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Alveolar surfactant modulates the antimicrobial function of bronchoalveolar macrophages (BAM). Little is
known about the effect of surfactant-associated proteins in bronchoalveolar lavage fluid (BALF) on the
interaction of BAM and Blastomyces dermatitidis. We investigated BALF enhancement or inhibition of TNF-a
production by BAM stimulated by B. dermatitidis. BAM from CD-1 mice were stimulated with B. dermatitidis
without or with normal BALF, surfactant protein A-deficient (SP-A~'") or surfactant protein D-deficient
(SP-D™'7) BALF, or a mixture of SP-A~/~ and SP-D~'~ BALF. An enzyme-linked immunosorbent assay was
used to measure tumor necrosis factor alpha (TNF-«a) in culture supernatants. BALFs were standardized in
protein concentration. BAM plus B. dermatitidis (BAM-B. dermatitidis) TNF-a production was inhibited =47%
by BALF or SP-A~'~ BALF (at 290 or 580 g of protein/ml, P < 0.05 to 0.01); in contrast, SP-D~/~ BALF did
not significantly inhibit TNF-o production. If SP-A~'~ BALF was mixed in equal amounts with SP-D~'~ BALF,
TNF-a production by BAM-B. dermatitidis was inhibited (P < 0.01). Finally, pure SP-D added to SP-D~/~
BALF inhibited TNF-a production by BAM-B. dermatitidis (P < 0.01). B. dermatitidis incubated with BALF and
washed, plus BAM, stimulated 63% less production of TNF-a than did unwashed B. dermatitidis (P < 0.05).
SP-D was detected by anti-SP-D antibody on BALF-treated unwashed B. dermatitidis in an immunofluorescence
assay (IFA). The BALF depleted by a coating of B. dermatitidis lost the ability to inhibit TNF-« production (P <
0.05). 1,3-B-Glucan was a good stimulator of BAM for TNF-a production and was detected on B. dermatitidis
by IFA. B-Glucan incubated with BALF inhibited the binding of SP-D in BALF to B. dermatitidis as demon-
strated by IFA. Our data suggest that SP-D in BALF binds (3-glucan on B. dermatitidis, blocking BAM access
to B-glucan, thereby inhibiting TNF-a production. Thus, whereas BALF constituents commonly mediate
antimicrobial activity, B. dermatitidis may utilize BALF constituents, such as SP-D, to blunt the host defensive

reaction; this effect could reduce inflammation and tissue destruction but could also promote disease.

Blastomycosis is a pulmonary mycotic disease contracted by
inhalation of airborne conidia or mycelial fragments of the
dimorphic fungus Blastomyces dermatitidis, which promptly
converts to its parasitic form, yeasts (2, 23, 39). The disease can
become chronic and can disseminate, with granuloma forma-
tion and suppuration. Complete understanding of the epide-
miology of blastomycosis is hindered by a lack of reporting (23,
25). The lung is an important interface between the host and
an environment that contains a plethora of potentially harmful
microorganisms. The innate immune defense of the lung in-
cludes the bronchoalveolar macrophages (BAM) and pulmo-
nary surfactant.

Under ordinary conditions BAM are a part of the defense
against inhaled microorganisms. The bactericidal activity of
BAM from humans, rats, or mice is well documented. In con-
trast, BAM fungicidal activity is limited for such pulmonary
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pathogens as Histoplasma capsulatum (24), B. dermatitidis (42),
Coccidioides immitis (5), and Aspergillus fumigatus mycelia
(37). A weak fungicidal activity of BAM for B. dermatitidis
might relate to only a modest respiratory burst triggered by B.
dermatitidis (8, 10).

Pulmonary surfactant is a complex mixture of lipids, phos-
pholipids, and proteins (36). Two of the surfactant-associ-
ated proteins, SP-A and SP-D, are involved in innate im-
munity and lung homeostasis and belong to a family known
as collectins. One important biological role of collectins (20)
is to bind to targets such as bacteria (26, 27), viruses (17-19,
32), and fungi (13, 29-31, 35). The collectins bind by recog-
nizing patterns of carbohydrate distribution and, by binding
and/or enhancement of phagocytosis, increase the clearance
of the target by BAM. Little is known regarding the inter-
action of B. dermatitidis with surfactant protein (SP-A and
SP-D) in the pulmonary compartment. The goal of the
present study was to investigate the role of SP-A and SP-D
in the interaction between BAM and B. dermatitidis, espe-
cially with regard to tumor necrosis factor alpha (TNF-a)
production, since TNF-a is an important orchestrator of
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lung innate and adaptive immune responses, and this role is
especially prominent with fungi (11, 15, 34).

MATERIALS AND METHODS

Animals. Male CD-1 mice, 8 to 12 weeks old, were obtained from the breeding
colony of Charles River Laboratory, Hollister, CA. Male C3H/HeN SP-A neg-
ative (SP-A™/7) mice and male NIH Swiss Black SP-D-negative (SP-D /") mice,
8 to 10 weeks old, were bred and raised in the University of Cincinnati Labora-
tory Animal Facility. These mice were housed in microisolator cages in rooms
with HEPA-filtered laminar airflow and received autoclaved food and bedding.
All animal studies conformed to National Institutes of Health, University of
Cincinnati, and Veterans Affairs Medical Centers guidelines and were approved
by the Institutional Animal Care and Use Committee of the California Institute
for Medical Research.

Reagents and media. The tissue culture medium RPMI 1640 with L-glu-
tamine, 10% (vol/vol) heat-inactivated fetal bovine serum, and penicillin-
streptomycin (100 U/ml and 100 wg/ml, respectively) was obtained from
Gibco Laboratories, Grand Island, NY, and the mixture is referred to as
complete tissue culture medium (CTCM). Rabbit anti-mouse SP-D was ob-
tained from Chemicon International Laboratories (Temecula, CA), and flu-
orescein-conjugated goat anti-rabbit immunoglobulin G (IgG) and goat anti-
mouse IgG (both goat antisera heavy- and light-chain only) from Zymed Lab
(San Francisco, CA). B-1,3-Glucan was prepared from Saccharomyces cerevi-
siae by autoclaving cell walls in 19 mM citrate buffer to separate mannans
(supernatant) and then extracting the insoluble B-1,3-glucan by hot 3%
NaOH extraction under nitrogen (4), and the purity was verified by infrared
spectroscopy (Sigma Chemical Co., St. Louis, MO). Monoclonal anti-1,3-3-
glucan mouse IgG (kappa light-chain isotype) was obtained from Biosupplies
Australia Pty., Ltd. (Parkville, Victoria, Australia).

Fungi. B. dermatitidis ATCC 26199, an isolate that is virulent in mice (40), was
used in all experiments. B. dermatitidis yeasts are so large (>10 pm in diameter)
that a single macrophage can only sometimes ingest one and with great difficulty;
moreover, the organisms often clump in units of two to three cells, making
ingestion even more problematic. Microscopic observations show that B. derma-
titidis units are commonly only surrounded by macrophages rather than being
ingested (9). Viable B. dermatitidis was prepared from cultures grown for 72 h on
blood agar plates at 37°C, and growth was suspended in 3 ml of saline. The
suspension was pelleted by centrifugation at 400 X g for 10 min, and the pellet
suspended in 1 ml of saline and counted with a hemacytometer. A suspension of
5 X 10° viable B. dermatitidis/ml of saline was made.

Heat-killed (HK) B. dermatitidis was prepared from cultures grown for 72 h on
blood agar plates at 37°C and suspended in 5 ml of saline. The suspension was
heated at 65°C for 30 min with mixing every 10 min and pelleted by centrifuga-
tion at 400 X g for 10 min, the pellet was suspended in 5 ml of saline, and the HK
B. dermatitidis was counted by using a hemacytometer. The suspension had 53 X
10° HK B. dermatitidis/ml. It was diluted to 10 ml to yield 5 x 10° HK B.
dermatitidis/ml, and portions were stored at —80°C. Viability testing assured the
absence of viable B. dermatitidis.

BAM. The lungs of CD-1 mice were lavaged with Dulbecco phosphate-buff-
ered saline without calcium or magnesium but containing 10% fetal bovine
serum and 0.1% EDTA as previously described (41). Cells obtained by repeated
1-ml lavages (total of 10 ml/mouse) were pelleted by centrifugation (400 X g, 10
min). Pelleted cells from 10 mice were pooled, washed once in CTCM, and
counted with a hemacytometer. A yield of (8.5 = 2.1) X 10° cells/mouse, highly
enriched for macrophages (97.5% = 3.2%), was obtained by this method. BAM
monolayers were formed by incubating 0.1 ml of lavaged cells (10°/ml of CTCM)
per microtest plate well (A/2, Costar 3696; Corning, Inc., Corning, NY) for 2 h
at 37°C in 5% CO,-95% air humidified atmosphere. After incubation, nonad-
herent cells were aspirated. A total of 90% of the incubated cells adhered, and
the monolayer contained approximately 9 X 10* macrophages per well.

Electrophoresis and immunoblotting. Samples were subjected to sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 10% Tris-
glycine and 1-mm precast gels in an X-Cell Sure-Lock chamber (Novex; Invitro-
gen, Carlsbad, CA) with reagents and according to instructions supplied by the
vendor. For the reduction of samples, NuPAGE sample reducing agent (Invitro-
gen) was added so that it was 10% in the sample.

SDS-PAGE gel proteins were blotted to polyvinylidene difluoride membranes
by using an X-Cell II blot module (Novex) using reagents and according to
instructions provided by the vendor. Blotted polyvinylidene difluoride mem-
branes were air dried and stored at 4°C until needed.

Western immunoblotting of membranes was done with reagents and according
to instructions supplied with the SuperSignal West Pico chemiluminescent sub-
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strate kit (Pierce, Rockford, IL). Blocked membranes were probed for 1 h with
the primary antibody, rabbit anti-mouse SP-D (1:100), in buffer. After a washing
step, the membranes were treated with goat anti-rabbit IgG-horseradish perox-
idase conjugate (1:1,000) in buffer for 1 h. After the membranes were washed,
the substrate (H,O, plus luminol [Invitrogen, Carlsbad, CA]) was added for 5
min. After the substrate was drained, the membrane was exposed to X-ray film
(CL-X Posure, 5 by 7 in.; Pierce), the film was developed, and the images were
digitized (Bio-Image, Ann Arbor, MI).

BALF. The lungs of CD-1, SP-A™/~, and SP-D~/~ mice were lavaged with 1 to
3 ml of PBS with penicillin-streptomycin per mouse, and the lavage fluid was
centrifuged. Subsequently, CD-1 (wild-type) BALF will be referred to as normal
bronchoalveolar lavage fluid (BALF) or, when not specified, it is this BALF that
is meant. Pools of BALF from four to five SP-A™/~ or SP-D ™/~ mice or from ten
CD-1 mice were prepared. Cell-free BALF was lyophilized, suspended in 1 ml of
distilled water, and dialyzed (Spectra/Por-1 membrane; Spectrum Laboratories,
Inc., Rancho Dominguez, CA; exclusion, 6,000 to 8,000 molecular weight)
against 45 ml of saline. The protein concentrations of BALF were measured
(BCA protein assay reagent; Pierce).

Pure SP-D (purified recombinant rat SP-D dodecamers [116.3 wg/ml]), with
Tris-buffered saline and 2 mM EDTA, was studied (17). This protein was purified
from conditional medium of stably transfected CHO-K1 cells by gel filtration
chromatography on maltosyl agarose, followed by agarose gel filtration chroma-
tography. The reduced product appeared as a single protein band on SDS-
PAGE. Endotoxin levels were determined by chromogenic assay and was 1.9
pg/png of protein.

Treatment of macrophages and challenges. BAM were incubated (37°C, 5%
CO, + 95% air) with BALF, prepared as described above and diluted in CTCM,
from SP-A~/~, SP-D ', or SP-A~/~ BALF with SP-D~/~ BALF in a 1:1 ratio
and challenged with 0.01 ml of viable B. dermatitidis or HK B. dermatitidis (the
effector/target ratio thus being 2:1). Culture supernatants were collected after
24 h, and the TNF-a levels in supernatants were measured by enzyme-linked
immunosorbent assay (ELISA; Pierce/Endogen, Woburn, MA). The assay pro-
duces a linear dose response for the TNF-a concentration and absorbance at 450
nm, and a standard curve verifies this in each run.

Absorption of BALF and coating of B. dermatitidis. Absorption of BALF and
the coating of B. dermatitidis was done in 1-ml microcentrifuge tubes. Heat-killed
B. dermatitidis (6 % 10% in 0.5 ml of saline) was pelleted by centrifugation (10,000
rpm, 1 min), the saline was removed, and B. dermatitidis was suspended in 0.5 ml
of BALF (1,290 pg of protein/ml). B. dermatitidis plus BALF (B. dermatitidis-
BALF) was incubated, with mixing every 10 min, at 4°C for 1 h. After centrifu-
gation, the supernatant (once-absorbed BALF) was removed, and pelleted B.
dermatitidis was suspended in 0.5 ml of saline and counted. Coated B. dermatitidis
was suspended to 5 X 10%ml of saline, and 0.01-ml portions were used to
stimulate BAM.

Once-absorbed BALF (0.5 ml) was incubated with 6 X 10° B. dermatitidis for
1 h as described above and centrifuged. The supernatant BALF (twice-absorbed
BALF) was collected and tested at 290 ug of protein/ml.

Staining procedure. CD-1 BALF (290 pg/ml BALF) in CTCM, SP-D~/~
BALF (290 pg/ml BALF) in CTCM, and pure SP-D (20 pg/ml) with SP-D~/~
BALF (290 pwg/ml BALF) in CTCM (0.1-ml volumes) were incubated with 0.01
ml of viable B. dermatitidis (5 X 10%ml) for 1 h at room temperature and
centrifuged at 6,000 rpm/min for 1 min. The pellet was washed with 0.1 ml of
CTCM and incubated for 30 min with rabbit anti-mouse SP-D diluted 1:10 in
CTCM. The suspension was centrifuged, and the pellet was suspended for 30 min
in fluoresceinated goat anti-rabbit IgG conjugate diluted 1:10 in CTCM. The
suspension was recentrifuged, and the pellet was washed and resuspended in 0.01
ml of CTCM. The pellet was studied with a fluorescence microscope.

For photographic recording, the same procedure with BALF was used except
that HK B. dermatitidis (because of biohazard considerations in the photography
laboratory) and goat anti-rabbit antibody conjugated to phycoerythrin were sub-
stituted for the corresponding cells and antibody described above.

A total of 0.01 ml of viable B. dermatitidis (5 X 10°/ml) was incubated with 0.1
ml of anti-B-glucan mouse IgG diluted 1:10 in CTCM for 1 h at room temper-
ature, centrifuged, washed as described above, and suspended in goat anti-mouse
1gG in CTCM (1:10) for 30 min. The pellet was washed and suspended as
described above and examined with a fluorescence microscope.

Statistics. Data are presented as means of triplicate determinations * the
standard error of the mean in text and as bars in the figures. Comparisons
between groups were analyzed by using the Student ¢ test, with significance
assumed to be a P value of <0.05.
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A BALF-1 Effect on TNF-alpha Production
by BAM
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FIG. 1. Effect of BALF on BAM plus HK B. dermatitidis produc-
tion of TNF-a. BAM-B. dermatitidis (2:1) production of TNF-a, as
measured by ELISA (absorbance at 450 nm), was inhibited in a con-
centration-dependent manner. (A) Inhibition by BALF (BALF-1) at
145 and 290 pg/ml (both P < 0.01). (B) Inhibition by a second prep-
aration of BALF (BALF-2) at 238 and 476 pg/ml (P < 0.01).

RESULTS

Inhibition of TNF-a production by BAM-B. dermatitidis by
BALF. TNF-a production by BAM on exposure to HK B.
dermatitidis was inhibited by 61% in the presence of normal
(CD-1) BALF at 145 pg/ml or 78% by BALF at 290 pg/ml
(both P < 0.01) (Fig. 1A). In a second experiment, with an-
other BALF preparation, TNF-a production by BAM in re-
sponse to HK B. dermatitidis was less but was inhibited by 21%
in presence of BALF at 238 pg of protein/ml or 63% (P <
0.01) by BALF at 476 g of protein/ml (Fig. 1B). These results
suggest that BALF inhibits TNF-a production by BAM in a
concentration-dependent manner.

In a separate experiment, heat-killed B. dermatitidis was
coated with BALF as described in Materials and Methods.
Whereas BALF at 290 wg/ml inhibited TNF-« production by
90%, the coated B. dermatitidis inhibited the stimulation of
BAM for TNF-a production by 63% (P < 0.05) compared to
stimulation of BAM with uncoated HK B. dermatitidis (data
not shown). This result indicated that factor(s) in BALF bind
to B. dermatitidis and interfere with the stimulation of BAM for
TNF-a production. Studies of the nature of the possible coat-
ing material are described subsequently.

BALF twice absorbed with HK B. dermatitidis, prepared as
described in Materials and Methods, was compared at 290 pg

BLASTOMYCES AND COLLECTINS 4551

A Role of BALF on TNF-alpha
Production by BAM
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FIG. 2. Effect of normal, SP-D~/~, and SP-A~'~ BALF on produc-
tion of TNF-a by BAM plus viable B. dermatitidis. BAM-B. dermatitidis
(2:1) production of TNF-a measured by ELISA (absorbance at 450
nm) is shown. (A and B) Inhibition by different BALFs at 290 pg/ml
(A) and inhibition by BALFs at 580 pg of protein/ml (B). BALF and
SP-A~/~ BALF inhibition (both P < 0.05 in panel A and P < 0.01 in
panel B).

of protein/ml to unabsorbed BALF. The absorbed BALF had
decreased ability to inhibit TNF-a production by BAM-HK B.
dermatitidis compared to unabsorbed BALF: 23% versus 79%
(P < 0.05). A similar result, 30% inhibition, was obtained in a
separate experiment with a 156-pg/ml preparation of twice-
absorbed BALF. This suggests that the material in BALF that
inhibits the BAM production of TNF-q, in response to HK B.
dermatitidis, binds to B. dermatitidis (during the absorption
procedure) and is thus depleted from the BALF.

SP-D-deficient lavage fails to inhibit TNF-« from BAM after
exposure to viable B. dermatitidis. TNF-a production by BAM
to viable B. dermatitidis was inhibited by 51% in the presence
of BALF (290 wg/ml) or 47% by BALF SP-A~'~ (290 pg/ml)
(both P < 0.05). Viable B. dermatitidis produced more TNF-a
from the BAM controls than the experiments described above,
thus the absolute amount with normal BALF is greater, and
the percent inhibition is similar. There was no significant inhi-
bition or enhancement by SP-D/~ BALF (290 pg/ml) com-
pared to BAM-B. dermatitidis (Fig. 2A). A second experiment
gave similar results with the three BALFs.

When the protein concentration of BALF was increased to
580 pg/ml, TNF-a production by BAM to B. dermatitidis was
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Effect of Adding SP- A-/- BALF to

SP-D-/- BALF
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FIG. 3. Effect of normal BALF and SP-A™/~ BALF added to SP-
D/~ BALF on TNF-«a production by BAM plus viable B. dermatitidis.
Inhibition of BAM-B. dermatitidis (2:1) production of TNF-a by BALF
at 290 and 580 pg of protein/ml was measured by ELISA (absorbance
at 450 nm). Inhibition by SP-A~/~ BALF added to SP-D /" BALF in
1:1 at 290 and 580 wg/ml is shown. For normal BALF or a mixture of
BALFs at 290 or 580 wg/ml, the P values for all four were <0.01 versus
control. Comparison of BALF, or a mixture of BALFs, at 290 versus
580 wg/ml yielded P values of <0.05.

inhibited 88% by BALF, 68% by SP-A~/~ BALF (both P <
0.01), and 6% by SP-D~/~ BALF (P > 0.05) compared to
BAM-B. dermatitidis (Fig. 2B). A second experiment gave sim-
ilar results with the three BALFs. These results suggest that
SP-D, but not SP-A, in BALF inhibits TNF-a production by
BAM-B. dermatitidis.

Inhibition of TNF-a production by BAM plus viable B. der-
matitidis by normal BALF and SP-A~/~ BALF added to SP-
D/~ BALF. When SP-A~/~ BALF was added to SP-D "/~
BALF at 1:1 for a total protein concentration of 290 wg/ml,
TNF-a production by BAM-B. dermatitidis was inhibited (P <
0.01) 79%, similar to 75% by normal BALF at 290 pg/ml (P <
0.01). A second experiment gave similar results. If the total
BALF protein in 1:1 mixing experiments was 580 wg/ml,
TNF-a production by the BAM-B. dermatitidis-BALF mixture
was inhibited by 99% (P < 0.01) compared to BAM-B. derma-
titidis without BALF (Fig. 3). A second experiment gave sim-
ilar results. These findings indicate that SP-D/~ BALF lacks
a factor(s) for inhibiting TNF-a production by BAM-B. der-
matitidis that can be supplied by SP-A~'~ BALF.

Inhibition of TNF-a production by BAM plus viable B. der-
matitidis by normal BALF and SP-D added to SP-D~/~ BALF.
TNF-a production by BAM-B. dermatitidis was inhibited by
29% (P < 0.05) in presence of another batch of BALF (290
pg/ml), whereas in a concurrent study SP-D~/~ BALF (290
pg/ml) failed to significantly inhibit TNF-« production (Fig. 4).
TNF-a production was significantly (25%, P < 0.01) inhibited
when SP-D/~ BALF (290 pg/ml) contained 20 wg of pure
SP-D/ml (the maximum concentration available for study) ver-
sus BAM-B. dermatitidis plus SP-D~/~ BALF (Fig. 4). A sec-
ond experiment gave the same findings (30% inhibition).
Lower SP-D concentrations did not inhibit TNF-a production.
These findings indicate that SP-D '~ BALF lacks a factor for
inhibiting TNF-a production by BAM-B. dermatitidis that can
be supplied by pure SP-D.

INFECT. IMMUN.

Effect of Adding SP-D to SP- D /- BALF
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FIG. 4. Effect of adding SP-D to SP-D~/~ BALF on TNF-a pro-
duction by BAM-B. dermatitidis. BAM-B. dermatitidis (2:1) production
of TNF-a, as measured by ELISA (absorbance at 450 nm), was inhib-
ited by normal BALF (290 p.g/ml) (P < 0.05), SP-D/~ BALF (P >
0.05), and SP-D added to SP-D~/~ BALF at 20 pg/ml (P < 0.01).

Immunoblotting of BALF for SP-D. When normal BALF
and SP-D ™/~ BALF were electrophoresed, blotted to poly-
vinylidene difluoride membrane, and probed for SP-D, only
the former showed bands (Fig. 5A). In another experiment

A B

FIG. 5. Immunoblotting for SP-D. (A) Natural (nonreduced) BALF
at 40 pg of protein/lane. Normal, lane 1; SP-D~/~, lane 2. The dark band
in lane 1 comigrates with purified nonreduced SP-D trimers. The lighter
band is understood to be a small amount of trimer aggregates, stabilized
by nondisulfide bonds. Minor species larger than trimers are frequently
seen in protein preparations from natural sources. (B) SP-D at 2 pg of
protein/lane: natural, lane 1; reduced lane 2. BALF at 20 pg of protein/
lane: natural, lane 3; reduced, lane 4. In lane 1, the top band corresponds
to the lighter band (aggregates) in lane 1 of Fig. SA. SP-D is detected as
single bands in BALF, the lesser amount of BALF studied in panel B
apparently results in nondetection of the second band in natural BALF
compared to panel A. This band in lane 3 and the corresponding band in
lane 1 (SP-D trimers) comigrates with bovine serum albumin (about 98
kDa). The band in lane 4 and the corresponding band in lane 2 comigrate
with a 36-kDa molecular mass marker and are considered to be reduced
monomers. The intermediate band, between these two markers, in lane 1,
comigrates with a 64-kDa molecular mass marker and is considered to
represent dimers. The faintest band, at the bottom of lane 1, is understood
to be unreduced monomers, which migrate more rapidly than reduced
monomers because the lectin domain is folded in half by an intrachain
disulfide band (with reduction, the protein unfolds and migrates as a
larger protein in the presence of SDS). With the heavily loaded and
exposed unreduced gels, delineation of the nature of the immunoreactive
species is facilitated.
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FIG. 6. Immunofluorescent staining of SP-D in BALF on B. der-
matitidis using an indirect immunofluorescence technique with anti-
SP-D antibody. Light microscopy in panels A and C shows B. derma-
titidis not visible with fluorescence microscopy with control, SP-D~/~
BALF. A diffuse cell surface staining pattern (B) and a pattern of
staining focalized to budding region (D) with normal BALF are also
shown.

where pure SP-D and BALF, each studied reduced and non-
reduced, were immunoblotted for SP-D, reduced SP-D and
reduced BALF gave single bands of similar molecular weights
(Fig. 5B, lanes 2 and 4). In contrast, nonreduced SP-D showed
four bands, one of which was seen in nonreduced BALF (Fig.
5B, lanes 1 and 3). Estimation of the area density of the band
in reduced SP-D with that in reduced BALF at 10 times the
concentration suggests that the SP-D in the BALF preparation
approximated 0.1 pg.

Immunofluorescence staining of SP-D in BALF bound to B.
dermatitidis. BALF, SP-D~/~ BALF, and SP-D/~ BALF with
pure SP-D added were incubated with viable B. dermatitidis
and then incubated with rabbit anti-mouse SP-D, followed by
fluoresceinated goat anti-rabbit antibody. In three experi-
ments, bright green immunofluorescence was seen in the wall
of B. dermatitidis with normal BALF. (In the absence of any
antibodies under these conditions, B. dermatitidis appears red,
a negative result, as was the case when the indirect antibody
was applied without the monoclonal direct antibody). B. der-
matitidis coated with SP-D~/~ BALF was not stained; however,
B. dermatitidis was stained when pure SP-D was added to
SP-D™/~ BALF, and the mixture was used for coating B. der-
matitidis prior to application of the fluorescent indirect anti-
body system. These results show that SP-D in BALF bound to
B. dermatitidis.

In the detailed photographic studies (Fig. 6) with HK B.
dermatitidis and BALF, we noted two patterns of fluorescence
(Fig. 6). One pattern was intense staining of B. dermatitidis,
apparently SP-D covering the entire yeast surface (Fig. 6B).
The second pattern (Fig. 6D) was fluorescence primarily at the
budding regions of the cells.

B-Glucan and BAM TNF-a production and the effects of
normal, SP-A~~, and SP-D~/~ BALF. B-1,3-Glucan (250 g/
ml), a cell wall component of B. dermatitidis, stimulated TNF-a
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FIG. 7. Eftect of BALF on B-glucan stimulated BAM on TNF-a
production. TNF-a production by BAM plus B-glucan (250 pg/ml),
measured by ELISA (absorbance at 450 pg/ml), is shown and com-
pared to viable B. dermatitidis. (A) Inhibition (P < 0.01) by normal
BALF (580 pg of protein ml). (B) Inhibition by 290 pg/ml of a second
BALF preparation (P < 0.01) and BALF from SP-D~/~ (P < 0.05),
SP-A™/~ (P < 0.01), and SP-D/~ added to SP-A~/~ BALF in 1:1
mixture (P < 0.01).

SP-D-/- + SP-A-
BALF at 290 meg/ml

production by BAM (Fig. 7A). Preliminary experiments
showed this glucan concentration to be optimal. This concen-
tration of glucan was less (P < 0.01) of a stimulus than the
concentration of viable B. dermatitidis studied here. BALF at
580 wg/ml significantly inhibited (P < 0.01) TNF-a production
(Fig. 7A) by glucan (250 wg/ml). With a second BALF prepa-
ration, 290 wg/ml could inhibit glucan-induced TNF-a produc-
tion 97% (Fig. 7B) (P < 0.01). Production was inhibited 99%
by BALF SP-A~/~ (P < 0.01) and 49% by SP-D '~ BALF
(P < 0.05), all at 290 wg of protein/ml (Fig. 7B). In a mixing
experiment wherein SP-A~'~ BALF was added 1:1 to SP-D~/~
BALF for a total protein concentration of 290 pg/ml, TNF-a
production by BAM with B-glucans was inhibited by 99% (P <
0.01) (Fig. 7B). The addition of polymyxin (5 pg/ml), to bind
possible endotoxin contamination of the glucan preparation,
did not affect the glucan results. These results suggest that
factor(s) in BALF (more prominent in SP-A~'~ BALF) could
be binding to B-glucans in the cell wall and partly explain the
inhibition of BAM TNF-a production by viable B. dermatitidis.
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Immunofluorescent staining of 3-glucan on B. dermatitidis.
Viable B. dermatitidis was incubated with mouse monoclonal
anti-p-1,3-glucan antibody and fluoresceinated indirect anti-
body as described in Materials and Methods. In three experi-
ments, bright green immunofluorescence was seen in the wall
of B. dermatitidis. Staining was more intense at the junction of
the budding yeast with the parent yeast cell. These results
demonstrate the B-glucan in B. dermatitidis cell wall and show
glucan accessibility to a large protein molecule (antibody).

Binding of SP-D in BALF to B-glucan. BALF (290 pg/ml)
was mixed with B-glucan (250 pg/ml) for 30 min before incu-
bation with B. dermatitidis for 1 h. The treated B. dermatitidis
was then incubated with rabbit anti-mouse SP-D and then goat
anti-rabbit IgG conjugate. In the three experiments, B. derma-
titidis was not stained with fluorescence when BALF mixed
with B-glucan was used. However, B. dermatitidis was stained
when BALF without B-glucan was used. This shows that B-glu-
can bound to SP-D in BALF and thus blocked SP-D from
binding to B. dermatitidis.

DISCUSSION

BAM are highly phagocytic and express a broad range of
receptors. The production of TNF-a is important in promoting
host defense against B. dermatitidis (15), as well as other patho-
genic fungi, such as Cryptococcus neoformans (11) and A. fu-
migatus (34), and intracellular bacterial pathogens such as My-
cobacterium tuberculosis (21, 22). Levels of macrophage TNF-a
production by strains of B. dermatitidis correlate with strain
pathogenicity, in that virulent isolates stimulate less TNF-«
than do nonvirulent strains (15). Although limiting inflamma-
tion and tissue destruction may be helpful to the host, it is also
possible that B. dermatitidis has a novel offensive weapon in the
pathogen-host interaction, namely, a means, in the presence of
BALF, to blunt the defensive action engendered by host
TNF-a production. Because TNF-« production is important in
understanding the pathogenesis of B. dermatitidis, we explored
the role of lung surfactant in enhancing or inhibiting TNF-a
production by BAM in response to B. dermatitidis.

We found that BALF has a role in the interaction between
viable B. dermatitidis and BAM, namely, inhibition of TNF-a
production. The data presented indicate that if B. dermatitidis
was heat killed and coated with BALF, BAM TNF-a produc-
tion was similarly inhibited. We report that B-glucan stimulates
TNF-a production by BAM, and TNF-a production is strongly
inhibited in the presence of BALF. This suggests that glucan
serves as a ligand for a fraction in BALF. There is increasing
evidence that hydrophilic surfactant-associated proteins SP-A
and SP-D play a first-line defensive role in the alveolar air-
space and interact with alveolar macrophages during the rec-
ognition and clearance of pathogens responsible for pulmo-
nary inflammation. Binding of SP-A and SP-D to the surfaces
of microbes such as Staphylococcus aureus (16), influenza A
virus (18), and C. neoformans (38) and the enhancement of
phagocytosis via agglutination or receptor mediation has been
well documented. These collectins may also have a direct cidal
effect on fungi (33). SP-D has been shown to play a role in
innate immunity through modulation of inflammation and
clearance of organisms.

We affirmed the presence of SP-D in our BALF prepara-

INFECT. IMMUN.

tions and its absence from SP-D™/~ BALF and found that
SP-D "/~ BALF did not significantly inhibit TNF-a production
by BAM-B. dermatitidis. However, the mixing of SP-D~/~
BALF and SP-A~/~ BALF inhibited TNF-« production in this
system. Pure SP-D added to SP-D™/~ BALF had a similar
effect. There are currently no commercial assays for measuring
SP-D in murine BALF, but in comparing the area density of
the immunoblots (Fig. 5B) of reduced pure SP-D and BALF,
we estimate 290 pg of BALF protein/ml would contain approx-
imately 1.5 pg of SP-D/ml. Differences between native and
recombinant proteins or between species (14) could result in
differences in SP-D potency in our assays.

B-Glucan appears to be responsible for at least part of the
stimulus in B. dermatitidis to BAM for TNF-a production, and
this stimulus could be inhibited by normal BALF or SP-A™/~
BALF. We are not aware of prior studies showing the role of
SP-D in the interaction between BAM and B. dermatitidis.
However, studies have shown SP-D binds to A. fumigatus
conidia, acting as an opsonin for macrophages (30). A signif-
icant increase in lung inflammation in Pneumocystis carinii-
infected SP-D ™/~ mice and delayed early clearance of P. carinii
has been reported (3). SP-D agglutinates Haemophilus influ-
enzae and group B Streptococcus (GBS), and in SP-D™/~ mice
there was decreased association of GBS and H. influenzae with
alveolar macrophages. Moreover, infection with GBS and H.
influenzae significantly increased proinflammatory cytokines,
TNF, interleukin-6, and MIP-2 in lung homogenates from SP-
A™'~ and SP-D ™/~ mice (28). SP-D is chemotactic to neutro-
phils and enhances the uptake of bacteria such as Escherichia
coli, Streptococcus pneumoniae, and S. aureus (27).

It was noteworthy that when SP-D~/~ BALF, lacking inhib-
itory influence on BAM TNF-a production, was added to SP-
A™'~ BALF, not only were the inhibitory factor(s) restored (as
might be expected if the sole factor was SP-D supplied by the
SP-A~’~ BALF), but the activity of the mixture was greater
than that of SP-A~'~ BALF alone. This suggests some synergy
between SP-A~/~ and SP-D~/~ BALF, as if SP-A~/~ BALF
also removed some blocker of activity in SP-D~/~ BALF, or
SP-D™/~ BALF supplied a factor enhancing the activity (pre-
sumed to be SP-D) in SP-A~/~ BALF, or possibly some other
interaction occurred that is also presently unclear. Previous
studies have suggested SP-D~/~ BALF may contain increased
lipids, as well as various cytokines, proteases, and oxidants, all
of which may have immunomodulatory properties. Our finding
provides an avenue for further research.

BALF-incubated B. dermatitidis showed SP-D on B. derma-
titidis, whereas B. dermatitidis SP-D fluorescence, as expected,
was absent after B. dermatitidis incubation with only SP-D~/~
BALF and was restored when pure SP-D was added. These
observations provide confirmation of an earlier report (13)
that SP-D binds to B. dermatitidis. The staining patterns of
SP-D on B. dermatitidis suggest the distribution of the ligand
for SP-D on B. dermatitidis may be variable, possibly related to
different phases of the cell cycle and focalization of B-glucan.
The staining at the budding region warrants further study. Our
immunofluorescence studies showed B-glucan in B. dermatiti-
dis cell walls, confirming studies associating B-glucan with B.
dermatitidis (12). B-Glucan could block the demonstration of
SP-D on B. dermatitidis after BALF incubation, suggesting that
SP-D is binding to B-glucan on B. dermatitidis. We propose that
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SP-D blockade of glucan on B. dermatitidis is the mechanism
for SP-D inhibition of TNF-a production by BAM-B. derma-
titidis. We cannot exclude the possibility that other glycopoly-
mers could bind SP-D at the fungal cell wall. As an extension
of the present work, we have subsequently indicated, in a
preliminary report using peritoneal macrophages [A. Koneti,
E. Brummer, and D. A. Stevens, Evasion of innate immune
response by Blastomyces dermatitidis: interaction with serum
factor(s) inhibits TNF-a production by macrophages, Progr.
43rd Ann. Meet. Infect. Dis. Soc. Am., abstr. 198, San Fran-
cisco, 2005], that anti-glucan antibody treatment of B. derma-
titidis abrogated B. dermatitidis stimulation of macrophage
TNF-a production.

Another avenue for further research is our observation that
SP-D™/~ BALF has modest activity in inhibiting BAM TNF-«
production when the stimulus is glucan but no activity when
the stimulus is viable B. dermatitidis. This could mean that a
factor, other than the more potent SP-D, in SP-D~/~ BALF
can be engaged when the stimulus is pure glucan, as opposed
to when the glucan is complexed with other carbohydrate poly-
mers or glycoproteins, as is the case in a fungal cell wall.

The receptor(s) on macrophages with which B. dermatitidis
interacts for TNF-a production have not been defined. Re-
cently, the macrophage receptor for 1,3-B-glucan, Dectin-1,
has been identified and characterized (1, 6, 7). 3-Glucan causes
signaling through Dectin-1 on macrophages for TNF-a pro-
duction (43). Although we have not investigated Dectin-1 on
macrophages, we speculate that Dectin-1 interacts with 3-glu-
can on B. dermatitidis; such interactions and signaling would
account for TNF-a production.
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