Alkaline phosphatase reporter transposon for identification of genes encoding secreted proteins in gram-positive microorganisms

Carmela M. Gibson
Washington University School of Medicine in St. Louis
Michael G. Caparon
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/2071

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Alkaline Phosphatase Reporter Transposon for Identification of Genes Encoding Secreted Proteins in Gram-Positive Microorganisms

Carmela M. Gibson and Michael G. Caparon

Updated information and services can be found at:
http://aem.asm.org/content/68/2/928

REFERENCES
This article cites 38 articles, 23 of which can be accessed free at: http://aem.asm.org/content/68/2/928#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Alkaline Phosphatase Reporter Transposon for Identification of Genes Encoding Secreted Proteins in Gram-Positive Microorganisms

Carmela M. Gibson and Michael G. Caparon*

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093

Received 2 July 2001/Accepted 16 October 2001

We describe the construction of TnFuZ, a genetic tool for the discovery and mutagenesis of proteins exported from gram-positive bacteria. This tool combines a transposable element (Tn4001) of broad host range in gram-positive bacteria and an alkaline phosphatase gene (phoZ) derived from a gram-positive bacterium that has been modified by removal of the region encoding its export signal. Mutagenesis of Streptococcus pyogenes with TnFuZ ("FuZ" stands for fusions to phoZ) identified genes encoding secreted proteins whose expression was enhanced during growth in an aerobic environment. Thus, TnFuZ should be valuable for analysis of protein secretion, gene regulation, and virulence in gram-positive bacteria.

Certain bacterial enzymes have activities that depend on their subcellular localization. For example, the alkaline phosphatase encoded by phoA of Escherichia coli is enzymatically active only when it has been transported across the cellular membrane into the periplasmic space. This property has been exploited to engineer PhoA as a molecular sensor of subcellular location (for a review, see reference 22). In a typical application, the region of phoA encoding its own promoter, translation initiation site, and signal peptide is removed and it is then fused with the gene that encodes the protein of interest. Should the fusion partner contribute an export signal, the bacterial cell expressing the hybrid protein will demonstrate alkaline phosphatase activity that can easily be detected through the use of several different assays (20). This strategy has been widely used in the analysis of the topologies of transmembrane proteins, for the identification and analysis of protein export signals, and for the identification of proteins that are targeted for export (19, 20). For the last application, the development of transposon-based methods for the construction of fusions to phoA (21) has allowed analyses to be conducted on a genome-wide scale with a wide variety of gram-negative bacterial species (for a review, see reference 13). Unfortunately, a similar technology has not been available for gram-positive bacteria.

As a group, gram-positive bacteria include species that are important for many industrial processes, for the production of food, and for the production of antibiotics as well as species that are model organisms for the study of development. Many important human and animal pathogens are gram positive, including several that are resistant to multiple antibiotics. While protein export in gram-positive bacteria shares a basic similarity with that in gram-negative bacteria, there are many notable differences and the pathways of export are not well characterized (35). Unlike most gram-negative bacteria, gram-positive bacteria typically secrete numerous proteins into the external environment surrounding the cell. This characteristic of protein secretion is particularly true for the pathogenic gram-positive species, and it is likely that many of these secreted proteins promote virulence (12, 16, 31). Thus, a transposon-based method for identifying mutations in genes that encode proteins targeted for export would be of broad application in the study of protein secretion by and the pathogenicity of gram-positive bacteria. The work reported here describes the construction of TnFuZ, a transposon-based genetic tool for the discovery and study of proteins exported from gram-positive bacteria.

Construction of TnFuZ. An essential component of TaphoA, the prototype element developed for gram-negative bacteria, is the modified phoA reporter (21). Unfortunately, E. coli-derived PhoA is poorly active when it is expressed in gram-positive hosts (27), which may reflect differences in the export pathway from that in gram-negative bacteria and which may result in inefficient dimerization and/or formation of a disulfide bond required for its activity (27). Other secretion reporters, including DNase (29), have been developed for gram-positive bacteria, but the fact that some gram-positive bacteria naturally secrete multiple DNases (37) has limited use of this enzyme. Recently, an alkaline phosphatase (PhoZ) derived from the gram-positive bacterium Enterococcus faecalis (15) has been developed as a reporter that is highly active in gram-positive bacteria (10, 15). The alkaline phosphatase activity of PhoZ, like that of PhoA, is dependent on its export from the cytoplasm (15), and the activity of a derivative of PhoZ lacking its leader peptide can be restored through fusion with a heterologous exported polypeptide (10, 15). The fusion partner can be large, and the resulting chimera can be stable and demonstrate high specific activity (10, 15).

The second essential component of TaphoA is Tn5, a transposon that both inserts randomly and can accept a reporter gene immediately adjacent to one of the short inverted repeats that defines the end of the element (21). However, Tn5 does not transpose efficiently in gram-positive hosts. A suitable alternative is transposon Tn4001, a Tn5-like element derived from gram-positive bacteria that transposes with a high degree of randomness in gram-positive bacteria and mycoplasmas (11, 18). A modified derivative of Tn4001 which consists of a single...
copy of the insertion sequence IS256 modified to accept an antibiotic resistance gene immediately adjacent to its left-end short (28-bp) terminal inverted repeat has been constructed (18). In the present study, we used this site to introduce a modified phoZ as follows. Primers 5PhoEcoRI (GGCGGGTT GTA CGAATTCTAC TGAACAAAAA AGCGCGGAAA AAC) and PhoS-SalI (CGTTCTGCTTG TCACGATT TTGG TTATTTA CCAATACC) were used to amplify a 1,387-bp fragment between the EcoRI and SalI sites of pET22(b)/H11001 that ranged in color from intensely blue to light blue with the pH of colonies was neutralized after they were lifted from the plates on filters (27) allowed the detection of blue colonies that ranged in color from intensely blue to light blue with the substrate XP (5-bromo-4-chloro-3-indolylphosphate) (Fig. 2). The yield of colonies with detectable alkaline phosphatase activity was between 1 and 4% of the total number of colonies analyzed. Untransformed S. pyogenes strains produced no detectable color (Fig. 2), which was consistent with the observation that there is no gene identified as encoding an alkaline phosphatase in the S. pyogenes strain whose genome sequence has been determined (9).

Characterization of fusion strains. Since virulence factors are frequently subject to coordinate regulation, screening for TaphoA insertions that are regulated by the same environmental signals that control expression of known virulence factors has proved to be a powerful strategy for identification of novel virulence factors in gram-negative bacteria (22). Oxygen is one environmental signal that is known to be involved in the regulation of virulence determinants in S. pyogenes (36). To eval-

Fig. 1. Construction of TnFuZ. The structure of TnFuZ is shown in the top line. The element contains the left and right inverted repeats (IRL and IRR, respectively), the transposase (tnp) of IS256, and the ahpA3 kanamycin resistance determinant contained on ΩKm-2. The gene encoding the Enterococcus faecalis alkaline phosphatase (phoZ) was altered by removal of the region which encoded its signal sequence, and the modified gene (phoZ+) was introduced into the element as shown. The bottom of the figure shows the DNA sequence and open reading frame which extends across IRL and joins the open reading frame of phoZ+. Abbreviations: C, Clal; Ev, EcoRV; Nc, NcoI; PstI; S, SalI; Sm, SmaI. A slash indicates a junction of two restriction fragments joined during construction of the element, and restriction sites enclosed by parentheses are inactive.
FIG. 2. Detection of colony-associated PhoZ activity. Colonies from overnight culture on solid Todd-Hewitt yeast extract medium were transferred to a nitrocellulose filter and exposed to the chromogenic alkaline phosphatase substrate XP as described in the text. A representative *S. pyogenes* TnFuZ insertion strain that expressed TnPhoZ activity (JT9) (Table 1) appears bright blue, while a TnFuZ insertion strain (JT0) that did not express activity remains colorless.

TnFuZ had inserted into the correct open reading frame in the correct orientation to encode a hybrid fusion protein. Of the 10 strains, 8 had a putative export signal that included a predicted signal sequence or transmembrane domain (Table 2).

An important facet of the use of TnFuZ is that it generates mutations through insertion into its target genes. Comparison of the sequences obtained for the set of fusion strains described above to data in the streptococcal genome database (9) was done to obtain the sequences of the entire targeted open reading frames, which were then compared to sequences in the Entrez nucleotide sequence database using TBLASTN (1). This analysis revealed that while a relatively modest number of colonies were analyzed to identify fusion strains, the screen developed a rich collection of mutants (Table 2). Strains with mutations in genes encoding surface and cell wall protein antigens were obtained, as well as strains with mutations in genes encoding various enzymatic activities, transporters, and regulators of transcription (Table 2).

The collection identified only three genes that have been previously characterized in *S. pyogenes* or a closely related streptococcal species (Table 2). Of the surface antigens identified, T protein (encoded by tee6) (33) has been characterized as a cell wall protein anchored by the LPXTG sortase pathway (23). This pathway covalently links proteins via an LPXTG motif located toward the carboxy terminus of the protein to the cell wall peptidoglycan. The function of T protein is unknown, but it is recognized by the immune system during infection. However, there may be as many as 13 proteins in the *S. pyo-
It was interesting that, of all the fusion proteins produced, none represented any of the known exotoxins of *S. pyogenes*. This may be because at least one toxin appears to have a specialized export mechanism (24). In other cases, it may be that the colony method for screening was not optimal for identification of fusion proteins that do not remain associated with the cell surface or it may be a result of the fact that the number of colonies screened was relatively small. However, the simplicity of various alkaline phosphatase assays and the availability of substrates of diverse chemistries will allow development of screens optimized for detection of proteins that are completely released from the cell. For example, a large-scale screen could be conducted to analyze cell-free culture supernatants harvested from cultures arrayed in a microplate format or the low background obtained in the colony filter assay could be exploited through the use of a highly sensitive substrate.

Most of the characterized fusion proteins had identifiable export signals. As for the two genes which did not encode a putative export signal, it is possible that the location of the fusion junction generated a fortuitous export signal (38) or that the expression of the fusion protein produced cell lysis. Preliminary characterization suggests that neither of these scenarios was the case. However, it should be noted that pathways of protein secretion in gram-positive bacteria are not well understood. In *S. pyogenes* alone, there are several examples of proteins that are found exterior to the cell membrane and that lack a defined export signal (25, 26). The availability of TnFuZ will likely facilitate investigation of alternative pathways of protein secretion in gram-positive bacteria. The broad host range of the transposon used to construct TnFuZ (Tn4001) suggests that this element will find wide application in the analysis of protein secretion by and the virulence of gram-positive bacteria and mycoplasmas.

This work was supported by Public Health Service grant AI38273.

REFERENCES
GIBSON AND CAPARON

