Thermosensitive and antioxidant wound dressings capable of adaptively regulating TGFβ pathways promote diabetic wound healing

Hong Niu
Ya Guan
Ting Zhong
Liang Ma
Mohamed Zayed

See next page for additional authors
Thermosensitive and antioxidant wound dressings capable of adaptively regulating TGFβ pathways promote diabetic wound healing

Hong Niu1,7, Ya Guan1,7, Ting Zhong1, Liang Ma3, Mohamed Zayed4,5,6 and Jianjun Guan1,2,6

Various therapies have been utilized for treating diabetic wounds, yet current regimens do not simultaneously address the key intrinsic causes of slow wound healing, i.e., abnormal skin cell functions (particularly migration), delayed angiogenesis, and chronic inflammation. To address this clinical gap, we develop a wound dressing that contains a peptide-based TGFβ receptor II inhibitor (PTβR2I), and a thermosensitive and reactive oxygen species (ROS)-scavenging hydrogel. The wound dressing can quickly solidify on the diabetic wounds following administration. The released PTβR2I inhibits the TGFβ1/p38 pathway, leading to improved cell migration and angiogenesis, and decreased inflammation. Meanwhile, the PTβR2I does not interfere with the TGFβ1/Smad2/3 pathway that is required to regulate myofibroblasts, a critical cell type for wound healing. The hydrogel’s ability to scavenge ROS in diabetic wounds further decreases inflammation. Single-dose application of the wound dressing significantly accelerates wound healing with complete wound closure after 14 days. Overall, using wound dressings capable of adaptively modulating TGFβ pathways provides a new strategy for diabetic wound treatment.

npj Regenerative Medicine (2023) 8:32 ; https://doi.org/10.1038/s41536-023-00313-3

INTRODUCTION

Diabetes affects more than 34 million people in the United States alone1. Elderly individuals represent a large fraction of this population, with approximately 25% of people over the age of 65 reported to have diabetes. This is currently the leading cause of non-traumatic lower limb amputation, predominantly due to the development of chronic foot wounds that are prone to infection and severe tissue damage1,2. These wounds are non-healing wounds and thus are challenging to manage in clinics. Diabetic wounds deviate from the typical physiological process of normal wound healing. They become trapped in the inflammatory phase, resulting in prolonged inflammation. Moreover, diabetic wounds display significant dysfunction in angiogenesis and remodeling processes, as well as impaired functionality of skin cells. These pathophysiological alterations significantly contribute to the chronic nature of diabetic wounds3-5. Various therapies have been explored to treat diabetic wounds, such as hyperbaric oxygen treatment6-9, cell therapy7-12, growth factor delivery13-26, and various types of wound dressing27-43. However, current therapies are not efficient in resolving chronic inflammation, delayed angiogenesis, and skin cell dysfunctions (particularly migration), which are key intrinsic barriers to diabetic wound healing44-49. In addition, cell therapy faces challenges such as off-the-shelf availability of cells, immune response, regulatory compliance, and ethical considerations. Growth factor delivery has limitations such as short half-life, high doses, and difficulty in delivering multiple growth factors to sequentially regulate each stage of wound healing.

To address these causes, control of TGFβ signaling is crucial because it plays direct and differential roles in delaying or promoting diabetic wound healing50-52. The TGFβ1/p38 pathway is directly associated with prolonged tissue inflammation and impaired skin cell migration53-58. The reduced endothelial cell migration leads to delayed angiogenesis53-58. De-activation of the TGFβ1/p38 pathway has been found to reduce skin inflammation and promote epithelialization and granulation tissue formation53-58. Meanwhile, TGFβ1/Smad2/3 pathway is required to regulate myofibroblasts, which are critical cells for wound healing50-52. Thus, inhibition of the TGFβ1/p38 pathway without impacting the TGFβ1/Smad2/3 pathway would presumably accelerate diabetic wound healing. However, current approaches have not been able to achieve this goal59-40, and new treatments are critically needed.

To reduce the deleterious impact of TGFβ1 on wound healing or tissue repair, systemic delivery of TGFβ inhibitors or anti-TGFβ antibodies have been commonly used to decrease the amount of active TGFβ1,59-61. While these approaches have shown some therapeutic benefits, relatively low efficacy and bioavailability have hindered their widespread clinical adoption50-52. The low efficacy may reflect the fact that these inhibitors and antibodies only decrease the amount of active TGFβ1, but cannot fundamentally inhibit the TGFβ1/p38 pathway. On the other hand, TGFβ receptor (TβR) inhibitors have the potential to fundamentally inhibit the TGFβ1/p38 pathway by blocking TGFβ1 from binding to TβRs on cells. While various TβR inhibitors exist, most are small-molecule inhibitors used for cancer therapy62,63. One potential challenge in using these inhibitors for diabetic wound healing is their effective dosages can be toxic to skin cells62,63. They can not only bind to the cell surface receptors, but also interact with intracellular proteins, thereby increasing the risk of cytotoxicity64.

1Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA. 2Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA. 3Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. 4Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA. 5Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA. 6Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA. 7These authors contributed equally: Hong Niu, Ya Guan.

Published in partnership with the Australian Regenerative Medicine Institute
Indeed, cutaneous toxicity has been reported for approximately 90% of the FDA-approved small-molecule inhibitors used in clinics. In addition, existing TJR inhibitors have not shown the capability of inhibiting the TGFβ1/p38 pathway while not interfering with the essential TGFβ1/Smad2/3 pathway for diabetic wound healing. Despite these limitations, collective preclinical studies and clinical trials suggest that targeting TGFβ signaling remains an important therapeutic strategy in accelerating diabetic wound healing.

In our study, we developed a peptide-based TJR inhibitor (PTβR2I) to block the TGFβ signaling pathway. Interestingly, we found that PTβR2I exhibits the capability of adaptively modulating the TGFβ/p38 pathway under hyperglycemic conditions, without impacting the TGFβ1/Smad2/3 pathway. To further advance the clinical application of our findings, we incorporated the PTβR2 peptide into a novel wound dressing. Applied topically or by injection, the wound dressing quickly solidifies to retain the drug on the wound bed, where it gradually releases PTβR2I to continuously block the TGFβ1/p38 pathway and enhance skin cell migration, stimulate angiogenesis, and attenuate tissue inflammation. The hydrogel can scavenge ROS to reduce wound inflammation. Here, we demonstrate that PTβR2I inhibits the TGFβ1/p38 pathway under high glucose conditions without substantially impacting the TGFβ1/Smad2/3 pathway, which is responsible for the formation of myofibroblasts.

RESULTS

Binding affinity of PTβR2I and its effect on skin cells

We synthesized a peptide ECGLLGVRGDRWRLCK-FITC (PTβR2I), based on the sequence from a phage display library that binds specifically to TJR, and the interactions between TJR and TGFβ1. This peptide contains amino acids in the TGFβ1 C-terminal domain that are critical for high binding affinity to TJR, V (residue 92), R (residue 94), and V (residue 98). In addition, the 2 cysteine residues act to stabilize the peptide structure. We first examined the specific binding of PTβR2I with TJR using an ELISA-like binding assay. TGFβ receptor I (TJR1), TGFβ receptor III (TJR3), and immunoglobulin G (IgG) were used as controls. We confirmed that PTβR2I has a remarkably higher binding affinity to TJR than its binding affinities to TJR1, TJR3, or IgG (p < 0.001, Fig. 1a). The dissociation constant (Kd) of the PTβR2I binding to TJR is 3.4 µM, more than 10 times lower than those for PTβR2I binding to TJR1, TJR3, and IgG (Fig. 1b-e). This finding was further validated on the cellular level. We used human dermal fibroblasts (HDFs) to study the binding affinity of PTβR2I to TJR under a glucose level of 4.5 g L⁻¹, which mimics the hyperglycemic conditions of diabetes. With PTβR2I added, TJR binding sites were occupied, so the TJR could not be detected by immunofluorescence (Fig. 1f), and instead, the signal from PTβR2I that is tagged with FITC was clearly observed on the cells.

We also performed a competitive binding test between PTβR2I and TGFβ1 at the cellular level. We found that the fluorescence of TJR was not detected with PTβR2I treatments, either pre- post-, or simultaneous to TGFβ1 treatments (Fig. 1g). The fluorescent intensity of FITC-labeled PTβR2I was consistent with whether PTβR2I or TGFβ1 was first bound to TJR (Fig. 1h and Supplementary Fig. 1). These results demonstrated that PTβR2I has a higher binding affinity to TJR than TGFβ1. Once PTβR2I binds to TJR, TGFβ1 cannot bind to the receptor. More interestingly, PTβR2I is able to pull off the bound TGFβ1 from the receptors and then competitively occupy the binding sites instead (Fig. 1i). In addition, we tested the cytotoxicity of PTβR2I in different concentrations on several major types of cells, including HDF, human keratinocytes HaCaT cells, and human arterial endothelial cells (HAEC) (Supplementary Fig. 2a–c). With PTβR2I treatment, we observed no decrease in cell viability at the test concentrations (1 to 100 µg mL⁻¹), indicating high cytocompatibility and biotolerance to PTβR2I.

During diabetic wound healing, keratinocytes, fibroblasts, and endothelial cells are respectively involved in re-epithelialization, dermal formation, and angiogenesis, yet their proliferation and migration are compromised in the diseased environment due to the high glucose concentration and upregulated TGFβ1. We investigated whether PTβR2I can restore the proliferation and migration of keratinocytes, fibroblasts, and endothelial cells under these conditions. We found significantly improved proliferation of HaCaTs, HDFs, and HAECs in the groups with PTβR2I (Fig. 1j–l, p < 0.05 for HaCaTs, p < 0.001 for HDFs, and p < 0.05 for HAECs). Specifically, for the HaCaT cells, the relative dsDNA content was increased from 119.5% in the TGFβ1 group to 160.2% in the TGFβ1 + PTβR2I group. For the HAECs, the PTβR2I treatment increased the relative dsDNA content from 120.3% to 167.1%. The most significant proliferation was found for the HDFs where the relative dsDNA content was increased over 2-fold after PTβR2I treatment.

To determine how PTβR2I influences the migration of HDFs, HaCaTs, and HAECs under high glucose and TGFβ1 conditions, a 2D scratch assay was used. TGFβ1 significantly decreased the migration of all three cell types (Fig. 1m–o). After the cells were treated with PTβR2I, a significantly higher number of cells migrated. These results demonstrate that PTβR2I treatment can significantly increase the proliferation and migration of keratinocytes, fibroblasts, and endothelial cells.

Effect of PTβR2I on skin cell morphogenesis and secretome

In diabetic wounds, angiogenesis is delayed due to impaired endothelial morphogenesis and impeded expression of angiogenic growth factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor-BB (PDGFBB), and hepatocyte growth factor (HGF). We first examined the effect of PTβR2I treatment on endothelial morphogenesis by performing an in vitro lumen formation assay using HAECs. The lumen density in the TGFβ1 group was much lower than that in the group without TGFβ1 (p < 0.001), whereas PTβR2I reversed the situation and significantly increased the lumen density (Fig. 1p, q). We further investigated whether PTβR2I treatment affected the expression of angiogenic growth factors from HaCaTs, HDFs, HAECs, and THP-1-derived CD86⁺ M1 macrophages. We found that the gene expressions of VEGFA and HGF in PTβR2I-treated HAECs (Fig. 1r), and PDGFBB in PTβR2I-treated M1 macrophages (Fig. 1s) were significantly enhanced. Notably, PTβR2I treatment also significantly upregulated the expression of prosurvival insulin like growth factor 1 (IGF1) in HDFs (Fig. 1t).

Diabetes is characterized by chronic inflammation, evidenced by the increased expression of proinflammatory cytokines such as interleukin-6 (IL6), interleukin-1β (IL1β), and tumor necrosis factor-α (TNFα). Thus, we evaluated whether PTβR2I modulated the expressions of inflammatory cytokines in HaCaT, HDFs, HAECs, and THP-1-derived CD86⁺ M1 macrophages. These cells are major sources of proinflammatory cytokines during diabetic wound healing. At the mRNA level, after PTβR2I treatment, the expressions of IL6 in M1 macrophages, IL1B, IL6, and TNFA in HDFs, and IL1B and IL6 in HaCaTs were all significantly reduced (Fig. 1u–w).

Mechanisms of action of PTβR2I under high glucose condition

Collectively, our data demonstrate that PTβR2I treatment promoted the proliferation and migration of keratinocytes, dermal fibroblasts, and endothelial cells, stimulated endothelial morphogenesis, increased angiogenic growth factor expression in endothelial cells and macrophages, and reduced the expression of proinflammatory cytokines in dermal fibroblasts.
(IL1B, IL6, and TNFA), keratinocytes (IL1B and IL6), and macrophages (IL6). These actions are impaired by upregulated TGFβ1 and the high glucose condition in diabetic wounds. To delineate the underlying mechanism, we conducted immunoblotting study on HDFs under high glucose and TGFβ1 conditions (Fig. 1v, w). We targeted the TGFβ1/p38 pathway because it is directly associated with impaired cell migration in diabetic wounds53–58. In addition, previous studies have shown that inhibition of
TGFB1/p38 signaling decreased inflammation during diabetic wound healing33-37. We observed that, relative to no TGFB1 group, TGFB1-treated cells displayed a near 4-fold increase in the phosphorylation of p38 (p-p38), whereas PTβR2 with TGFB1 significantly downregulated p-p38 (p < 0.05). To further confirm the role of PTβR2 in de-activating the p38 pathway, we treated the HDFs with a p-38 inhibitor (SB202190), which notably downregulated the p-p38 expression (Supplementary Fig. 3).

Myofibroblasts are critical for wound healing, and the TGFB1/Smad2/3 pathway represents a primary signaling pathway to drive the myofibroblast formation from fibroblasts. We investigated whether PTβR2 treatment affected the TGFB1/Smad2/3 pathway and myofibroblast formation under high glucose conditions. Interestingly, the PTβR2 treatment did not substantially influence p-Smad2/3 expression (Fig. 1v). This is consistent with α-SMA expression where the ratio of α-SMA* cells did not change with the addition of PTβR2 (Supplementary Fig. 4).

Antioxidant wound dressings capable of releasing PTβR2

We further developed a wound dressing by encapsulating PTβR2 in an injectable, thermosensitive, and ROS-scavenging hydrogel. The hydrogel was based on N-isopropylacrylamide, 2-hydroxyethyl methacrylate, and 4-(acyloxyethyl)-phenylboronic acid pinacol ester (AHPPE) (Fig. 2a). These three components are respectively responsible for thermoresponsiveness, increased hydrophilicity, and ROS-scavenging. The 1H-NMR spectrum clearly displayed the characteristic peaks for each component (Supplementary Fig. 5), and the calculated ratio of the four components was 76.3/14.2/9.5 (Supplementary Fig. 6). The hydrogel solution (6 wt%) had a thermal transition temperature of 17.8°C determined by rheological test (Supplementary Fig. 7). The 4°C final product retained the same activity as the 43°C final product, with a thermal transition temperature of 43 °C, could thus dissolve in body fluid at 37 °C. HDFs cultured with or without the final product retained the same viability, even when the concentration was as high as 30 mg mL⁻¹ (Fig. 2g). To further examine the hydrogel’s biocompatibility, we injected the hydrogel subcutaneously into the dorsal side of C57BL/6 J mice. Collagen gel was used as a control group. Seven days after implantation, the tissues injected with either collagen or the hydrogel exhibited similar densities of F4/80* macrophages (Fig. 2h, i). The above results demonstrate that the hydrogel is a biocompatible wound dressing.

PTβR2 was gradually released from the wound dressing during a 21-day release study (Fig. 2j). An initial burst release was observed on the first day, followed by a slower and sustained release until day 21. The release kinetics depended on the amount of PTβR2 loaded into the wound dressings: higher loading dosages resulted in greater amounts of released PTβR2. To determine the bioactivity of the released PTβR2, we performed a cell binding assay using HDFs treated with the PTβR2 amounts released on days 3, 8, and 14 for loading dosages of 10, 20, and 50 µg mL⁻¹. The PTβR2 released at all three timepoints from all the loading dosages remained bioactive (Fig. 2k).

Effect of PTβR2-releasing wound dressings on wound closure

The efficacy of the PTβR2-releasing wound dressing in accelerating wound healing was evaluated using db/db mice, a strain that represents a type II diabetes model characterized by obesity, hyperglycemia, and deficient wound closure. The wound dressings were administered onto full-thickness excisional wounds (Fig. 3a). The wounds treated with PTβR2-
releasing wound dressing (PTβR2I/Gel group) exhibited faster wound closure than either those without treatment (No-treatment group), or those treated with wound dressing without PTβR2I (Gel group) (Fig. 3b, c). Starting from day 4, the wound size in the PTβR2I/Gel group was significantly smaller than in the No-treatment and Gel groups (p < 0.05). At day 14, the wounds in the PTβR2I/Gel group were fully closed, while those in the No-treatment and Gel groups remained unclosed with wound sizes...
The hydrogel solution is flowable and injectable at both 4°C and 12°C, and quickly forms a solid gel at 30°C and 37°C. Retention of PTβR2I encapsulated in the developed hydrogel in the wound area after 24 h, observed using IVIS, with comparative collagen gel retention results. Quantification of drug retention by relative ROI intensity derived from IVIS images (n = 3). Degradation of the hydrogel in PBS with or without 1 mM H₂O₂ for 14 days. A non ROS-responsive hydrogel was used as a control. In vitro total antioxidant capacity of the hydrogel. Cytotoxicity of different concentrations of the degraded product to dermal fibroblasts, evaluated by MTT assay (n = 4). In vivo biocompatibility of the ROS-sensitive hydrogels, examined by F4/80 staining (green) on tissue samples with subcutaneously injected hydrogel after 7 days. Nuclei were stained with DAPI (blue). Quantification of F4/80+ cell ratio based on the images (n = 5). In vitro release profiles of 3 different concentrations of PTβR2I in ROS-responsive gel for 21 days (n = 4). Bioactivity of PTβR2I released from ROS-responsive gel at days 3, 8, and 14 (n = 5). All data are shown as mean ± standard deviation. Data were analyzed by one-way ANOVA with the Bonferroni post-test (n.s. p > 0.05, *p < 0.05).
and middle stages of healing (Fig. 5e, f), assumably due to the ROS scavenging property of the hydrogel. Adding PTβR2I into the hydrogel (PTβR2I/Gel group) did not change the wound ROS contents. By day 14 of the wound healing, the ROS content in both groups was reduced to an even lower level. Consistent with the ROS content results, the total antioxidant capacity was increased and the reactive nitrogen species (RNS) content was decreased in the wounds treated with Gel and PTβR2I/Gel (Fig. 5g, h). These results suggest that the developed wound dressing can decrease oxidative stress in diabetic wounds.

Mechanisms of action of wound dressings in diabetic wounds

After finding that PTβR2I downregulated the TGFβ1/p38 pathway in vitro under high glucose, we then investigated whether the
PTB2R1 released from the wound dressings into diabetic wounds also down-regulated p38 signaling. On days 3 and 8, the expression of p-p38 was less pronounced in the PTB2R1/Gel group compared to the Gel group (Fig. S1.j). These results are consistent with in vitro results, demonstrating that PTB2R1 effectively downregulated the TGFβ1/p38 pathway leading to accelerated wound closure. We further evaluated the expression of p-Smad2/3 in the diabetic wounds on days 3 and 8 (Supplementary Fig. 9). At both time points, the PTB2R1 treatment did not show an obvious effect on p-Smad2/3 expression compared to the Gel group, indicating that PTB2R1 did not affect the TGFβ1/p-Smad2/3 pathway in the diabetic wounds.

Effect of wound dressings on fibrosis in diabetic wounds

We next sought to determine whether the accelerated reepithelialization in diabetic wounds treated with PTB2R1-releasing wound dressing was associated with scar formation. Because the expression of α-SMA is also a hallmark of myofibroblasts, we quantified the myofibroblast densities in our three experimental groups on days 3, 8, and 14 of healing (Fig. 6a). The continuing enhanced myofibroblast density of peptide groups in the early and middle healing stages indicated fast granulation tissue formation, in which myofibroblasts are the main producer and organizer of the ECM. The reduced myofibroblast density in the PTB2R1/Gel group on day 14 reflected nearly complete wound contraction and tissue remodeling. However, significantly more myofibroblasts were found in the No-treatment group and the Gel group in the late stage of wound healing, which may instead lead to fibrosis and abnormal scarring.

In addition, picrosirius red staining (PSR) was performed at days 8 and 14 to reveal the tissue remodeling (Fig. 6b). On day 8, the PTB2R1/Gel group showed a significantly increased collagen content compared to the Gel alone and No-treatment groups (Fig. 6c), because collagen strengthens healing tissues in the middle, proliferative stage. On the contrary, the collagen content decreased on day 14, likely due to less collagen deposition in the remodeling process in the PTB2R1/Gel group. At day 14, both the Gel and PTB2R1/Gel groups had COLAI/III ratios that were similar to that of unwounded tissue (Fig. 6d), suggesting the completion of collagen reformation during ECM remodeling.

Effect of wound dressings on non-diabetic wounds

Interestingly, PTB2R1 was not effective on genetically mutated db/+ mice. We performed the same wound assay on db/+ mice and monitored the wound closure for eight days (Fig. 7a). The No-treatment, Gel, and PTB2R1/Gel groups all had similar healing rates, with wound sizes less than 10% of the original after 8 days (Fig. 7b, c). To delineate the mechanism, we performed in vitro immunoblotting on dermal fibroblasts under normal glucose conditions that mimicked the microenvironment of db/+ mice. PTB2R1 apparently inhibited the TGFβ1/p-Smad2/3, but did not downregulate p-p38, aligning with in vivo results. The IF study further validated that PTB2R1 suppressed myofibroblasts activation under normal glucose conditions (Fig. 7e, f).

Overall, PTB2R1 appeared to inhibit the TGFβ1/p-Smad2/3 pathway under normal glucose conditions while having no substantial inhibition effect when the glucose level was as high as that found in diabetes. Under high glucose conditions, PTB2R1 inhibited the TGFβ1/p38 pathway leading to accelerated wound healing in db/db mice.

DISCUSSION

Impaired wound healing is a lifetime risk for patients with diabetes. Various therapies have been developed to heal diabetic wounds, yet effective treatment remains a challenge, largely because current therapies cannot efficiently address the key intrinsic causes of slow diabetic wound healing, i.e., abnormal skin cell functions (particularly migration), delayed angiogenesis, and chronic inflammation. TGFβ1/p38 signaling is directly associated with these key intrinsic causes. The phosphorylation of p38 is upregulated in the wounds of db/db mice with sustained hyperglycemia. Using TGFβ inhibitors or anti-TGFβ antibodies to decrease the amount of active TGFβ1 in the wounds can reduce its deteriorate effect. However, it is challenging to inhibit only the TGFβ1/p38 pathway and not interfere with other TGFβ1 signaling axes that are essential for wound healing, such as the TGFβ1/Smad2/3 pathway. To the best of our knowledge, no existing approach has addressed this challenge.

In this work, we show that wound dressings consisting of PTB2R1 and a ROS-scavenging hydrogel accelerated wound healing in db/db mice. We demonstrated that PTB2R1 binds with TBR2 and differentially regulates TGFβ1 pathways: PTB2R1 downregulates the TGFβ1/p38 pathway while not affecting the TGFβ1/Smad2-3 pathway under the hyperglycemia environment in diabetic wounds. We found that PTB2R1 enhanced the migration of keratinocytes, dermal fibroblasts, and endothelial cells; promoted cell proliferation and paracrine effects; facilitated endothelial morphogenesis; and decreased proinflammatory cytokine expression in skin cells under TGFβ1 and high glucose conditions. We used an injectable, thermostable, fast-gelling, and ROS-scavenging hydrogel as a wound dressing to encapsulate PTB2R1 and continuously release the peptide to the wounds. Many hydrogels have been used as wound dressings, such as gelatin, hyaluronic acid, alginate, chitosan, poly(vinyl alcohol), poly(ethylene glycol), and polyglycerol. Compared to these hydrogels, our hydrogel has unique properties such as thermostability, fast gelation, and ROS scavenging. The thermostability and fast-gelling properties allowed the PTB2R1 to remain in the wounds after administration. The ROS-scavenging property enabled the wound dressing to capture the upregulated ROS in diabetic wounds. The PTB2R1-releasing wound dressing significantly accelerated reepithelialization, promoted host cell proliferation and vessel formation, decreased inflammation and oxidative stress, and regulated collagen deposition without forming scar tissues. Intriguingly,
under euglycemia, PTβR2I inhibited the TGFβ1/Smad-2/3 pathway without affecting the TGFβ1/p38 pathway, resulting in no improvement of wound healing when tested in db/+ mice (Fig. 7d).

Keratinocytes, fibroblasts, and endothelial cells are respectively responsible for epithelialization, wound contraction, and angiogenesis during wound healing. In diabetic wounds, the TGFβ1 and high glucose conditions impair the migration of these cells, leading to delayed epithelialization, wound contraction, and angiogenesis. Interestingly, we found that PTβR2I enhanced the migration of keratinocytes, fibroblasts, and endothelial cells under TGFβ1 and high glucose conditions (Fig. 1m–o). Following cell recruitment, cell proliferation also plays an important role in wound healing, especially for larger and chronic diabetic wounds where migration alone is insufficient for wound closure. We demonstrated that PTβR2I increased the proliferation of keratinocytes, fibroblasts, and endothelial cells. Notably, PTβR2I also stimulated endothelial cells to form lumens (Fig. 1p, q), and upregulated the expressions of VEGFA and HGF in endothelial cells (Fig. 1r). These factors not only promote angiogenesis but also positively affect the migration, proliferation, and differentiation of keratinocytes. As a result, the diabetic wounds treated with PTβR2I-releasing wound dressings had significantly greater vessel density than those dressed without PTβR2I (Fig. 4a, b). The PTβR2I released from the wound dressings...
favorably influenced the migration of keratinocytes throughout the inflammatory, proliferative, and remodeling phases of wound healing (Fig. 3d). In addition, more K14⁺ keratinocytes in the basal layer underwent differentiation into K10⁺ keratinocytes in the suprabasal layers^{63,107}. Chronic inflammation and high oxidative stress critically delay diabetic wound healing. We demonstrated that PTβR2I suppressed the expression of proinflammatory cytokines such as TNFα, IL1B, and IL6 in keratinocytes, fibroblasts, and macrophages in vitro (Fig. 1s–u). This result is consistent with previous reports.
Fig. 5 Treatment of PTβR2I-releasing wound dressings alleviated inflammatory response by decreasing M1 macrophage density, the expression of pro-inflammatory cytokines, and ROS content. a Representative IHC images, using anti-CD86, of tissue sections at days 3, 8, and 14 post treatment. Nuclei were stained with DAPI. Scale bar = 50 µm. b Quantification of CD86+ cell density in the wounded area (n = 6). c Protein array analysis of pro-inflammatory cytokines for tissue samples collected on day 3 post treatment. d Quantification summary for the cytokine array. All data are shown as mean ± standard deviation. e ROS staining using CellROX deep red of tissue sections harvested 3, 8, and 14 days post treatment. Scale bar = 50 µm. f Quantification of relative ROS− cell density (n = 6). g Quantification of total antioxidant capacity from skin tissues collected from wound sites at day 3 (n = 3). h RNS content of skin tissues collected from wound sites at day 3 (n = 3). i, j Western blot analysis of p-p38 in the wounded skin of db/db mice on days 3 and 8. GAPDH was used as a loading control. All data demonstrated as mean ± standard deviation. Data were analyzed by one-way ANOVA with Bonferroni post-test (*p < 0.05, **p < 0.01, ***p < 0.001).

Fig. 6 PTβR2I-releasing wound dressings prevented scar formation in diabetic wounds. a α-SMA+ and CD31− myofibroblast densities (n = 4) quantified from images in Fig. 4a and images stained on day 3. Myofibroblasts are identified as α-SMA− cells that are not colocalized with CD31+ endothelial cells.a-SMA+ cells that are colocalized with CD31+ endothelial cells are vascular smooth muscle cells/pericytes. b PSR staining study of wound sections at 8- and 14-days post- treatment. Scale bar = 50 µm. c Relative total collagen contents in the wound area on days 8 and 14, based on acquired PSR images (n ≥ 5). d Ratios of collagen I to collagen III at two time points, from PSR images (n = 5). The ratio for healthy skin is 26.3, indicated with a dashed line. All data demonstrated as mean ± standard deviation. Data were analyzed by one-way ANOVA with Bonferroni post-test (*p < 0.05, **p < 0.01, ***p < 0.001).
that inhibiting the p38 pathway reduced the expression of pro-inflammatory cytokines in skin cells. In diabetic wounds, PTβR2I released from the wound dressings decreased the M1 macrophage density at all three stages of the healing (Fig. 4a, b). Overproduced ROS in diabetic wounds can contribute to chronic inflammation. We showed that ROS-scavenging hydrogel in the wound dressing can scavenge ROS and continuously mitigate oxidative stress.

Diabetic wounds are characterized by impaired production of ECM, a crucial facilitator of wound healing, from the inflammatory phase through the remodeling phase. Collagen, the most abundant ECM in the skin, is significantly under-produced in diabetic wounds. The ratio of the two major collagen types (I and III) is abnormally different from that of uninjured skin. Myofibroblasts are primarily responsible for collagen deposition in wounds. During normal wound healing, the number of myofibroblasts decreases dynamically in the final remodeling stage to avoid excessive collagen deposition that causes scars. For these reasons, it is important to regulate myofibroblasts to achieve normal deposition of collagen and a normal collagen I/III ratio. Our work demonstrated that PTβR2I-releasing wound dressings beneficially modulated the number of myofibroblasts in the progression from the inflammatory phase to the remodeling phase (Fig. 6a), most probably because PTβR2I did not interfere with the TGFβ1/Smad2/3 pathway. Collagen deposition was increased during the inflammatory and proliferative phases, and decreased during the remodeling phase without inducing scar formation. In addition, the collagen I/III ratio in the remodeling phase was similar to that of uninjured tissue.

In this work, db/db mice were used to evaluate the therapeutic efficacy of developed wound dressings. Several previously studies utilized streptozotocin (STZ) and high-fat diet-induced mice for diabetic wound healing. Compared to these models, db/db mice exhibit characteristics such as morbid obesity and chronic hyperglycemia, making them more suitable for evaluating the therapeutic efficacy of wound dressings under type II diabetic conditions.

There are some limitations in this work. The therapeutic efficacy was tested on wounds of db/db mice, which may not be representative of the pathophysiology of human diabetic wounds. Future studies will use large animals to improve the translation potential of the developed wound dressing. In addition, the

Fig. 7 PTβR2I-releasing wound dressing treatment did not influence wound healing under low glucose conditions tested on db/+ mice. a Timeline of db/+ mouse wound healing. b Representative images of wounds of db/+ mice, taken from day 0 to day 8. Wounds were created using 5 mm biopsy punches on the dorsal skin of db/+ mice and treated with gel and PTβR2I/Gel via subcutaneous injection. c Wound sizes over 8 days for each treatment. Wound size ratios were normalized to day 0 (n > 4). d Immunoblotting analysis of p-p38 and p-Smad2/3 proteins in dermal fibroblasts cultured under low glucose conditions. GAPDH was used as a loading control. e Representative images of IF staining using α-SMA antibody of dermal fibroblasts cultured with 1 g L⁻¹ glucose after 24 h. Scale bar = 50 µm. f Quantification of α-SMA⁺ cell ratio from the IF images (n = 6). All data demonstrated as mean ± standard deviation. Data were analyzed by one-way ANOVA with Bonferroni post-test (n.s. p > 0.05, *** p < 0.001).
hydrogel concentration and injection dosage need to be optimized for different animal models. Despite these limitations, the current wound dressing presents an effective approach to accelerate diabetic wound healing.

In summation, we report that wound dressings consisting of PTβR2I and a ROS-scavenging hydrogel accelerated diabetic wound healing, by adaptively regulating the TGFβ1/p38 and the TGFβ1/Smad2/3 pathways (Fig. 8). The wound dressings performed multiple functions: stimulating skin cell migration, proliferation, and paracrine effects; promoting endothelial morphogenesis and angiogenesis; and reducing tissue inflammation and oxidative stress under TGFβ1 and high glucose conditions. These wound dressings more quickly accelerated wound closure than using growth factors, protein, exogenous cells, or oxygen therapy in the same animal model. A limitation of the current study is that the rodent models do not fully mimic the complex human pathophysiology, and implications of microvascular occlusive disease that may occur in the setting of chronic diabetes. In future studies, we will test the developed wound dressings in large animals (e.g., pigs with and without diabetes), or in models with concomitant hyperlipidemia and vascular occlusive disease.

METHODS

Materials

All chemicals and bioreagents were purchased from Millipore-Sigma unless otherwise stated. N-isopropylacrylamide (NIPAAm, TCI) was recrystallized three times before use. Hydroxyethyl methacrylate (HEMA, Alfa Aesar) was used after passing it through an inhibitor removal column. PTβR2I was synthesized by Celtek Bioscience based on the sequence provided. Acryloyl chloride, 4-(hydroxymethyl)-phenylboronic acid pinacol ester (HPPE), acrylic acid (AAc), and benzyl peroxide (BPO, Life Technologies) were used as received.

Binding of PTβR2I to TβR2, TβR1, and IgG

To test the ability of PTβR2I to bind to TβR2, a binding assay was performed as previously described. TβR1, TβR3, and IgG were used as controls. In brief, ELISA plates (Costar) were coated with 20 nM of TβR2 (R&D), TβR1 (R&D), or IgG (R&D) and incubated at 4°C overnight. The plate was blocked with Tris-buffered Saline (TBS) containing 5% bovine serum albumin (BSA) for 1 h. Then PTβR2I (0.5 µg mL⁻¹) was added to the plate and incubated for 2 h. The fluorescence intensity was read by a microplate reader (Molecular Devices) with a predefined wavelength (excitation/emission = 485/535 nm).

To test PTβR2I binding to cells, HDFs (Lonza) were seeded on type I collagen-coated cover glasses. After 24 h, the following treatments were applied: 1) PTβR2I solution (10 µg mL⁻¹) for 48 h; 2) PTβR2I solution (10 µg mL⁻¹) for 24 h, and then TGFβ1 (10 ng mL⁻¹) for another 24 h; 3) TGFβ1 (10 ng mL⁻¹) for 24 h, and then PTβR2I (10 µg mL⁻¹) for another 24 h; and 4) both PTβR2I (10 µg mL⁻¹) and TGFβ1 (10 ng mL⁻¹) for 48 h. HDFs cultured without PTβR2I or TGFβ1 for 48 h served as the control group. After the treatments, the supernatant in the groups added with TGFβ1 was collected, and the unbound TGFβ1 was measured using a TGFβ1 ELISA kit (ThermoFisher). The cells were fixed by 4% paraformaldehyde and blocked with 10% goat serum in DPBS. Primary antibody mouse anti-TβR2 (1:300, Santa Cruz) was diluted in DPBS containing 3% BSA and incubated with the cells overnight at 4°C. The cells were washed three times with DPBS. A secondary antibody Alexa Fluoro-647 (1:300, Fisher Scientific) was then applied for 2 h at room temperature, followed by incubating with DAPI for five minutes. Fluorescent images were taken by a confocal microscope (Olympus FV1200).
To validate the above results, the fluorescence intensity of PTBR21 bound to HDFs was measured for each treatment group. Briefly, HDFs (Lonza) were seeded on type I collagen-coated 96-well black microplates. After 24 h, the treatments described above were applied. Cells were washed three times with DPBS to remove free PTBR21. The fluorescence intensity was measured using the same microplate reader.

Cell culture

HDFs were cultured using Gibco Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologicals) and 1% penicillin-streptomycin (P/S). Human keratinocytes HaCaT cells were purchased from AddexBio and cultured in AddexBio-Optimized DMEM containing 10% FBS and 1% P/S. Human arterial endothelial cells (HAEC) were obtained from Cell Systems and cultured in a complete medium kit supplemented with serum (FBS, 10%), and culture boost. All cell types were incubated at 37°C with 5% CO₂ until reaching 80–90% confluency before passing. The culture medium was replenished every other day.

Macrophages were derived from THP-1, a human monocytic cell line (ATCC), THP-1 cells were treated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA, Millipore-Sigma) for 48 h, followed by 24 h in RPMI 1640 medium (ATCC) with 10% FBS and 1% P/S. To induce differentiation into M1 macrophages, the cells were treated with 100 µg·mL⁻¹ lipopolysaccharide (LPS, Millipore-Sigma) and 20 ng·mL⁻¹ interferon-gamma (IFN-γ, Millipore-Sigma) for 48 h.

Peptide cytotoxicity test

HDFs, HaCaTs, and HAECs were seeded in 96-well plates at densities of 1.5 × 10⁴ cells mL⁻¹, 2 × 10⁴ cells mL⁻¹, and 2 × 10⁵ cells mL⁻¹, respectively. To investigate the effect of PTBR21 on cell viability, different concentrations of PTBR21 ranging from 0 to 100 µg/mL were added to the culture medium. After 24 h of incubation, cell viability was assessed using MTT assay.

Cell proliferation under high glucose and TGFβ1 conditions

HDFs, HaCaTs, and HAECs were seeded in 96-well plates at densities of 1.5 × 10⁴ cells mL⁻¹, 2 × 10⁴ cells mL⁻¹, and 2 × 10⁵ cells mL⁻¹. High glucose (4.5 g L⁻¹) basal medium with 1% P/S was used for the culture. After 24 h, TGFβ1 (10 ng mL⁻¹) or TGFβ1 (10 ng mL⁻¹)/PTBR21 (10 µg mL⁻¹) was added to the medium. The culture continued for 3 days. Cells were then treated with papain solution and incubated at 60°C for 24 h. The dsDNA content was tested using a Quant-it™ PicoGreen dsDNA Assay Kit (Invitrogen).

Cell migration under high glucose and TGFβ1 conditions

HDFs, HaCaTs, and HAECs were cultured in 6-well plates using serum-free high glucose (4.5 g L⁻¹) basal medium with 1% P/S. After the cells reached confluency, a 200-µL pipet tip was used to scrape the cell monolayer. Then 3 mL of medium containing TGFβ1 (10 ng mL⁻¹) or TGFβ1 (10 ng mL⁻¹)/PTBR21 (10 µg mL⁻¹) was added to the wells. The cells were imaged at predetermined time points using a bright-field microscope (Olympus IX70). The distances between the scratch walls were measured using ImageJ to calculate the migration ratio.

Endothelial cell lumen formation

A 3D collagen gel model was used to evaluate endothelial cell lumen formation under high glucose and TGFβ1 conditions. Briefly, the collagen gel was formed by mixing 4 mg mL⁻¹ of rat tail type I collagen solution (Life Technologies), FBS, DMEM, and NaOH. Then 500 µL of the mixture was transferred to a 48-well plate and placed in a 37°C incubator for 30 min to allow gelation. HAECs were then seeded into the collagen gel at a density of 2 × 10⁴ cells/well. TGFβ1 (10 ng·mL⁻¹) or TGFβ1 (10 ng·mL⁻¹)/PTBR21 (10 µg mL⁻¹) was then added. After three days of culturing, cells were stained with F-actin (Abcam) and DAPI. The constructs were imaged by Olympus FV1200 confocal microscopy with z-stack mode. The lumen density was calculated from the images.

Synthesis and characterization of hydrogel

The ROS-responsive monomer 4-(acryloyl氧基methyl)-phenylboronic acid pinacol ester (AHPPE) was synthesized by acylation of HPPE following a previously established method. ¹H-NMR was used to verify the chemical structure (-CH₂= at 6.36 ppm and 5.77 ppm, -=CH- at 6.09 ppm, O-CH₂- at 5.13 ppm, -C₅H₅- at 7.74 ppm and 7.29 ppm, and -CH₃ at 1.26–1.55 ppm). The hydrogel was synthesized by free radical polymerization of NIPAAm,HEMA, and AHPPE using BPO as an initiator. The molar feed ratio of the three monomers was 75/15/10. The real monomeric ratio of the polymer was calculated from ¹H-NMR. After AHPPE is completely cleaved by ROS, the final product becomes poly (NIPAam-co-HEMA-co-acrylic acid (AAc)). We synthesized this polymer by free radical polymerization using BPO as an initiator. The molar feed ratio of NIPAAm/HEMA/AAc was 75/15/10. In addition, a control, non-ROS responsive hydrogel was synthesized by free radical polymerization of NIPAAm, HEMA, and acrylate-polylactide at a ratio of 75/15/10 using our previously established approach.

The hydrogel solution of 6 wt% was prepared by dissolving the polymer into DPBS with continuous stirring at 4°C for 12 h. The solution was then kept on ice until use. The injectability of the hydrogel solution was examined at 4°C and 12°C, using a 27 G needle. The gelation time of the 4°C solution was evaluated at 30°C and 37°C, as described previously.

To measure water content, the hydrogel was first immersed in DPBS at 37°C for 5 h. The gel was then taken out and the wet weight was measured as w₁. Then the hydrogel was freeze-dried, and the dry weight was measured as w₂. The water content was calculated as (w₁−w₂)/w₂ × 100%.

The gelation temperature of the hydrogel was evaluated by rheological test using a Discovery HR-20 rheometer. The geometry was 20 mm, and the gap was 500 µm. The oscillation frequency and strain were 1 Hz and 2%, respectively. Temperature swept from 10°C to 30°C at a rate of 2°C/min during the test.

To test the cytotoxicity of the degradation product, polylactide (NIPAam-co-HEMA-co-AAc) (Fig. 3a) was dissolved in DMEM with 10% FBS at different concentrations. HDFs were seeded at a density of 3×10⁴ cells mL⁻¹ in a 96-well plate. After 24 h, the cells were treated with the medium containing the degradation product, and after 48 h, the cell viability was quantified by MTT assay. The medium without degradation product was used as a control.

To test the ROS responsiveness of the hydrogel, 200 µL of hydrogel solution was added to a 1.7 mL microcentrifuge tube. After gelation at 37°C the supernatant was taken out, and replaced with 200 µL of DPBS with or without 1 mM H₂O₂. The non-ROS responsive hydrogel was used as a control. The degradation was conducted at 37°C for 14 days. At each time point, the samples were freeze-dried and the remaining weight was measured.

To test total antioxidant capacity, the hydrogel was cast in a 96-well plate. 200 µL of DPBS with or without 100 µM H₂O₂ was then added into the wells. After incubation for 48 h, the supernatant was collected. The total antioxidant capacity was measured using an antioxidant assay kit (Millipore-Sigma, catalog# MAK334) following the manufacturer’s instructions.
Hydrogel and PTβR2I retention in diabetic wounds

To evaluate the retention of hydrogel and PTβR2I in diabetic wounds, PTβR2I (FITC-labeled) was mixed separately with the hydrogel solution and the collagen solution. The collagen solution was used as a control. All animal experiments were performed in accordance with the National Institutes of Health for the Care and Use of Laboratory Animals. The protocol was approved by the Institutional Animal Care and Use Committee of Washington University in St. Louis. Female BKS.Cg-Dock7m+/+ Leprdb/db mice (db/db mice, Jackson Laboratories) aged eight weeks were used. The mice were anesthetized by isoflurane inhalation, and an electronic shaver and hair removal cream was used to thoroughly remove the hair from the dorsal skin. Before surgery, ethanol pads and betadine were applied in series on the dorsal skin. Then, with a biopsy punch, two symmetric 5-mm diameter wounds were made on the dorsal skin of each mouse. Each wound was then dressed with either the PTβR2I/hydrogel mixture or the PTβR2I/collagen mixture. After 24 h, the mice were sacrificed and the wounds were collected, followed by imaging using an in vivo imaging system (IVIS Spectrum, Perkin Elmer) with an excitation filter of 485 nm and an emission filter of 535 nm. The fluorescence images were quantified by Living Image software (PerkinElmer Inc.)125,131.

Subcutaneous implantation of hydrogel

All animal care and experiment procedures were conducted in accordance with the National Institutes of Health guidelines. The animal protocol was approved by the Institutional Animal Care and Use Committee of Washington University in St. Louis. To examine the in vivo toxicity of the hydrogel, 6 wt% hydrogel solution was subcutaneously injected into the 8-week-old C57BL/6 J mice. Prior to the injection, the pre-cooled hydrogel solution was sterilized under UV light for 30 min. As controls, mice injected with collagen gel were used. After seven days, tissue specimens were harvested at the injection sites and fixed with 4% paraformaldehyde for 24 h. The tissue sections (5 µm thick) were stained with anti-F4/80 antibody (Santa Cruz) and DAPI. The stained sections were imaged with an Olympus FV1200 confocal microscope. The F4/80+ cell ratio was quantified by normalizing F4/80+ cell number to the total cell number in each image.

Wound dressing fabrication and PTβR2I release kinetics

Wound dressings were fabricated by encapsulating PTβR2I in the hydrogel solution at 4°C. Briefly, PTβR2I solution was mixed with 6 wt% hydrogel solution to reach final PTβR2I concentrations of 10 µg/mL, 20 µg/mL, and 50 µg/mL. The mixtures were stirred at 4°C for 12 h. To determine PTβR2I release kinetics, the mixtures were first incubated at 37°C to induce gelation. After 1 h, the supernatant was replaced by a release medium (DPBS with 1% P/S). The medium was then collected at predetermined time points for 21 days, and a fresh release medium was added after each collection. The concentration of the released PTβR2I was determined by measuring the fluorescence intensity and a standard curve. The bioactivity of the released PTβR2I was evaluated by its ability to bind to the βR2 on the HDFS. The collected released medium was added to the culture medium of HDFSs that were seeded in a 96-well plate. The controls were the same concentrations of fresh PTβR2I solution as those released from the hydrogel at certain time points. After 2 h of incubation, the cells were washed three times with DPBS, and the fluorescence intensity was measured using a microplate reader (excitation/emission = 485/535 nm). The bioactivity was quantified by normalizing the intensity of the released PTβR2I to that of the corresponding control.

mRNA expression for in vitro cultured cells

To determine the mRNA expression of the cells (HDFs, HaCaTs, and HAECs) treated with TGFβ1 (10 ng mL−1) or TGFβ1 (10 ng mL−1)/PTβR2I (10 µg mL−1) under high glucose conditions, RNA was extracted using Trizol (Invitrogen) and reverse transcribed using a cDNA synthesis kit (Applied Biosystems). Gene expression was performed by real-time RT-PCR, using Maxima SYBR Green/Fluorescein Master Mix (Thermofisher) and selected primer pairs (Supplementary Table 1). β-actin served as the housekeeping gene. The ΔΔCt method was used for data analysis73,127.

 Protein array assay

Wounded tissues were collected and lysed at predetermined timepoints. The protein concentrations were quantified by Bradford assay. The samples were tested using a Proteome Profiler Mouse Angiogenesis Array kit (R&D Systems) and a Mouse Cytokine Array kit (R&D Systems). The intensities of the dots on the membranes in the kits were quantified using Image Lab software23.

Implantation of wound dressings into diabetic wounds

Eight-week-old, female db/db mice were used. Carprofen tablets (1/4 tablet per mouse) were given orally 48 h before surgery and continued for seven days after the surgery as an analgesic. One day before surgery, the blood glucose levels of the mice were tested with a glucometer to confirm they were above 300 mg/dL. The mice were anesthetized by isoflurane inhalation, and the dorsal surface was thoroughly shaved. Then a 5-mm diameter biopsy punch (WWR) was used to create two symmetric full-thickness wounds on the back of each mouse. Next, 100 µL of liquid wound dressing, with or without 50 µg/mL of PTβR2I, was applied topically to the wound sites. The mice were observed every other day, and digital photographs of the wounds, with a ruler at the side, were acquired by a digital camera. Wound sizes were calculated using Image J.

In vivo oxidative stress measurement

On day 3, skin tissues at wound sites for each group were harvested, weighed, minced into small pieces, and homogenized in DPBS/protease inhibitor on ice. The supernatant was collected. The samples were then tested for the total antioxidant capacity and RNS content using an antioxidant assay kit (Millipore-Sigma) and a mouse RNS ELISA kit (MyBiosource), respectively.

Western blot analysis

For in vitro tests, protein lysates were collected from HDFSs. Pre-cooled cell scrapers were used to detach the cells, and the cells were re-suspended in RIPA lysis buffer with the inhibitor cocktail. For in vivo tests, wound skin tissues were washed three times with pre-cooled DPBS, dissected into small pieces, and re-suspended in RIPA lysis buffer containing protease and phosphatase inhibitor. Homogenization was then performed thereafter with an ultrasonic processor (Cole Parmer). After centrifugation at 12,000 g for 20 min, the supernatants were collected, and protein concentrations were measured using a Bradford protein assay kit (Bio-rad). The protein samples were separated by 10% Mini-PROTEAN TGE stain-free precast gels (Bio-rad) and transferred onto immune-blot PVDF membrane. The blots were washed three times with DPBS containing 0.1% Tween 20 (PBST), blocked with 5% milk powder in PBST buffer for 40 min, and incubated with primary antibodies at specific dilutions overnight at 4°C. The primary antibodies included rabbit GAPDH antibody (1:5000, Cell signaling, Cat#2118), rabbit anti-α-smooth muscle actin (α-SMA) antibody (1:2000, Cell signaling, Cat#19245), rabbit anti-phospho-Smad2(-Ser465/467)/Smad3 (Ser423/425) (1:500, Cell signaling, Cat#8828), and rabbit anti-phospho-Smad3(Ser423/425) antibody (1:2000, Cell signaling, Cat#4690). The secondary antibody was horseradish peroxidase-conjugated anti-rabbit antibodies (1:5000, Cell signaling, Cat#7074). The membrane was developed by ECL substrate (Cell signaling) and exposed to X-ray film (Kodak Biomax).
and rabbit anti-phospho-p38 (1:500, Cell signaling, Cat#4511). The membranes were washed three times with PBST and incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies (1:2500, Abcam, Cat#ab205718). Immunoblots were then washed with PBST and detected with a WesternBright HRP substrate detection kit (Advansta). The ChemiDoc XPS+ system (Bio-rad) was used to image the blots. All blots were processed in parallel and were derived from the same experiment. The uncropped scans of the blots are presented in Supplementary Fig. 10.

Histological and immunofluorescence analyses

Wound tissues were collected on days 3, 8, and 14 after administration of wound dressings. The tissues were fixed in 4% paraformaldehyde for 24 h. Then the samples with the whole wound areas were cross-sectioned into 5 µm thick slices. Masson’s Trichrome staining (MTS), and picosirius red staining were performed. The epidermal thickness was calculated from the MTS images in the wounded region. For immunohistochemical staining, tissue sections were stained with primary antibodies including mouse anti-cytokeratin 14 (1:1000, abcam, Cat#ab7800), rabbit anti-cytokeratin 10 (1:3000, abcam, Cat#ab76318), rabbit anti-CD31 (1:50, abcam, Cat#ab28364), mouse anti-α-SMA (1:10000, abcam, Cat#ab7817) and rat anti-Ki67 (1:100, Thermofisher, Cat# MA5-14520), rabbit anti-CD86 (1:50, Cell Signaling, Cat#9188), CellROX deep red (1:500, Thermofisher, Cat#C10422), and incubated at 4 °C overnight. Alexa 647 goat anti-rabbit (1:300, Thermofisher, Cat#A-21245), Alexa 546 goat anti-mouse (1:300, Thermofisher, Cat#A-11003), Alexa 488 goat anti-rabbit secondary antibodies (1:300, Thermofisher, Cat#A-11034) were then applied. DAPI (Millipore-Sigma) was used to stain the nuclei. Images were acquired by Olympus confocal microscope and analyzed using ImageJ.

Statistical analysis and reproducibility

Data are presented as mean ± standard deviation unless otherwise stated. Statistical analysis was performed using one-way or two-way ANOVA followed by the Bonferroni post-test, using GraphPad Prism 8. Significance was defined as P < 0.05.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY

The data in the current study are available upon reasonable request.

Received: 17 February 2023; Accepted: 27 June 2023; Published online: 08 July 2023

REFERENCES

18. Tu, L., Huang, Q., Hu, Y. & Liu, D. Detection and analysis of angiogenesis
21. Askari, N. et al. Association between acne and serum pro-inflammatory cyto-
kines (IL-1α, IL-1β, IL-10, IL-6, IL-8, IL-12 and RANTES) in mustard gas-exposed patients: Sardasht-Iran cohort study. Arch. Iran. Med. 20 (2017).
22. Haidet, J., Cifarulli, V., Trucco, M. & Luppi, P. C-peptide reduces pro-inflammatory cytokine secretion in LPS-stimulated U937 monocytes in condition of hyper-
57. Niu, H., Gao, N., Dang, Y., Guan, Y. & Guan, J. Delivery of VEGF and delta-like 4 to synergistically regenerate capillaries and arterioles in ischemic limbs. Acta Bio-

Acknowledgements

We thank J. Ballard from Engineering Communication Center and InPrint at Washington University in St. Louis for editing the manuscript. We would like to acknowledge J. Prior in Mallinckrodt Institute of Radiology at Washington University School of Medicine for performing IVUS. We would like to acknowledge P. Olsen in Danforth Animal Facility for diligent animal care. We also thank C. Idleburg in Musculoskeletal Research Center in Washington University School of Medicine for histology service. Confocal imaging was performed in part through the use of Washington University Center for Cellular Imaging supported by Washington University School of Medicine, The Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish Hospital (3770 and 4642). Biorender.com was used to create some illustrations in Fig. 8. This work was supported by grants from NIH (R01EB022018, R01HL138175, R01HL138353, R01AG056915, R01AR077616, R01HL164002, and R10DK133949).

Author Contributions

J.G., H.N., and Y.G. analyzed the results and wrote the manuscript. T.Z., L.M., and M.Z. provided insights of the study and edited the manuscript. J.G. supervised the project.

Competing Interests

The authors declare no competing interests.