTC 8325 mec ΔfemA Δrce1ΔtetK</td>
<td>0.016</td>
<td>16, 23</td>
</tr>
</tbody>
</table>

^a MIC data obtained from references 3, 22, and 24.

Downloaded from http://jb.asm.org/ on January 11, 2014 by Washington University in St. Louis
NMR spectrometers. Experiments were performed on intact cells at 7.0 tesla (T) (300 MHz for 1H, 75 MHz for 13C, and 30 MHz for 15N) and on isolated cell walls at 4.7 T (200 MHz for 1H, 50 MHz for 13C, and 20 MHz for 15N), provided by 89-mm-bore Oxford (Cambridge, United Kingdom) superconducting solenoids. The four-frequency transmission line probe used in the 7.0-T spectrometer had a 14-mm-long, 9-mm-inner-diameter sample coil, while the one used in the 4.7-T spectrometer had a 17-mm-long, 8.6-mm-inner-diameter sample coil. Both probes were equipped with a Chemagnetics/Varian magic-angle spinning ceramic stator, and samples were spun at room temperature at 5 kHz (maintained within ±2 Hz). Radiofrequency pulses were produced by a 1-kW Kalumis, ENI, and American Microwave Technology power amplifiers, each under active control; π-pulse lengths were 10 μs for 13C and 15N. Proton-carbon- and proton-nitrogen-matched cross-polarization transfers were done for 50 kHz at 2 ms. Proton dipolar decoupling during signal acquisition was done at 105 kHz (for the 7.0-T spectrometer) and 98 kHz (for the 4.7-T spectrometer). Spectra typically resulted from acquisition of 4,098 scans (intact cells) and 20,480 scans (isolated cell walls). For all spectra, the uncertainty in the integrated intensities was less than 1% (25).

Experiments performed at 12 T used a six-frequency transmission line probe having a 12-mm-long, 6-mm-inner-diameter analytical coil and a Chemagnetics/Varian ceramic spinning module. Samples were spun by using a thin-wall Chemagnetics/Varian (Fort Collins, CO) 5-mm-outer-diameter zirconia rotor at 7,143 Hz, with the speed under active control and maintained to within ±2 Hz. A Tecmag Libra pulse programmer (Tecmag, Houston, TX) controlled the spectrometer. A 2-kW American Microwave Technology power amplifier was used to produce radiofrequency pulses for 13C (125 MHz). The 1H (500-MHz) radiofrequency pulses were generated by a 2-kW Creative Electronics tube amplifier driven by a 50-W American Microwave Technology power amplifier. All final-stage amplifiers were under active control. The π-pulse lengths were 9 μs for 13C and 1H. Proton-carbon-matched cross-polarization transfers were made in 2 ms at 56 kHz. Proton dipolar decoupling was done at 100 kHz during data acquisition.

REDOR analysis. Rotational-echo double-resonance (REDOR) 13C/15N solid-state NMR (25, 28) was used to measure the PG glycine content in intact cells and isolated cells of wall mutants. 13C/15N REDOR restores the dipolar coupling between heteronuclear pairs of spins, e.g., 13C and 15N spins in a peptide bond, which is removed by magic-angle spinning. REDOR experiments are always performed in two parts (28): once without (S) and once with (S) rotor-synchronized dephasing pulses. In the first part of the experiment (S), magic-angle spinning averages chemical shift and dipolar-anisotropic interactions to produce an isotropic signal of full intensity. In the second part (S), the dephasing pulses applied periodically restore the dipolar coupling, thereby dephasing, or reducing, the observed signal. The difference in signal intensity ($\Delta S = S_0 - S$) for the observed spin leads to a direct quantitative measurement of the internuclear distance between the observed and dephasing spins (28). For magic-angle spinning at 5 kHz, the total dephasing, and therefore ΔS, reaches a maximum value after 8 rotor periods for the 1.2-kHz one-bond 13C-15N dipolar coupling in a peptide bond (25). REDOR line shapes and resolution are determined by distributions of isotropic shifts. REDOR spectra obtained at 4.7, 7, and 12 T therefore appear the same.

TEOR. Transferred-echo double resonance (TEOR) (29, 30) was used for selective detection of cell walls in whole cells of the FemA mutant. This experiment begins with a 1H-13C cross-polarization transfer and observable 15N magnetization (S_z). Next, a 12-T, 3N/13C REDOR sequence establishes nonobservable 13C (S) bilinear coherence, which is transformed into 15N/13C (S_z) bilinear coherence by a pair of coincident 15C and 13N 90° pulses (29). A 12-T, 13C/15N REDOR sequence then creates observable 13C magnetization (f_z) only for those 15N’s which are directly bonded to 15N.

In the double-labeled cell walls, the great majority of these 13C’s are at the bridge link connecting the ε-lysine 13N-labeled amine (99% isotopically enriched) to the glycine 13C-labeled carbonyl carbon (50% isotopically enriched). There are 8 other 15N-13C amine-carbonyl bonds in the PG repeat unit (Fig. 1), but these are all at natural abundance (15N, 0.37%; 13C, 1.1%) and hence contribute only (8)(0.0037)(0.011) = 0.00033, compared to 0.5 relative intensity units for the bridge link, a factor of 1,500. Inclusion of the amine-carbonyl bonds of teichoic acids reduces this bridge link factor by one-half (1,500/2 = 750); that is, the natural-abundance contribution to the TEDOR-generated 13C magnetization in isolated cell walls is about 0.13% (1/750).

The natural-abundance peptide component of the cytoplasmic proteins of the intact cell is typically 5 times that of the PG, which means that compared to the bridge link, an additional (40)(0.0037)(0.011) = 0.0016 relative intensity units must be included for a total of 0.00226 and a bridge link factor of 221. The natural-abundance contribution to the TEDOR-generated 13C magnetization in intact cells is therefore about 0.5%.

For labeled glycines in the cytoplasmic protein (5%) of the total, we estimate the relative intensity units contributing to the TEDOR-generated magnetization as (40)(0.05)(0.0037)(0.05) = 0.0037, which translates into a total contribution from PG and cytoplasmic proteins of 0.0023 + 0.0037 = 0.0060 relative intensity units and a bridge link factor of 83; this is, the total non-bridge-link contribution to the TEDOR-generated 13C magnetization in whole cells is 1.2%, and that in isolated cell walls, as described above, is 0.13%.

The full-echo (S_0) spectrum of 15N→13C TEDOR after 840 ms for isolated cell walls of the FemA mutant labeled with [1-13C,15N]glycine and 1-[ε-15N]lysine was deconvoluted by using a customized Matlab program (MathWorks, Inc.). The deconvolution parameters were based on a peak with a Lorentzian-to-Gaussian line shape ratio of 0.5 and a fixed line width of 180 Hz. Spectra were fit by minimizing the residual sum of squares and optimized for an uncorrected R² value greater than 0.995. The peak intensity ratio was determined by numerical integration. For the isolated cell wall spectrum, the fitted individual peak positions and relative peak intensities (shown in parentheses) are 169.1 ppm (0.885) and 165.6 ppm (0.650), with a peak intensity ratio of 0.58. A similar analysis was performed on the intact-cell REDOR spectrum (see the supplemental material).

CODEX. Center-band-only detection of exchange (CODEX) (26) was used together with TEDOR-generated bridge link magnetization to search for 13C→13C exchange during a mixing time of 840 ms. Only 12C’s with net polarization before the mixing time can exchange, and these carbons must have distinct isotopic chemical shifts. Thus, the exchange is limited to 13C’s directly bonded to 15N’s (see the supplemental material). The TEDOR and CODEX experiments were performed exclusively at 12 T.

Mass spectrometry. Cells grown in unlabelled SASM were digested into muropeptides with lysozyme and mutanolysin, as previously described (31). Briefly, cells were incubated for 4 h at 37°C with mutanolysin (1 μg/μl) (from Streptomyces globisporus ATCC 21553, lyophilized powder, 5 kilounits; Sigma-Aldrich) and lysozyme (1 μg/μl) (from chicken egg white; Sigma-Aldrich). The suspension was boiled for 5 min, and the supernatants were collected by centrifugation at 10,000 × g for 5 min.

Liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS-MS) were performed by using a PicoView PV-500 (New Objective, Woburn, MA) nanospray stage attached to either an LTQ-FT mass spectrometer or an LTQ-Orbitrap mass spectrometer (ThermoFisher, San Jose, CA).

Muropeptide samples were loaded into an uncoated 75-μm-inner-diameter fused-silica capillary column with a 15-μm PicoFrit tip (New Objectives, Woburn, MA), packed with C18 reverse-phase material (3 μm, 100 Å; Phenomenex, Torrance, CA) for 15 cm. The column was eluted at a flow rate of 250 nl/min for 10 min with 0.1% (vol/vol) formic acid in water and subsequently with a 60-min linear acetonitrile gradient (0% to 40%) with 0.1% formic acid. The samples, as they emerged from the column, were sprayed into a 209 LTQ-FT mass spectrometer. Full mass spectrometry.
spectra were recorded in the Fourier transform (FT) component of the instrument at a resolving power of 100,000 (at m/z 400).

Accurate-mass product-ion spectra of muropeptides were acquired by introducing the samples by nanospray as they eluted from the liquid chromatograph to an LTQ-Orbitrap mass spectrometer. To obtain major-component product-ion spectra, cycles consisting of one full FT scan mass spectrum and five ensuing data-dependent MS-MS scans acquired by the Orbitrap instrument (with a normalized collision energy setting of 35%) were repeated continuously throughout the elution, with the following dynamic exclusion settings: repeat count of 3, repeat duration of 15 s, and exclusion duration of 30 s.

RESULTS AND DISCUSSION

Transmission electron micrographs. Figure 2 shows the transmission electron micrographs (TEMs) of ultrathin sections of wild-type S. aureus (BB255) and the FemA (UK17) mutant. The FemA mutant exhibits a defective bacterial cell wall, indicated by the arrows in Fig. 2 (right), with partial cell wall thickening and diffused staining at cross walls. This suggested an accumulation of immature peptidoglycan at the septum, in association with an aberrant growth (17,25). A similar irregular morphology was also observed for the FemB mutant (25).

Labeling strategy. An accurate number of glycine residues in the PG bridges of intact cells was determined by labeling the PG with L-[^1-13C,15N]lysine and [1-13C]glycine. Lysine does not scramble, and the glycine isotopic enrichments in the cell wall of Fem mutants are constant (25). The REDOR difference (ΔS_{total}) selects the peptide-bonded 13C-15N spin pairs, both iso-Lys-Gly and Gly-Gly peptide bonds, primarily from the bacterial cell wall (25). An isopeptide bond between L-[^1-13C,15N]lysine and [1-13C]glycine, shown in Fig. 1 (bottom, green), is unique to the cell wall PG and does not occur in proteins. The contribution from Gly-Gly peptide bonds in proteins (see Materials and Methods) is minimal in intact cells (25) and is absent in isolated cell walls.

In the ΔS_{total} spectra of intact cells (25) and isolated cell walls of the FemA mutant (Fig. 3), the peaks due to un-cross-linked (open) glycy1 bridges are partially resolved at 165 ppm from those due to the cross-linked (closed) glycy1 bridges at 171 ppm. The ΔS integrated intensities, instead of peak heights (25), were used for the correct comparative analysis of cell wall compositions in Fem mutants. The use of integrated intensities is important to take into account the asymmetric line shape of the FemA peak (Fig. 3, blue). The 171-ppm ΔS_{total} integrated intensities of wild-type S. aureus (BB255) for both intact cells and isolated cell walls were normalized to 5.0 glycine-equivalent units (GEU) (25).

PG heterogeneity determined by REDOR NMR. For isolated cell walls of FemB and FemA mutants, the measured PG glycine contents determined from the 171-ppm ΔS_{total} integrated intensities (Fig. 3, right) were 3.1 ± 0.1 GEU (FemB) and 1.0 ± 0.1 GEU (FemA), respectively. This indicates that the isolated cell walls of Fem mutants have the expected uniform composition, consisting entirely of triglycyl bridges for the FemB mutant and monoglycyl bridges for the FemA mutant. In contrast, the PG glycine content in intact cells was reduced to 2.6 ± 0.1 GEU for the FemB mutant and was increased to 1.3 ± 0.1 GEU for the FemA mutant. We attribute these differences to the presence of PG fragments with various glycy1 bridge lengths. Pentaglycyl bridge biosynthesis in S. aureus can build bridges only in increments of 1, 3, and 5 glycine residues (9–11). Therefore, a reduction in the PG glycine content of 16% in intact cells of the FemB mutant indicates that a signifi-
The null mutant was constructed by a complete inactivation of both glycine content in intact cells of the FemAB null mutant and contribution, the estimated number of PG units not associated with monoglycyl bridges is approximately 174 ppm is clearly visible for intact cells of the FemA mutant.

To display the likely presence of a heterogeneous mixture of PG fragments in intact cells of the FemA mutant more directly, we removed the isotope bond contribution from the PG heterogeneity in the FemAB mutant determined by REDOR NMR. A TEDOR-CODEX NMR experiment was used to examine directly the homogeneity of the peptidoglycan of intact FemA cells and isolated cell walls labeled by [1-13C]glycine and [1-15N]lysine. The comparison of the TEDOR-generated bridge link magnetization for intact cells and isolated cell walls labeled by [1-13C]glycine and [1-15N]lysine is made in Fig. 6 (bottom left). The spectra have been normalized to the 165-ppm peak. This normalization makes the assumption that in isolating the cell walls, all the PG was retained, including the partially cross-linked nascent layer and, therefore, all of the unique amine-terminated bridges that contribute to the 165-ppm peak. The deconvoluted TEDOR spectrum of the isolated cell walls provides a quantitative measurement of open (165-ppm peak) (Fig. 6, bottom left, green peak) and closed (171-ppm peak) (Fig. 6, bottom left, blue peak) bridge links in PG (see details in Fig. S6 in the supplemental material).
171-ppm peak but make no contribution to the 165-ppm peak of the TEDOR full-echo spectrum. The difference between the ~10%-higher glycine content of bridges from the TEDOR experiment and the 30% estimated in the REDOR experiment (Fig. 3), where all glycerol carbonyl carbons report instead of just those part of a Gly-Lys 13C-15N bond, means that these extra bridges are predominantly triglycyl residues.

The center-band-only detection-of-exchange part of the TEDOR-CODEX experiment used the TEDOR-generated bridge link magnetization to search for 13C-13C exchange during a mixing time of 840 ms (six rotor periods). Only 13C's with net magnetization before the mixing time can exchange, and these carbons must have distinct isotropic chemical shifts (26). For FemA monoglycyl bridges, exchange can occur only between adjacent bridges that have glycyl carbonyl carbons within 5 Å. The most obvious exchange is between 13C's with isotropic shifts of 171 and 165 ppm (Fig. 6, right), which corresponds to exchange between cross-linked and un-cross-linked stems, respectively. However, both peaks are heterogeneously broadened and consist of many different isotropic shifts arising from slight differences in local bridge conformation. Thus, exchange is possible between, for example, 13C's in cross-linked stems with a shift of 170 ppm and those with a shift of 172 ppm. Details regarding the possible CODEX exchange pairs can be found in Fig. S6b in the supplemental material. The observed sizeable CODEX difference signal for FemA isolated cell walls (Fig. 6, top left, black spectrum), which have a uniform composition of monoglycyl bridges, indicates that many stems are necessarily incorporated into a tight-lattice structure.

Because the CODEX difference signal is greater for intact cells than for isolated cell walls (Fig. 6, top left), the triglycyl bridges must also be incorporated into some sort of a lattice or aggregate with proximity to other triglycyl and/or monoglycyl bridges. This extra lattice is apparently a relatively low-molecular-weight species that is, for the most part, lost in the cell wall isolation.

Confirmation of triglycyl bridges in FemA PG by mass spectrometry. The presence of PG heterogeneity was also investigated by using LC-MS analysis on the supernatant from the muramidase-digested intact cells of the FemA and FemB mutants and parent strain BB255 (see Fig. S7a in the supplemental material). For the FemA mutant, we detected an un-cross-linked monomer species with an accurate-mass measurement corresponding to the exact mass of an acetylated 5-residue muropeptide with three glycine residues in the bridge. As shown in Fig. 7, the accurate mass of 1,178.5298 differs by only 0.4 ppm from the exact mass of 1,178.5302. The structure of this fragment was confirmed by MS-MS (Fig. 7, bottom), and the proposed structural fragments are shown in Fig. S7b in the supplemental material. We speculate that these FemA species exist primarily in a region that is either unfavorable for digestion or lost during sample preparation before mass spectrometric analysis, because yields of the triglycyl fragment (see Fig. 5a, red, in the supplemental material) were only 10% of those expected from the NMR analysis. Analysis of the FemB mutant showed primarily triglycyl subunits with some mono- and no pentaglycyl units (see Fig. S7a, green, in the supplemental material). LC-MS analysis was also performed on the supernatant of the muramidase-digested FemAB null mutant (data not shown), but no tri- or pentaglycyl subunits were detected (17, 21). This unexpected result suggests sequestration in regions even more unfavorable for digestion than those for the FemA mutant.

Origin of heterogeneity in Fem mutants. PG heterogeneity in the intact cells of the FemA mutant is present regardless of the construction of the fem mutant by single point mutation (16, 22) or complete inactivation of the femA and femB genes (20, 21). The presence of PG heterogeneity in the FemAB mutant rules out the
possibility that FemX or FemB is involved. We speculate that the PG heterogeneity is linked to an acquired hidden mutation(s) during cell construction (22) and is therefore associated with cell wall biosynthesis. The loss of heterogeneous PG fragments in the FemA mutant during cell wall isolation (Fig. 3 and 4) suggests that the PG units with predominantly triglycyl bridges are not incorporated with monoglycyl-PG units to form a mature cell wall. This may be due to the inability to form mixed cell wall architectures in template-based PG biosynthesis (3, 4). The heterogeneous material appears to be localized close to the membrane surface (Fig. 2, right) and may be responsible for irregular cell division and growth (25), prolonged doubling times (22), cell wall thickening (24), and aberrant cell shapes (24, 25). However, we believe that the regained susceptibility to β-lactam antibiotics in Fem mutants of MRSA (2, 12) is not related to the accumulation of immature cell wall fragments and abnormal cell division but rather is associated with the inability of PB2a to cross-link short bridges to stems.

ACKNOWLEDGMENTS

We thank Brigitte Berger-Bächi (Universität Zürich, Institut für Medizinische Mikrobiologie, Switzerland) for providing the bacterial strains. This work was supported in part by the National Institutes of Health under grant number EB002058. The mass spectrometry work was supported by grants from the National Center for Research Resources (grant number 8 P41 GM103422-35), of the National Institute of General Medical Sciences (grant number 8 P41 GM103422-35), of the National Institutes of Health.

REFERENCES