Long-term outcomes and molecular correlates of sotorasib efficacy in patients with pretreated KRAS G12C-mutated non-small-cell lung cancer: 2-year analysis of CodeBreaK 100

Grace K Dy  
*Roswell Park Comprehensive Cancer Center*  
Ramaswamy Govindan  
*Washington University School of Medicine in St. Louis*  
et al.

Follow this and additional works at: [https://digitalcommons.wustl.edu/oa_4](https://digitalcommons.wustl.edu/oa_4)

Part of the [Medicine and Health Sciences Commons](https://digitalcommons.wustl.edu/oa_4)

Please let us know how this document benefits you.

**Recommended Citation**

[https://digitalcommons.wustl.edu/oa_4/2177](https://digitalcommons.wustl.edu/oa_4/2177)

This Open Access Publication is brought to you for free and open access by the Open Access Publications at Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients With Pretreated KRAS G12C-Mutated Non–Small-Cell Lung Cancer: 2-Year Analysis of CodeBreaK 100

Grace K. Dy, MD1; Ramaswamy Govindan, MD2; Vamsidhar Velcheti, MD3; Gerald S. Falchook, MD4; Antoine Italiano, MD, PhD5; Jürgen Wolf, MD, PhD6; Adrian G. Sacher, MD7; Toshiaki Takahashi, MD, PhD8; Suresh S. Ramalingam, MD9; Christophe Dooms, MD, PhD10; Dong-Wan Kim, MD, PhD11; Alfredo Addeo, MD, PhD12; Jayesh Desai, MBBS, FRACP13; Martin Schuler, MD14; Pascale Tomasini, MD15; David S. Hong, MD16; Piro Lito, MD, PhD17; Qui Tran, PhD18; Simon Jones, PhD18; Abraham Anderson, PhD18; Antreas Hindoyan, PhD18; Wendy Snyder, PhD18; Ferdinandos Skoulidis, MD, PhD, MRCP16; and Bob T. Li, MD, PhD, MPH17

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.

In the longest follow-up, to our knowledge, for a KRASG12C inhibitor, we assessed the long-term efficacy, safety, and biomarkers of sotorasib in patients with KRAS G12C-mutated advanced non–small-cell lung cancer (NSCLC) from the CodeBreaK 100 clinical trial (ClinicalTrials.gov identifier: NCT03600883). This multicenter, single-group, open-label phase I/phase II trial enrolled 174 patients with KRAS G12C-mutated, locally advanced or metastatic NSCLC after progression on prior therapies. Patients (N = 174) received sotorasib 960 mg once daily with the primary end points for phase I of safety and tolerability and for phase II of objective response rate (ORR). Sotorasib produced an ORR of 41%, median duration of response of 12.3 months, progression-free survival (PFS) of 6.3 months, overall survival (OS) of 12.5 months, and 2-year OS rate of 33%. Long-term clinical benefit (PFS ≥ 12 months) was observed in 40 (23%) patients across PD-L1 expression levels, in a proportion of patients with somatic STK11 and/or KEAP1 alterations, and was associated with lower baseline circulating tumor DNA levels. Sotorasib was well tolerated, with few late-onset treatment-related toxicities, none of which led to treatment discontinuation. These results demonstrate the long-term benefit of sotorasib, including in subgroups with poor prognosis.

INTRODUCTION

Overall survival (OS) remains poor for molecularly unselected, advanced non–small-cell lung cancer (NSCLC),1-2 with 2-5 months of median progression-free survival (PFS) on second-line plus chemotherapy or immunotherapy.3-6 Sotorasib specifically and irreversibly inhibits KRASG12C7-10 with approval in over 40 countries11-13 for adults with KRAS G12C-mutated advanced NSCLC after prior systemic therapy.14,15 In CodeBreaK 100 phase II, sotorasib demonstrated an objective response rate (ORR) of 37%, a median duration of response (DOR) of 11.1 months, a median PFS of 6.8 months, a median OS of 12.5 months, and a manageable safety profile in KRAS G12C-mutated advanced NSCLC.16 We report CodeBreaK 100 phase II 2-year pooled analyses representing, to our knowledge, the longest KRASG12C inhibitor treatment follow-up to date.

METHODS

Patients

The multicenter, single-group, open-label phase I/II CodeBreaK 100 trial (ClinicalTrials.gov identifier: NCT03600883) enrolled patients age 18 years and older with KRAS G12C-mutated locally advanced or metastatic NSCLC after progression on prior therapies (Data Supplement, online only).16 Institutional review board approval before study initiation and participating country regulatory authority approval were received; all patients provided written informed consent.

Study Design

Phase I primary end point was safety and tolerability (key secondary: DOR and PFS). Phase II primary end point was ORR (blinded independent central review; key secondary: DOR, PFS, OS, and safety). Late-onset toxicities were assessed (treatment-related adverse events [TRAEs] occurring after 1 year on treatment).
CONTEXT

Key Objective
To determine the long-term safety, tolerability, and efficacy of sotorasib 960 mg once daily in patients with KRAS G12C-mutated, locally advanced or metastatic non–small-cell lung cancer from the CodeBreaK 100 clinical trial (ClinicalTrials.gov identifier: NCT03600883). Exploratory analyses assessed the relationship of various biomarkers, such as PD-L1 expression level and genomic alterations, with efficacy.

Knowledge Generated
This 2-year pooled analysis of CodeBreaK 100, which is, to our knowledge, the largest clinical data set with the longest follow-up reported for patients treated with any KRAS G12C inhibitor to date, showed that sotorasib treatment provided long-term efficacy and was well tolerated, with no new safety signals detected. Long-term benefit with sotorasib (defined as progression-free survival of at least 12 months) was associated with lower baseline circulating tumor DNA levels and was observed across KRAS G12C variant allele frequency levels, PD-L1 expression levels, and in a proportion of patients with STK11 and/or KEAP1 comutations.

Relevance
The findings from this analysis with over 2-year follow-up data demonstrate that nearly a quarter of previously treated advanced stage KRAS G12C-mutated NSCLC patients treated with sotorasib derived long-term benefit, with few late-onset treatment-related toxicities, supporting not only its use in this treatment setting but also additional studies investigating its therapeutic role in earlier lines of therapy.

Exploratory analyses evaluated molecular correlates with efficacy (Data Supplement). PD-L1 and genomic alterations were correlated with long-term benefit (PFS ≥ 12 months) versus early progression (nonresponders with PFS ≤ 3 months).

RESULTS

Patients
As of February 22, 2022, 174 patients (phase I, N = 48; phase II, N = 126) received sotorasib 960 mg once daily (Table 1). Median treatment duration was 5.6 months (range, 0.2-35.9); 13 patients remained on treatment at cutoff. Median prior lines of therapy was 2.0 (range, 0 to 4+). Prior therapies included anti–PD-(L)1 (157 [90%]) and platinum-based chemotherapy plus anti–PD-(L)1 (144 [83%]).

Safety
Any-grade TRAEs were observed in 121 (70%) patients (Data Supplement), with grade 3 in 34 (20%), grade 4 in 2 (1%), and no fatal TRAEs; TRAEs led to treatment reduction or interruption in 39 (22%) and treatment discontinuation in 11 (6%). Most common TRAEs were diarrhea (53 [30%]), increased alanine aminotransferase level (31 [18%]), and increased aspartate aminotransferase level (31 [18%]). Median (range) time to grade ≥ 3 diarrhea and hepatotoxicity onset was 6.1 (1.7-11.1) and 9.1 (3.1-18.7) weeks. All grade ≥ 3 median (range) duration, weeks diarrhea resolved (2.9 [0.3-6.0]); grade ≥ 3 hepatotoxicity resolved in all but three of 19 (16%; 5.5 [0.4-39.1]). Trends toward increased hepatotoxicity in patients receiving checkpoint inhibitors ≤ versus >3 months before sotorasib initiation were observed (Data Supplement).

Of 45 patients who continued sotorasib beyond 1 year, 11 (24%) had any-grade TRAEs after 1 year on treatment (new-onset TRAEs), without trends in adverse event type. One grade 3 new-onset TRAE (2%; hemolytic anemia) resolved in 5 days (sotorasib discontinued after disease progression). No grade 4 or 5 new-onset TRAEs occurred. New-onset TRAEs led to dose reduction in one (2%) patient without treatment discontinuation.

Efficacy
ORR was 41% (95% CI, 33.3 to 48.4), and DCR was 84% (95% CI, 77.3 to 88.9; Data Supplement). Of patients with confirmed response, estimated 72.8% (95% CI, 60.0 to 82.2) and 50.6% (37.4 to 62.4) remained in response at 6 and 12 months, respectively. Median DOR was 12.3 months (95% CI, 7.1 to 15.0).

Median PFS was 6.3 months (95% CI, 5.3 to 8.2; Fig 1A); median OS was 12.5 months (10.0 to 17.8; Fig 1B). Kaplan-Meier OS estimate was 51% (95% CI, 42.8 to 58.2) and 33% (95% CI, 25.0 to 40.2) at 12 and 24 months, respectively. At data cutoff, nine of 70 (13%) patients with response remained on study without progression, including five receiving sotorasib for ≥2 years with continued response (Fig 1C).

Sixteen patients had evaluable brain metastases per central Response Assessment in exploratory Neuro-Oncology Brain Metastases review (Data Supplement); three (19%) had complete response and 11 (69%) had stable disease, with 14 (88%) having intracranial disease control overall (Data Supplement).

Across 172 efficacy-evaluable patients, 40 (23%) had long-term clinical benefit (PFS ≥ 12 months) and 62 (36%) had
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Phase I (N = 48)</th>
<th>Phase II (N = 126)</th>
<th>Total (N = 174)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, median (range)</td>
<td>68.5 (49-86)</td>
<td>63.5 (37-80)</td>
<td>65.0 (37-86)</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>28 (58)</td>
<td>63 (50)</td>
<td>91 (52)</td>
</tr>
<tr>
<td>Race, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>38 (79)</td>
<td>103 (82)</td>
<td>141 (81)</td>
</tr>
<tr>
<td>Asian</td>
<td>6 (13)</td>
<td>19 (15)</td>
<td>25 (14)</td>
</tr>
<tr>
<td>Black</td>
<td>2 (4)</td>
<td>2 (2)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (4)</td>
<td>2 (2)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>PD-L1 protein expression, No. (%)≤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;1%</td>
<td>13 (27)</td>
<td>33 (26)</td>
<td>46 (26)</td>
</tr>
<tr>
<td>≥1% to 49%</td>
<td>12 (25)</td>
<td>30 (24)</td>
<td>42 (24)</td>
</tr>
<tr>
<td>≥50%</td>
<td>9 (19)</td>
<td>35 (28)</td>
<td>44 (25)</td>
</tr>
<tr>
<td>Unknown</td>
<td>14 (29)</td>
<td>28 (22)</td>
<td>42 (24)</td>
</tr>
<tr>
<td>Disease stage at screening, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1 (2)</td>
<td>5 (4)</td>
<td>6 (3)</td>
</tr>
<tr>
<td>IV</td>
<td>47 (98)</td>
<td>121 (96)</td>
<td>168 (97)</td>
</tr>
<tr>
<td>Metastatic sites, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>20 (42)</td>
<td>61 (48)</td>
<td>81 (47)</td>
</tr>
<tr>
<td>Brain</td>
<td>14 (29)</td>
<td>26 (21)</td>
<td>40 (23)</td>
</tr>
<tr>
<td>Liver</td>
<td>12 (25)</td>
<td>26 (21)</td>
<td>38 (22)</td>
</tr>
<tr>
<td>ECOG PS at baseline, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11 (23)</td>
<td>38 (30)</td>
<td>49 (28)</td>
</tr>
<tr>
<td>1</td>
<td>37 (77)</td>
<td>88 (70)</td>
<td>125 (72)</td>
</tr>
<tr>
<td>Prior lines of therapy, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2 (4)</td>
<td>0</td>
<td>2 (1)</td>
</tr>
<tr>
<td>1</td>
<td>17 (35)</td>
<td>54 (43)</td>
<td>71 (41)</td>
</tr>
<tr>
<td>2</td>
<td>14 (29)</td>
<td>44 (35)</td>
<td>58 (33)</td>
</tr>
<tr>
<td>≥ 3</td>
<td>15 (31)</td>
<td>28 (22)</td>
<td>43 (25)</td>
</tr>
<tr>
<td>Type of prior therapy, No. (%)≤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum-based chemotherapy</td>
<td>48 (100)</td>
<td>113 (90)</td>
<td>161 (93)</td>
</tr>
<tr>
<td>Anti-PD-(L)1</td>
<td>41 (85)</td>
<td>116 (92)</td>
<td>157 (90)</td>
</tr>
<tr>
<td>Platinum-based chemotherapy and anti-PD-(L)1</td>
<td>41 (85)</td>
<td>103 (82)</td>
<td>144 (83)</td>
</tr>
<tr>
<td>Anti-VEGF biological therapy</td>
<td>10 (21)</td>
<td>26 (21)</td>
<td>36 (21)</td>
</tr>
<tr>
<td>Targeted small molecules</td>
<td>10 (21)</td>
<td>9 (7)</td>
<td>19 (11)</td>
</tr>
<tr>
<td>Best response to last prior line of therapy, No. (%)≤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>0</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Partial response</td>
<td>2 (4)</td>
<td>12 (10)</td>
<td>14 (8)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>11 (23)</td>
<td>33 (26)</td>
<td>44 (25)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>24 (50)</td>
<td>48 (38)</td>
<td>72 (41)</td>
</tr>
<tr>
<td>Unevaluable/unknown/missing</td>
<td>9 (19)</td>
<td>32 (25)</td>
<td>41 (24)</td>
</tr>
<tr>
<td>Duration of sotorasib treatment, months, median (range)</td>
<td>6.0 (0.2-35.9)</td>
<td>5.5 (0.2-26.9)</td>
<td>5.6 (0.2-35.9)</td>
</tr>
</tbody>
</table>

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; VEGF, vascular endothelial growth factor.

≤Determined locally.

*Each patient may have had more than one prior therapy.

*Two patients with no prior line of therapy in phase I were excluded.
FIG 1. Long-term benefit and outcomes with sotorasib treatment. Kaplan-Meier plot of (A) PFS and (B) OS (median OS follow-up of 24.9 months [range, 0.7-35.9 months]) by central review, and (C) swimmer plot for phase I and phase II responders by central review (one patient with an ongoing response ended treatment because of patient request). BOR, best objective response; CR, complete response; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response.
early progression (PFS ≤ 3 months). Baseline characteristics were similar; the latter had slightly higher proportions of patients with visceral metastasis (liver/bone), progressive disease on prior therapy, and received prior platinum-based chemotherapy and immunotherapy.

Biomarker Analysis
Centrally measured PD-L1 and/or genomic data were available for 114 phase II patients (Data Supplement). Most prevalent alterations were TP53 (46%), LRP1B (36%), KDM6A (32%), and STK11 (32%).

Albeit limited in sample size, long-term clinical benefit with sotorasib was observed across PD-L1 expression levels (Fig 2A). There was a nonsignificant trend toward enrichment of longer benefit with PD-L1 tumor proportion score (TPS) <1% versus ≥1% (odds ratio [OR], 0.36 [0.12 to 1.12]), without significant differences between PD-L1 TPS 1%-49% and ≥50% (OR, 0.83 [0.07 to 9.69]). Most significant enrichment in patients with early progression was with mutant KEAP1 (OR, 0.22 [0.06 to 0.87] long-term benefit v early progression); although not significant, these patients were more likely to have ROSI (single-nucleotide

![Diagram](https://ascopubs.org/doi/10.1200/JCO.2023.11.20.0001)

**FIG 2.** Association of long-term benefit and early progression with PD-L1 expression and genomic alterations: (A) PD-L1 tumor proportion score, (B) selected genomic alterations, (C) STK11 and KEAP1 mutations, and (D) Mutant versus wild-type STK11. CR, complete response; IHC, immunohistochemistry; PFS, progression-free survival; PR, partial response.
variant (SNV) and secondary RAS mutations (Fig 2B; Data Supplement). Patients with long-term benefit were more likely to harbor mutations in PI3K, PDGFR, and EPH receptor gene family and RET SNVs. Association of KEAP1 wild-type status with long-term benefit was independent of STK11 mutation status (Fig 2C). Patients with STK11 comutations were as likely to derive long-term benefit as patients with STK11 wild-type (OR, 0.71 [0.25 to 2.02]; Fig 2D).

No difference in tumor tissue median KRAS G12C variant allele frequency (VAF) or tumor mutational burden was observed in long-term benefit or early progression groups (Data Supplement). Patients with long-term benefit tended to have lower baseline median plasma circulating tumor DNA (ctDNA; P = .01; Data Supplement).

**DISCUSSION**

In this analysis representing the most mature KRASG12C inhibitor clinical data, sotorasib demonstrated long-term efficacy, without new safety signals.16-18 A substantial proportion of patients derived long-term clinical benefit (1- and 2-year OS rates, 51% and 33%, respectively). Once-daily oral sotorasib 960 mg did not result in cumulative late-onset severe or chronic lower-grade toxicities.

Durable sotorasib benefit and safety profiles compare favorably with standard-of-care chemotherapy with docetaxel-based regimens, which historically yielded approximately 10%-23% response rates and a median PFS of 4.5 months.19-24 Two-year OS rate (33%) with sotorasib was higher versus docetaxel (historically 14%).2 In the phase III CodeBreaK 200 randomized controlled trial (ClinicalTrials.gov identifier: NCT04303780), sotorasib showed statistically significant improvement in PFS versus docetaxel in pretreated KRAS G12C-mutated advanced NSCLC, with a 34% decrease in the relative risk of disease progression or death with sotorasib (HR 0.66; P = .0017).25 There was no OS difference, although the study was not powered for OS, and docetaxel arm crossover was permitted25, improved quality of life with sotorasib was observed.25 These findings are encouraging, considering historically poor standard-of-care chemotherapy outcomes.

Long-term benefit with sotorasib was associated with lower baseline ctDNA levels, consistent with ctDNA prognostic roles across therapeutics.26-28 Prolonged benefit was observed across KRAS G12C VAF levels, PD-L1 expression, and a proportion of patients with STK11 and/or KEAP1 comutations. However, consistent with studies of other therapies,29,30 KEAP1 mutation was negatively prognostic overall. Relatively small sample sizes with available biomarker data were challenging; additional analyses evaluating prognostic and predictive impact of baseline and postprogression genomic alterations are warranted. International collaboration and data sharing are key to uncovering KRAS-mutant cancer molecular complexities.31-33

In this long-term analysis, oral once-daily sotorasib demonstrated favorable safety profile and durable efficacy across subgroups in KRAS G12C-mutated NSCLC.

**AFFILIATIONS**

1 Roswell Park Comprehensive Cancer Center, Buffalo, NY
2 Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
3 Perlmutter Cancer Center, New York University Langone, New York, NY
4 Sarah Cannon Research Institute at HealthONE, Denver, CO
5 Institut Bergonie, Bordeaux, France
6 Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
7 Princess Margaret Cancer Centre, Toronto, Ontario, Canada
8 Shizuoka Cancer Center, Shizuoka, Japan
9 Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
10 University Hospitals KU Leuven, Leuven, Belgium
11 Seoul National University College of Medicine and Seoul National University Hospital, Seoul, South Korea
12 Hôpitaux Universitaires de Genève, Geneva, Switzerland
13 Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
14 West German Cancer Center, University Hospital Essen, Essen, Germany
15 Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, APHM, INSERM, NCRS, CRCM, Hôpital de la Timone, Marseille, France
16 The University of Texas MD Anderson Cancer Center, Houston, TX
17 Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, NY
18 Amgen Inc, Thousand Oaks, CA

**CORRESPONDING AUTHOR**
Grace K. Dy, MD, Roswell Park Comprehensive Cancer Center, Elm and Carlton St, Buffalo, NY 14263; e-mail: Grace.Dy@RoswellPark.org.

**EQUAL CONTRIBUTION**
G.K.D., F.S., and B.T.L. contributed equally to this work.

**PRIOR PRESENTATION**

**SUPPORT**
Supported by Amgen Inc.

**CLINICAL TRIAL INFORMATION**
NCT03600883 (CodeBreaK100)

**AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST**
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.22.02524.

**DATA SHARING STATEMENT**
Qualified researchers may request data from Amgen clinical studies. Complete details are available at the following: http://www.amgen.com/datasharing.
Author Contributions

Conception and design: All authors

 Provision of study materials or patients: All authors

 Collection and assembly of data: All authors

 Data analysis and interpretation: All authors

 Manuscript writing: All authors

 Final approval of manuscript: All authors

 Accountable for all aspects of the work: All authors

 References


 Acknowledgment

 The authors thank the patients and their families for participating in this trial, as well as Lisa R. Denny, PhD, and Lee B. Hohaia, PharmD (ICON, Blue Bell, PA), whose work was funded by Amgen Inc, for medical writing assistance in the preparation of this manuscript. The authors thank Agnes Ang, PhD, who contributed to the biomarker analysis presented in this work, Maya Shehaye, PharmD, and Jennifer Martucci for operational planning assistance, Bob Dawson for graphics assistance, Liz Leight, PhD, and Brittany L. Phillips, PhD, for medical writing support (all employed by Amgen Inc, Thousand Oaks, CA).
Authors' Disclosures of Potential Conflicts of Interest

Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients With Pretreated KRAS G12C-Mutated Non-Small-Cell Lung Cancer: 2-Year Analysis of CodeBreak 100

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript.

For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Grace K. Dy
Consulting or Advisory Role: AstraZeneca, Mirati Therapeutics, Lilly, Amgen
Research Funding: Amgen (Inst),AstraZeneca (Inst), Mirati Therapeutics (Inst), Lilly (Inst), Sanofi (Inst), Boxta (Inst), Regeneron (Inst), Iovance Biotherapeutics (Inst), Revolution Medicines (Inst)

Ramaswamy Govindan
Consulting or Advisory Role: Merck, Jacobio, Precisa

Vamsidhar Velcheti
Honoraria: ITeos Therapeutics
Consulting or Advisory Role: Bristol Myers Squibb, Merck, AstraZeneca/MedImmune, GlaxoSmithKline, Amgen, Elevation Oncology, Merus, Taiho Oncology
Research Funding: Genentech (Inst), Trovagene (Inst), Eisai (Inst), OncoPlex Diagnostics (Inst), Alkermes (Inst), NantWorks (Inst), Genoptix (Inst), Altor Bioscience (Inst), Merck (Inst), Bristol Myers Squibb (Inst), Atreca (Inst), Heat Biologics (Inst), Leap Therapeutics (Inst), RSIP Vision (Inst), GlaxoSmithKline (Inst)

Gerald S. Falchook
Employment: Sarah Cannon Research Institute, HealthONE
Honoraria: Rocky Mountain Oncology Society
Consulting or Advisory Role: Fujifilm (Inst), EMD Serono, Silicon Therapeutics (Inst), Navire (Inst), Turning Point Therapeutics (Inst), Silicon Therapeutics (Inst), Predicine (Inst), Inspira (Inst), Regeneron (Inst), Jubilant Pharmaceuticals (Inst), BostonGene (Inst), BostonGene (Inst), Abbvie (Inst), Teon Therapeutics (Inst), Merck (Inst)

Speakers' Bureau: Total Health Conferencing
Research Funding: Millennium (Inst), EMD Serono (Inst), Celgene (Inst), MedImmune (Inst), Genmab (Inst), Vegenics (Inst), Novartis (Inst), AstraZeneca (Inst), Incyte (Inst), ARMO BioSciences (Inst), Kolltan Pharmaceuticals (Inst), 3-VP Biosciences (Inst), Abbvie (Inst), Aleron Therapeutics (Inst), DelMar Pharmaceuticals (Inst), EFFECTOR Therapeutics (Inst), Strategia Therapeutics (Inst), Fujifilm (Inst), Hutchison MediPharma (Inst), Regeneron (Inst), Biothera (Inst), Curegenix (Inst), Curis (Inst), Lilly (Inst), Jounce Therapeutics (Inst), OncoMed (Inst), Precision Oncology (Inst), Syndax (Inst), Taiho Pharmaceutical (Inst), Tesaro (Inst), Takeda (Inst), Beigene (Inst), Igenix (Inst), GlaxoSmithKline (Inst), Takeda (Inst), Topo Therapeutics (Inst), Takeda (Inst), LoxoNOVO (Inst), Loxo (Inst), Merck (Inst), Rgenix (Inst), Tarveda Therapeutics (Inst), Tocagen (Inst), Loxo (Inst), Jacobio (Inst), CicloMed (Inst), miRNA Therapeutics (Inst), Cellixid (Inst), ADC Therapeutics (Inst), Amgen (Inst), Elexiis (Inst), BioAtla (Inst), Turning Point Therapeutics (Inst), Ribon Therapeutics (Inst), Cyteir (Inst), Xencor (Inst), Daichii (Inst), Epizyme (Inst), Abbisko (Inst), Prelude Therapeutics (Inst), Poseida (Inst), Oncorus (Inst), Synthorx (Inst), BioInvent (Inst), Sapience Therapeutics (Inst), Bicycle Therapeutics (Inst), Silicon Therapeutics (Inst), PureTech (Inst), Immunogen/MacroGenics (Inst), Igm Biosciences (Inst), Navire (Inst), TeneoBio (Inst), Era5c, Inc (Inst), RasCal (Inst), Boehringer Ingelheim (Inst), Pyramid Biosciences (Inst), Samumed (Inst), ABL Bio (Inst), Freehome (Inst), Artios (Inst), NiKang Therapeutics (Inst), Molecular Templates (Inst), Sirnaomics (Inst), Accutar Biotech (Inst), Relay Therapeutics (Inst), Simcha Therapeutics (Inst), Black Diamond Therapeutics (Inst), Seagen (Inst), Jubilant Pharmaceuticals (Inst), Metabomed (Inst), Agenus (Inst), Talis Therapeutics (Inst), Zhuhai Yufan Biotechnologies (Inst), Mirati Therapeutics (Inst), Immunitax (Inst), Jazz Pharmaceuticals (Inst), Bayer (Inst)

Patents, Royalties, Other Intellectual Property: Handbook of Targeted Cancer Therapy
Travel, Accommodations, Expenses: Millennium, Sarah Cannon Research Institute, EMD Serono, Bristol Myers Squibb, Fujifilm, Amgen, SynthorSanofi

Antoine Italiano
Honoraria: Bayer, Daichi Sankyo, Lilly, Epizyme, Novartis, Roche, Ipsen
Consulting or Advisory Role: Roche, Daichi Sankyo, Immune Design, Epizyme, Bayer, Lilly
Research Funding: Roche, Bayer, AstraZeneca/MedImmune, PharmaMar, MSD Oncology, Merck Serono

Jürgen Wolf
Honoraria: AbbVie, AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, MSD, Novartis, Roche, Amgen, Bayer, Blueprint Medicines, Chugai Pharma
Europe, Daiichi Sankyo Europe GmbH, Ignyta, Janssen, Lilly, Loxo, Loxo/Lilly, Pfizer, Seagen, Takeda, Nuvalent, Inc
Consulting or Advisory Role: AbbVie, AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, Chugai Pharma, Ignyta, Lilly, MSD Oncology, Novartis, Pfizer, Roche, Janssen, Loxo/Lilly, Blueprint Medicines, Amgen, Takeda, Avena, Pfizer, Blueprint Medicines, Daiichi Sankyo Europe GmbH, Seagen, Nuvalent, Inc
Research Funding: Bristol Myers Squibb, Novartis, Pfizer, Janssen
Travel, Accommodations, Expenses: Bristol Myers Squibb, Janssen, Novartis, Pfizer

Adrian G. Sacher
Consulting or Advisory Role: AstraZeneca, Genentech/Roche, Bristol Myers Squibb
Uncompensated Relationships: Genentech/Roche, AstraZeneca
Toshiaki Takahashi
Honoraria: AstraZeneca Japan, Chugai Pharma, Lilly Japan, Ono Pharmaceutical, MSD K.K, Pfizer, Boehringer Ingelheim, Roche, Takeda, Yakult Honsha
Research Funding: AstraZeneca Japan (Inst), Lilly Japan (Inst), Chugai Pharma (Inst), Ono Pharmaceutical (Inst), MSD K.K (Inst), Pfizer (Inst), Amgen (Inst), Boehringer Ingelheim (Inst), Merck (Inst)

Suresh S. Ramalingam
Consulting or Advisory Role: GlaxoSmithKline
Travel, Accommodations, Expenses: Bristol Myers Squibb, Pfizer (Inst), Merck (Inst), AstraZeneca/MedImmune (Inst), Vertex (Inst), Takeda (Inst), EMD Serono (Inst), Genmab (Inst), Advaxis (Inst), Amgen (Inst)

Travel, Accommodations, Expenses: AstraZeneca
Other Relationship: American Cancer Society

Dong-Wan Kim
Research Funding: Alpha Biopharma (Inst), AstraZeneca/MedImmune (Inst), Hanmi (Inst), Janssen (Inst), Merus (Inst), Mirati Therapeutics (Inst), MSD (Inst), Novartis (Inst), Ono Pharmaceutical (Inst), Pfizer (Inst), Roche/Genentech (Inst), Takeda (Inst), TP Therapeutics (Inst), Xcovery (Inst), Yuhan (Inst), Boehringer Ingelheim (Inst), Amgen (Inst), Daiichi Sankyo (Inst), Chong Kun Dang Pharmaceutical (Inst), BridgeBio Pharma (Inst), GlaxoSmithKline (Inst), Merck (Inst), inno.N (Inst)

Alfredo Addeo
Consulting or Advisory Role: Roche, AstraZeneca/MedImmune, Bristol Myers Squibb Foundation, MSD Oncology, Pfizer, Novartis, Astellas Pharma, Amgen, Lilly
Travel, Accommodations, Expenses: Roche, Takeda

Jayesh Desai
This author is a member of the Journal of Clinical Oncology Editorial Board. Journal policy recused the author from having any role in the peer review of this manuscript.

Consulting or Advisory Role: Beigene, Amgen (Inst), Pierre Fabre, Bayer, GlaxoSmithKline, Merck KGaA, Boehringer Ingelheim, Roche/Genentech, Daiichi Sankyo Europe GmbH, Novartis, Pfizer
Research Funding: Roche (Inst), GlaxoSmithKline (Inst), Novartis (Inst), Bionomics (Inst), Beigene (Inst), Lilly (Inst), Bristol Myers Squibb (Inst), AstraZeneca/MedImmune (Inst)

Martin Schuler
Honoraria: Boehringer Ingelheim, Bristol Myers Squibb, Novartis, Amgen, Janssen-Cilag
Consulting or Advisory Role: AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Novartis, Roche, Takeda, Amgen, GlaxoSmithKline, Merck Serono, Sanofi, Janssen Oncology
Research Funding: Bristol Myers Squibb (Inst), AstraZeneca (Inst)

Patents, Royalties, Other Intellectual Property: Highly sensitive method for mutation detection by PCR (Inst)
2-Year Analysis of Sotorasib Outcomes From CodeBreaK 100

No other potential conflicts of interest were reported.