2003

Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation

Melody S. Clark
MRC Rosalind Franklin Centre for Genomics Research

Yvonne J.K. Edwards
MRC Rosalind Franklin Centre for Genomics Research

Dan Peterson
Washington University School of Medicine in St. Louis

Sandra W. Clifton
Washington University School of Medicine in St. Louis

Amanda J. Thompson
MRC Rosalind Franklin Centre for Genomics Research

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Clark, Melody S.; Edwards, Yvonne J.K.; Peterson, Dan; Clifton, Sandra W.; Thompson, Amanda J.; Sasaki, Masahide; Suzuki, Yutaka; Kikuchi, Kiyoshi; Watabe, Shugo; Kawakami, Koichi; Sugano, Sumio; Elgar, Greg; and Johnson, Stephen L., "Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation." *Genome Research*.13,. 2747-2753. (2003).
https://digitalcommons.wustl.edu/open_access_pubs/2110

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Authors
Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation

Melody S. Clark, Yvonne J.K. Edwards, Dan Peterson, et al.

Genome Res. 2003 13: 2747-2753
Access the most recent version at doi:10.1101/gr.1691503

References

This article cites 51 articles, 26 of which can be accessed free at:
http://genome.cshlp.org/content/13/12/2747.full.html#ref-list-1

Creative Commons License

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to Genome Research go to:
http://genome.cshlp.org/subscriptions
Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation

Melody S. Clark,1,7,8 Yvonne J.K. Edwards,1 Dan Peterson,2 Sandra W. Clifton,2 Amanda J. Thompson,1 Masahide Sasaki,3 Yutaka Suzuki,3 Kiyoshi Kikuchi,5,6 Shugo Watabe,5 Koichi Kawakami,4 Sumio Sugano,3 Greg Elgar,1 and Stephen L. Johnson2

1MRC Rosalind Franklin Centre for Genomics Research, (formerly known as the MRC UK HGMP Resource Centre), Genome Campus, Hinxton, Cambridge, CB10 1SB, UK; 2Department of Genetics, Washington University Medical School, St Louis, Missouri 63110, USA; 3The Institute of Medical Science, The University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan; 4Division of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka 411-8540, Japan; 5Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; 6Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Maisaka, Shizuoka 431-0211, Japan

The draft Fugu rubripes genome was released in 2002, at which time relatively few cDNAs were available to aid in the annotation of genes. The data presented here describe the sequencing and analysis of 24,398 expressed sequence tags (ESTs) generated from 15 different adult and juvenile Fugu tissues, 74% of which matched protein database entries. Analysis of the EST data compared with the Fugu genome data predicts that approximately 10,116 gene tags have been generated, covering almost one-third of Fugu predicted genes. This represents a remarkable economy of effort. Comparison with the Washington University zebrafish EST assemblies indicates strong conservation within fish species, but significant differences remain. This potentially represents divergence of sequence in the 5’ terminal exons and UTRs between these two fish species, although clearly, complete EST data sets are not available for either species. This project provides new Fugu resources, and the analysis adds significant weight to the argument that EST programs remain an essential resource for genome exploitation and annotation. This is particularly timely with the increasing availability of draft genome sequence from different organisms and the mounting emphasis on gene function and regulation.

The Japanese puffer fish (Fugu rubripes) was the second vertebrate genome to be completed to draft quality (Aparicio et al. 2002). Although this organism is intractable to experimental analysis, it is widely used as a tool in comparative genomic analyses (Barton et al. 2001; Rothenberg et al. 2001; Brenner et al. 2002; Amilo et al. 2003; Goode et al. 2003; Nelson 2003; Yap et al. 2003). Indeed, partial sequence of a closely related fresh water puffer fish, Tetraodont nigroviridis, has been specifically promoted and used as a gene-finding tool ("Exofish") for the human genome (Roest Crol et al. 2001; Rothenberg 2001; Brenner et al. 2002; Annilo et al. 2002).

The Fugu draft genome was released in 2002, at which time relatively few cDNAs were available to aid in the annotation of genes. The data presented here describe the sequencing and analysis of 24,398 expressed sequence tags (ESTs) generated from 15 different adult and juvenile Fugu tissues, 74% of which matched protein database entries. Analysis of the EST data compared with the Fugu genome data predicts that approximately 10,116 gene tags have been generated, covering almost one-third of Fugu predicted genes. This represents a remarkable economy of effort. Comparison with the Washington University zebrafish EST assemblies indicates strong conservation within fish species, but significant differences remain. This potentially represents divergence of sequence in the 5’ terminal exons and UTRs between these two fish species, although clearly, complete EST data sets are not available for either species. This project provides new Fugu resources, and the analysis adds significant weight to the argument that EST programs remain an essential resource for genome exploitation and annotation. This is particularly timely with the increasing availability of draft genome sequence from different organisms and the mounting emphasis on gene function and regulation.

Although annotated gene prediction is increasingly accurate (Rogic et al. 2001, 2002; Mathe et al. 2002), particularly if predictions from several programs are combined, conclusive identification and delimitation of coding regions is best provided by cDNA sequences. However, mass generation of full-length cDNA sequence is not an insubstantial challenge, and the most efficient method of generating cDNA resources is using single-pass sequencing of cDNA libraries, to generate expressed sequence tags (ESTs; Adams et al. 1995; Hillier et al. 1996; Gong 1999; Clark et al. 2001; Boardman et al. 2002). Given the current acknowledged
value of the *Fugu* genome data, increased resources for transcriptional analysis and annotation pipelines will enhance the usefulness, especially for exploitation and data-mining of conserved noncoding regions. Therefore development of EST resources from this organism is a priority. This paper presents the results of the first major EST project conducted using this organism. The sequencing and analysis of 24,398 ESTs generated from 15 different cDNA libraries of adult ovary, fin, heart, intestine, skin, and muscle and juvenile whole body, spleen, gill, gut, gonad (undifferentiated), brain, eye, liver, and kidney is presented. The clones which were used to generate these ESTs are publicly available and represent a valuable resource for follow-up laboratory investigation by the wider community.

RESULTS

Overview of ESTs From All Libraries

Fifteen cDNA libraries were produced from different tissues (ovary, fin, heart, intestine, skin, muscle [from an adult fish], whole body, spleen, gill, gut, gonad [undifferentiated], brain, eye, liver, and kidney [from a juvenile fish]). These were single-pass sequenced for ESTs, with each cDNA only sequenced once from the 5' end of the clone, with average read lengths of 500 bp. Figure 1 provides a breakdown of the 24,398 EST sequences according to tissue origin.

Seventy-four percent of the *Fugu* EST data set matched database entries in the SPTR database (BLAST bit score > 50; Fig. 2). The remaining 26% failed to match proteins in the SPTR database and therefore represented potentially novel sequences or UTRs of known genes. Of those matching SPTR entries, a small percentage (2%) were mitochondrial genes and 6% were ribosomal proteins. Additionally, 8% of the EST matches against the SPTR database were for hypothetical genes and other previously unsubstantiated ESTs, thus helping provide verification of these predictions.

Some of the libraries, specifically those denoted as KK/SS libraries in the Methods section, were generated from oligo-capping procedures to protect the 5' ends of the transcripts against degradation prior to first-strand cDNA synthesis (Mauryama and Sugano 1994; Suzuki et al. 1997). As a result, a high percentage of ESTs from these libraries (21%) have BLAST matches to SPTR database entries that include the first SPTR amino acid. In most of these cases, the EST contains additional sequence 5' of the alignment as well; that is, 5' UTR (data not shown). However, identification of 5' gene ends using such BLAST sequence similarity searches of coding sequence is a relatively crude method. Therefore this figure of 21% is probably an underestimate. In-depth analysis of selected ESTs (data not shown) indicates that the figure for full-length cDNAs may be as high as 33%.

Number of Identified Genes

Two methods were used to estimate the total number of *Fugu* genes identified by this EST program: (1) ICAtools (Parsons 1995), a sequence clustering tool, and (2) associating ESTs with their corresponding FPGs followed by clustering of residual ESTs based on their overlap. These efforts resulted in estimates of 9200 and 10,116 genes, respectively. Because *Fugu* is predicted to have 38,510 gene transcripts, this EST project identified transcript tags for between 25% and 28% of the *Fugu* predicted expressed gene set. The lower estimate for gene number identified by the EST project was obtained using ICAtools clustering, and this was regarded as an absolute minimum gene number, as ICAtools has a tendency to cluster paralogous sequences, as will be discussed later. The higher estimate, which is probably more accurate, was obtained first using BLAST to identify nearly identical matches of ESTs to the *Fugu* predicted gene (FPG) set, independent of the need for sequence overlap between ESTs. We found that 12,209 of the ESTs hit 4199 (10.8%) of the FPGs. However, this still left 12,472 *Fugu* ESTs without a match to FPGs. Phrap clustering of these remaining sequences then associated 6758 ESTs into 1433 clusters, with an average of 4.7 reads per cluster. Because each of these clusters contains more than one EST (and thus represents more than one cDNA), these clusters were taken as strong evidence for the presence of bona fide genes. Whether these identify new genes not in the FPG set, or instead identify 5' UTRs of genes in the FPG data set is not clear. This still left 5714 singletons with
no FPG match or cluster data. It should be remembered at this point that the *Fugu* genome is not complete and therefore not all ESTs would be expected to find a match against the genome data. Genomic contamination is often a minor problem with EST sequencing programs, and estimates from the WashU zebrafish EST project suggest that approximately 5% of EST clones result from genomic contamination or otherwise are unlikely to represent coding sequence (R. Waterman and S. Johnson, unpubl.). Although genomic contamination is likely to be highly library-dependent, assuming that those results hold for the libraries reported here, it is therefore expected that approximately 1230 (5% of the 24,398 EST clones) of the ESTs are also the result of genomic contamination. Thus the S714 singletons may only represent somewhere in the order of 4484 (5714 non-FPG-hitting contigs match WZ assemblies, and 21.8% of non-FPG-hitting singletons match WZ assemblies. The low percentage of non-FPG singletons that match zebrafish EST clusters, compared to the number of non-FPG clusters that match zebrafish EST assemblies, may be due to genomic contamination, although current estimates of the latter suggest that this is not the whole picture, and the possibility cannot be ruled out that this class is enriched for poorly expressed *Fugu*-specific genes instead.

DISCUSSION

These EST data describe an important resource of cDNAs, which will allow more efficient exploitation of the *Fugu* genome data and added value for comparative genomics studies. Approximately one-third of the estimated number of *Fugu* predicted genes were tagged by the 24,398 ESTs generated within this project. This is remarkably efficient and is almost certainly due to the sampling of many libraries from different tissues.

The EST data were globally analyzed for the number of *Fugu* genes tagged by ESTs, content, and redundancy. In most of the analyses, two methods were used, ICAtools and an analysis based on comparison to the *Fugu* genome sequence and the number of predicted genes, followed by Phrap-based clustering of ESTs that failed to correspond to *Fugu* predicted genes. The results from these analyses give somewhat different estimates for gene number (9100 and 10,116, respectively), but similar estimates for gene

<table>
<thead>
<tr>
<th>Ovary</th>
<th>Fin</th>
<th>Heart</th>
<th>Intestine</th>
<th>Skin</th>
<th>Muscle</th>
<th>Whole body</th>
<th>Spleen</th>
<th>Gill</th>
<th>Gut</th>
<th>Gonad</th>
<th>Brain</th>
<th>Eye</th>
<th>Liver</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icatools</td>
<td>1</td>
<td>53.6</td>
<td>28.7</td>
<td>47.7</td>
<td>48.6</td>
<td>46.6</td>
<td>20.4</td>
<td>26.7</td>
<td>48.7</td>
<td>47.7</td>
<td>38.6</td>
<td>34.9</td>
<td>66.5</td>
<td>57.8</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>6.0</td>
<td>5.8</td>
<td>8.9</td>
<td>9.7</td>
<td>4.8</td>
<td>6.9</td>
<td>5.4</td>
<td>8.9</td>
<td>8.3</td>
<td>6.8</td>
<td>6.9</td>
<td>10.3</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>2.5</td>
<td>2.0</td>
<td>3.0</td>
<td>2.9</td>
<td>1.3</td>
<td>3.4</td>
<td>3.2</td>
<td>4.3</td>
<td>2.9</td>
<td>3.0</td>
<td>2.1</td>
<td>2.0</td>
<td>3.4</td>
</tr>
<tr>
<td>4+</td>
<td>35.3</td>
<td>62.8</td>
<td>44.5</td>
<td>39.5</td>
<td>41.8</td>
<td>73.5</td>
<td>63.0</td>
<td>42.7</td>
<td>39.1</td>
<td>50.2</td>
<td>55.3</td>
<td>24.5</td>
<td>29.9</td>
<td>59.4</td>
</tr>
<tr>
<td>Discovery</td>
<td>0.33</td>
<td>0.14</td>
<td>0.31</td>
<td>0.26</td>
<td>0.25</td>
<td>0.10</td>
<td>0.13</td>
<td>0.28</td>
<td>0.27</td>
<td>0.21</td>
<td>0.18</td>
<td>0.35</td>
<td>0.26</td>
<td>0.17</td>
</tr>
<tr>
<td>Diversity</td>
<td>0.71</td>
<td>0.45</td>
<td>0.66</td>
<td>0.70</td>
<td>0.66</td>
<td>0.34</td>
<td>0.51</td>
<td>0.65</td>
<td>0.67</td>
<td>0.58</td>
<td>0.50</td>
<td>0.76</td>
<td>0.75</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Diversity is defined as the number of different "genes" each library contributed, divided by the library size. Discovery is defined as the number of singletons in each library divided by library size.

Table 1. Gene Diversity and Discovery Analyzed Using ICAtools (Displaying the Number of Singletons, Paired Sequences, Trios, and Those Present in Clusters of Four or More), and WU-BLAST

Fugu ESTs
diversity and discovery within each library (Table 1). The latter results are an important consideration in deciding how deep to sequence from each library, whether new libraries are needed, and how many ESTs are needed to adequately sequence the transcriptome. Muscle, whole body, and fin were the most redundant, whereas the brain, eye, and ovary libraries promised the highest gene discovery ratios and therefore present clear candidates for further sequencing. The data set for each library varied in terms of sample size (ranging from 444 for the eye library to 3916 for the fin library) due to clone availability, but the smaller data sets were still of sufficient size to estimate complexity. Analysis of the muscle library data set indicated that 200 clones produced a relatively accurate percentage for redundant clones. In general, the gene diversity and discovery of the libraries used through this stage of the project remain high. Additional libraries from other tissues may be necessary to expand the project and tag the majority of Fugu genes with ESTs.

Any estimate of gene number from EST programs is largely dependent on the bioinformatics tools used to cluster the data. Estimates in this project varied from 9100 to 10,116. ICAtools, which gave the lower number, has a tendency to cluster paralogous sequences when using the default parameters. In-depth analysis of the whole-body library ICA-matches results compared to SPTR data revealed, for example, that the largest cluster with parent sequence similarity to α-hemoglobin was comprised of both hemoglobin α-chain and embryonic-type α-sequences. These two sequences share 72.7% amino acid sequence similarity and should tend to cluster independently; however, short stretches in excess of 50 bp with greater than 95% identity caused over- clustering. Similar over-clustering was also observed for other gene families. However, for rapid and simple cluster analysis ICAtools is useful, providing a measure of library redundancy and therefore an indicator of the efficiency of sequencing more clones. In contrast, the method based on comparison to predicted genes from the Fugu genomic sequence depends strongly on the efficiency of the gene predictor program to properly associate all of the exons from the same gene together in the same gene model. It also requires the availability of the genome data, an uncommon situation with most organisms.

The libraries described here are not normalized. However, they may be useful for generating gene expression profiles. Examples of some gene expression profiles across the Fugu libraries are given in Table 2. Some of these are highly specific, such as the ATP-dependent helicase ddx1, which was found tagged only in the ovary library, whereas others such as the 40s ribosomal protein S24 was tagged in 11 of the 15 libraries sampled. Of particular interest for gene annotation and discovery are the ESTs matching predicted genes with no ascribed function, such as the kiaa0922, flj22313, and cgi-51 proteins (Lai et al. 2000). Karsi et al. (2002) in their analysis of catfish skin cDNAs also noted many examples of ESTs with significant similarity to known sequences of unknown function in model systems such as human, mouse, cattle, Drosophila, and C. elegans. Although these sequences have no ascribed function, their conservation in mammals, fish, and invertebrates helps to provide evidence that these sequences have important functions conserved through millions of years of evolution. Identification of such conserved sequences between Fugu and human, or Fugu and other organisms, such as zebrafish, allows for more efficient annotation (in larger numbers) than that which can be currently obtained by experimental biology.

Almost 25% of the Fugu ESTs produced no BLAST matches against the SPTR database. This failure to match SPTR records could have been due to ESTs being derived from novel, Fugu, or fish-specific genes or that corresponding fish ESTs are simply not in the database. Although the zebrafish EST assembly database represents >100,000 clones, it is thought to identify only approximately 50% of zebrafish genes. Alternatively, this may reflect the fact that the Fugu EST sequences were all 5’ reads that may have been limited to 5’ UTR or noncoding or poorly conserved first exons. This could also be the reason why over 18% of ESTs that matched FPCs did not match any zebrafish WZ assemblies. Fugu and zebrafish diverged around 250 Myr (compared to human and mouse, which diverged around 80 Myr), and there are an increasing number of examples (M.S. Clark, unpubl.) where a full-length zebrafish cDNA sequence fails to identify the terminal 5’ exons of a gene in Fugu genomic sequence. Extrapolating the mammalian data, it is even less likely that there will be significant sequence similarity between the UTRs of Fugu and zebrafish, as a comparison of human and mouse UTRs produced only 67% and 69% nucleotide sequence identity for 5’ and 3’ UTRs, respectively (Makalowski et al. 1996), and an excess of

<table>
<thead>
<tr>
<th>Table 2. Examples of Expression Profiles Taken From the Fugu EST Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes</td>
</tr>
<tr>
<td>Tissue</td>
</tr>
<tr>
<td>Ovary</td>
</tr>
<tr>
<td>Fin</td>
</tr>
<tr>
<td>Heart</td>
</tr>
<tr>
<td>Intestine</td>
</tr>
<tr>
<td>Skin</td>
</tr>
<tr>
<td>Muscle</td>
</tr>
<tr>
<td>Whole body</td>
</tr>
<tr>
<td>Spleen</td>
</tr>
<tr>
<td>Gill</td>
</tr>
<tr>
<td>Gut</td>
</tr>
<tr>
<td>Gonad</td>
</tr>
<tr>
<td>Brain</td>
</tr>
<tr>
<td>Eye</td>
</tr>
<tr>
<td>Liver</td>
</tr>
<tr>
<td>Kidney</td>
</tr>
</tbody>
</table>

"++" denotes the presence of a single clone in a particular library. apl, actinin-associated LIM protein; atpase6, ATP synthase 6 (mitochondrial protein); rps24, 40s ribosomal protein S24; ddx1, ATP-dependent helicase; lun-1, Ring finger protein; epd-i, Ependymin I precursor; tmsb 12, Thymosin beta-12.
sequence divergence in 5′ UTRs has been shown between human and chimpanzee (Hellmann et al. 2003).

Even with comparative genomics, finding genes in genomic sequence is a far from trivial problem. In general, approximately one-half of the genes can be found by homology, with the remaining relying on predictive methods for discovery (Mathe et al. 2002). Gene prediction programs are becoming increasingly accurate, with more than 90% of coding nucleotides correctly predicted (Burset and Guigo 1996; Claverie 1997; Guigo 1997; Burge and Karlin 1998; Haussler 1998; Rogic et al. 2001). Exact exon boundary definitions are only predicted with 70%–75% accuracy, whereas less than 50% of predicted genes correspond exactly to the actual transcripts (Dunham et al. 1999; Rogic et al. 2001). Most current gene prediction programs are trained on coding sequence and are poor at predicting alternative splice forms and noncoding regions such as noncoding RNAs, noncoding first exons, and UTRs. This situation is exacerbated when these UTRs have interspersed introns and also exhibit alternative splicing (Mathe et al. 2002). This presents as a large gap in the knowledge base, as recent estimates suggest that between 35% and 59% of human genes exhibit at least one alternative splice form (Matoni and Lee 2002) and 40% of human genes have completely noncoding first exons (Davuluri et al. 2001). A similar situation has been demonstrated in mouse, with further evidence presented to suggest that noncoding RNAs are a major component of the transcriptome (Okazaki et al. 2002). A similar situation would be expected in the other vertebrates.

The current gap in the ability of gene prediction programs to annotate complete gene structures reinforces the indispensable role of ESTs in genome annotation (Rogic et al. 2002). ESTs provide the means to identify transcription start sites and first exons of genes, especially when they are generated by the oligo-capping method (Suzuki et al. 1997, 2002). Data from the human genome project verify the efficiency of EST-driven annotation. At high stringency, 70%–90% of all annotated genes were detected by near identity to EST sequences, and approximately half the alignments spanned multiple exons, thus aiding in the construction of gene predictions and elucidation of alternative splicing (Bailey Jr. et al. 1998). In acknowledgment of the important contribution ESTs can make to genome annotation, the Ensembl team is in the process of integrating EST data into Ensembl gene-building (Hubbard et al. 2002). The Fugu EST data have been made available to the Fugu Ensembl team for use in future annotation programs.

A complementary problem to identifying the transcribed portions of genes is that of identifying the cis-regulatory sequences involved in promoting gene expression (e.g., promoters and enhancers). The Fugu genome offers a particularly attractive model for identifying the promoter and enhancer elements, due to the relatively small intragenic regions compared to other vertebrate genomes. Because most cis-acting elements are found 5′ of the transcript, or in the first intron (Mignone et al. 2002), accurate prediction of the regions in which these elements are found depends on identifying the transcribed portion of the gene. As first introns are often longer than average (Maroni 1996), promoters and transcription start sites may be well upstream of the ATG start codon. As described above, methods for identifying noncoding transcribed elements, lacking the constraints that coding sequence provides to gene structure prediction, are particularly difficult to develop. EST projects provide direct, experimental evidence for the transcribed and exonic portions of genes, thus limiting the possible region in which purely regulatory sequence is to be found. One practical use delimiting the boundary between promoters and enhancers, on one hand, and the transcription start site, on the other, lies in the experimental analysis of zebrafish development. Driving green fluorescent protein (GFP) as a lineage or cell marker reflecting expression of a gene requires cloning the entire promoter and enhancer region of the desired gene in front of GFP coding sequence. Unlike Fugu, the intergenic regions in the zebrafish genome are quite large and difficult to predict. As a consequence, large regions of the zebrafish promoter and enhancer region, perhaps more than can be cloned in conventional plasmids, are often needed to give specific and meaningful expression. This problem is partially alleviated by recombining GFP into BAC clones (Liu et al. 2003), but this solution is less amenable to high-throughput methodologies. An attractive alternative for zebrafish experimental biology is to use compact Fugu promoters to provide specific control of GFP expression in transgenic zebrafish. Indeed, use of Fugu promoters has already been successfully used to drive GFP expression in appropriate patterns in mouse (Brenner et al. 2002; Griffin et al. 2002; Camacho-Hubner et al. 2002). Efficient utilization of this idea for a large number of genes, in a more high-throughput manner, requires some knowledge of the 5′ UTR of the transcript. This initial Fugu EST project, which identifies likely 5′ ends for more than 10,116 different genes, will greatly facilitate using Fugu genomic sequence to develop transgenic zebrafish or mice expressing GFP in gene-specific expression patterns.

With the large push to sequence more and more genomes (many of which will only be completed to draft standard), there is not a corresponding and relatively cheap effort to match the genome sequencing with EST projects to help with annotation. The present data provide experimental evidence for a large fraction of Fugu genes, with 5′ ATG sites identified in approximately 33% of the clones sequenced. These data will provide significant new resources for experimental and computational biologists exploiting the Fugu genome sequence.

METHODS

CDNA Library Construction

Two sets of libraries were constructed for this project. The first set was constructed by G. Elgar, S. Warner, and J. Hills at the RFCGR (formerly the HGMP-RC), Hinxton, Cambridge. The tissues used in these libraries were whole body, spleen, gill, gonad, brain, eye, liver, and kidney. The RNA for the libraries was extracted using the QIAGEN Rneasy Midi Prep System. First-strand cDNA was prepared using the Stratagene CDNA Synthesis kit with the addition of Xhol/EcoRI linkers. The inserts were directionally cloned (5′→3′) into EcoRI/XhoI-capped plBluescript II KS+ (Stratagene) in XL2-Blue MRF E. coli cells (Stratagene). Each library has an estimated average insert size of 1 kb. Clones are available from http://www.hgmp.mrc.ac.uk/geneservice/reagents/index.shtml.

A second set of libraries, denoted K/S, was constructed by Sumio Sugano, Koichi Kawakami, Masahide Sasaki, Yutaka Suzuki, Kiyoshi Kikuchi, and Shugo Watabe (University of Tokyo, Institute of Medical Science and Laboratory of Aquatic Molecular Biology and Biotechnology). The fish were obtained from the Tokyo Metropolitan Central Wholesale Market, Japan. The tissues used in these libraries comprised ovary, fin, heart, intestine, skin, and muscle. Total RNA was extracted using Trizol (Life Technologies) with RNeasy (QIAGEN). Poly A+ RNA was isolated using oligo-Tex (Nippon-Roche). The libraries were 5′ capped double-stranded cDNA prepared according to Suzuki et al. (1997) and Maruyama and Sugano (1994). The inserts were directionally cloned (5′→3′) into EcoRI/XhoI-capped plBluescript II KS+ modified plBluescript-F vector cloning sites. R site 1: Pst I; Pst I (CCANNNNNNTGG); R site 2: Bam HI (CCANNNNNTTGG). The BamHI-Smal sites were converted to BamHI-PSTI-Sfl-PflMI sites (Smal is destroyed). Other parts of the vector were unmodified in host DH110B (T1 phage-resistant). Each library has an estimated average insert size of 2–3 kb. Distribution information can be found through the I.M.A.G.E. Consortium/LINL: info@image.lnl.gov.
Partial Sequencing of 5' Ends of cDNA Inserts

The RFCGR libraries sequenced at the RFCGR were sequenced using limiting dilutions of dNTPs and primers, as described at http://fugu.hgmp.mrc.ac.uk/Protocols/Biology/. Inserts were amplified using short T7 and T3 primers, and the PCR products were directly sequenced using cDNA primer 5’ggcgaggtagcagctg and Big Dye Terminator sequencing mix. The ESTs and ESTs sequenced at the RFCGR were sequenced using the limiting dilution method described above, but with the addition of four times the designated amount of dNTPs. The inserts were amplified using T7 and T3 primers with a longer extension time four times the designated amount of dNTPs. The inserts were sequenced using both sequencing methodologies.

Acknowledgments

S.S., K.K., M.S., K.K., S.W., and Y.S. thank Dr. Yuji Nagashima for obtaining the fish. This work was supported by an MRC grant (M.S.C., Y.J.K.E., A.T., G.E.); NIH DK55379 (S.L.J.); and grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (K.K., S.S., and S14104008 to S.W.).

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Received June 25, 2003; accepted in revised form September 10, 2003.

WEB SITE REFERENCES

http://wwwensembl.org/Canis_familiaris; Database of dog genome.

http://wwwensembl.org/Fugu_rubripes; Centralized site of Consortium Fugu genome data.

http://wwwensembl.org/Fugu_rubripes; Centralized site of Consortium Fugu genome data.

http://wwwensembl.org/Fugu_rubripes; Centralized site of Consortium Fugu genome data.

http://www.geneservice.com; Centralized site of Consortium Fugu genome data.

http://www.geneservice.com; Centralized site of Consortium Fugu genome data.

http://www.ensembl.org/Danio_rerio; Zebrafish genome data.

http://www.ensembl.org/Fugu_rubripes; Centralized site of Consortium Fugu genome data.

http://www.geneservice.com; Centralized site of Consortium Fugu genome data.

http://ensembl.org/Fugu_rubripes; Centralized site of Consortium Fugu genome data.

http://www.ensembl.org/Fugu_rubripes; Centralized site of Consortium Fugu genome data.

Received June 25, 2003; accepted in revised form September 10, 2003.