Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States

Luis Ostrosky-Zeichner
University of Texas Health Science Center at Houston

John H. Rex
University of Texas Health Science Center at Houston

Peter G. Pappas
University of Alabama - Birmingham

Richard J. Hamill
Baylor University

Robert A. Larsen
University of Southern California

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation

https://digitalcommons.wustl.edu/open_access_pubs/2355

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Antimicrobial Agents and Chemotherapy

Antifungal Susceptibility Survey of 2,000 Bloodstream Candida Isolates in the United States

Updated information and services can be found at:
http://aac.asm.org/content/47/10/3149

REFERENCES

These include:

This article cites 42 articles, 26 of which can be accessed free at: http://aac.asm.org/content/47/10/3149#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Antifungal Susceptibility Survey of 2,000 Bloodstream Candida Isolates in the United States

Luis Ostrosky-Zeichner,1* John H. Rex,1 Peter G. Pappas,2 Richard J. Hamill,3 Robert A. Larsen,4 Harold W. Horowitz,5 William G. Powderly,6 Newton Hyslop,7 Carol A. Kauffman,8 John Cleary,9 Julie E. Mangino,10 and Jeannette Lee2

University of Texas—Houston Medical School, Houston, Texas3; University of Alabama at Birmingham, Birmingham, Alabama2; Baylor University, Houston, Texas3; University of Southern California, Los Angeles, California2; New York Medical College, Valhalla, New York3; Washington University, St. Louis, Missouri2; Tulane Medical Center, New Orleans, Louisiana2; University of Michigan and V.A. Medical Center, Ann Arbor, Michigan1; University of Mississippi, Jackson, Mississippi3; and Ohio State University, Columbus, Ohio10

Received 3 June 2003/Returned for modification 29 June 2003/Accepted 3 July 2003

Candida bloodstream isolates (n = 2,000) from two multicenter clinical trials carried out by the National Institute of Allergy and Infectious Diseases Mycoses Study Group between 1995 and 1999 were tested against amphotericin B (AMB), fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFA) using the NCCLS M27-A2 microdilution method. All drugs were tested in the NCCLS-specified RPMI 1640 medium except for AMB, which was tested in antibiotic medium 3. A sample of isolates was also tested in RPMI 1640 supplemented to 2% glucose and by using the diluent polyethylene glycol (PEG) in lieu of dimethyl sulfoxide for those drugs insoluble in water. Glucose supplementation tended to elevate the MIC, whereas using PEG tended to decrease the MIC. Trailing growth occurred frequently with azoles. Isolates were generally susceptible to AMB, 5FC, and FLU. Rates of resistance to ITR approached 20%. Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.

Candida is now the fourth-most-common bloodstream infection in the United States (11, 12, 23, 24). Antifungal susceptibility testing has become an important tool in the management of patients with invasive candidiasis, since both in vitro resistance and toxicity issues must be considered when selecting an antifungal agent (5, 10, 15, 30, 33). The NCCLS has developed the standardized and reproducible M27-A2 method for testing yeasts (18). This method is widely accepted and readily available in reference centers and specialized clinical laboratories. Although variations of this method have been proposed and intense investigation into the effects of different media and drug-solubilizing agents are ongoing, the basic method has proven to be a useful and reproducible standard (3, 4, 29, 36).

In this study, we examined the susceptibilities of 2,000 bloodstream Candida spp. isolates in the United States to currently licensed and newly available antifungal agents. Since small variations in the testing method have been shown to potentially increase the correlation of in vitro results with clinical response, three testing variations were studied: use of antibiotic medium 3 for testing amphotericin B (AMB), supplementation of the medium to 2% glucose (for all drugs), and use of polyethylene glycol (PEG) as a solvent (for drugs that are normally dissolved in dimethyl sulfoxide). (This work was presented in part as abstracts 642 and 643 at the 39th Annual Meeting of the Infectious Diseases Society of America, San Francisco, Calif., 2001.)

MATERIALS AND METHODS

Isolates. The Mycoses Study Group (MSG) of the National Institutes of Health carried out two clinical trials for patients with candidemia between 1995 and 1999 in the United States. MSG 33 was a study of fluconazole (FLU) plus AMB versus FLU alone for the treatment of candidemia (32), and MSG 34 was an epidemiological study (R. J. Hamill, P. G. Pappas, J. H. Rex, J. Y. Lee, H. Horowitz, C. A. Kaufman, N. Hyslop, R. A. Larsen, D. K. Stein, E. A. Gaviss, C. J. Thomas, and the Mycosis Study Group, Abstr. 38th Annu. Meet. Infect. Dis. Soc. Am., abstr. 36, 2000). The 39 participating centers shipped 2,947 Candida isolates from 1,911 patients to the Laboratory of Mycology Research at the University of Texas—Houston Medical School. Isolates were stored in sterile water at room temperature, with a backup in glycerol frozen at −70°C. Since some of the received isolates represented serial collection of isolates from a single patient, subsequent work focused on the 2,000 isolates that represented the first isolate of each species from each patient. Identification was carried out using the API 20C AUX method (bioMerieux Vitek, Inc., Hazelwood, Mo.), with supplemental standard morphological and biochemical testing for problem isolates using cultures in cornmeal agar, germ tube testing, and the Murex identification system (Murex Diagnostics, Norigean, Ga.). Identification of an isolate as C. dubliniensis was made based on (i) demonstration of absence of growth at 42°C, (ii) formation of abundant chlamydospores on cornmeal-Tween 80 agar, (iii) absence of assimilation of xylose or α-methyl-D-glucoside, (iv) DNA banding patterns characteristic of a type isolate following digestion of genomic DNA, and (v) amplification of a C. dubliniensis-specific 268-bp fragment (39).

Quality control isolates were used in every testing batch and included ATCC 750 (C. tropicalis), 5W31 (C. lusitaniae), ATCC 20019 (C. parapsilosis), ATCC 6258 (C. krusei), ATCC 90026 (C. albicans), and CL524 (C. lusitaniae). MICs for these isolates were compared with published control limits (20, 35) and used to guide quality control testing and validation per NCCLS guidelines (18).

Drugs. AMB, 5-flucytosine (5FC), FLU, itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFG) were obtained from their manufacturers as research powders and frozen (−70°C) or refrigerated (3°C) as required. Drug stocks (100×)
were made following the NCCLS M27-A2 recommendations (18). AMB, ITR, VOR, POS, and AFG were diluted in dimethyl sulfoxide. 5FC, FLU, CFG, and MFG were diluted in deionized water. Additional testing was also carried out for a limited number of randomly selected strains (~15%) for ITR, VOR, and POS in PEG 400 (Sigma, St. Louis, Mo.). All drug stocks were frozen at ~70°C until plate preparation. Testing ranges were 0.03 to 16 µg/ml for all drugs, except for 5FC and FLU, which were tested at 0.13 to 64 µg/ml.

Antifungal susceptibility testing. Antifungal susceptibility testing was carried out following the NCCLS M27-A2 microdilution method (18). Briefly, isolates were tested against all antifungal agents except AMB in RPMI 1640 (Sigma) buffered with 0.075 M 3-(N-morpholino)propanesulfonic acid, pH adjusted to 7.0. Supplemental testing was carried out on randomly selected (~15%) isolates in 3-(N-morpholino)propanesulfonic acid-buffered RPMI 1640 supplemented with glucose to 20 g/liter. AMB was tested in antibiotic medium 3 (Becton Dickinson, Cockeysville, Md.) buffered with NAHPO₄, H₂O, plus NAHPO₄, pH adjusted to 7.0. Serial dilutions (2X) of the antifungals in the appropriate medium were performed, and 100 µl of the dilutions was dispensed on microdilution plates (Corning, Corning, N.Y.). Plates were frozen at ~70°C until used. Validation of plate stability and potency was performed, running quality control plates (Corning, Corning, N.Y.). Plates were frozen at ~70°C until used. Paradoxical fungal growth at the highest drug concentration was occasionally observed when testing isolates with this drug.

Statistical analysis. Descriptive statistics were performed using Microsoft Excel and Access functions. r² for regression analysis betweenazole congenerers was calculated using the logarithms of the MICs with Epi Info 2002 software (Centers for Disease Control and Prevention, Atlanta, Ga.).

RESULTS

NCCLS-M27-A2-based data by drug. Table 1 shows the MICs at which 50% (MIC₅₀) and 90% (MIC₉₀) of the isolates tested were inhibited for each drug at 24 h (AMB) or 48 h (all other drugs) for the most commonly seen *Candida* spp. Table 2 shows MICs for the less frequent *Candida* spp. encountered in the survey. Table 3 shows the frequency of drug-resistant isolates identified in the survey for drugs that have established NCCLS interpretative breakpoints. While limited in numbers, the less commonly encountered *Candida* spp. showed uniform susceptibility to all of the drugs and are not specifically discussed in the paragraphs below.

AMB. Based on the medium and endpoints chosen, resistance to AMB appears to be rare. Using tentative breakpoints suggested in previous work (6, 34), 2 to 3% of *C. parapsilosis* and *C. krusei* isolates appeared to be resistant to this drug (Table 3). Higher MICs were not seen for *C. lusitaniae*, a species that is often, but not always, found to be resistant to AMB (16).

5FC. More than 95% of isolates of all species except *C. krusei* and *C. tropicalis* were susceptible to 5FC. Resistance to 5FC was noted for 12% of *C. krusei* isolates and 6% of *C. tropicalis* isolates.

FLU. Susceptibility to FLU was similar to that seen in other major surveillance surveys. *C. krusei* and *C. glabrata* showed the highest MICs. Overall resistance to FLU occurred in less than 10% of the tested strains. A separate analysis (data not shown) of FLU resistance by year failed to show an increase in resistance to FLU over the study years. Likewise, no regional variations in resistance were seen among the participating centers.

ITR. As with FLU, the susceptibility patterns of ITR were concordant with prior work. *C. glabrata* and *C. krusei* showed high MICs. Complete resistance was seen in 18% of isolates and thus was overall more common than for FLU.

POS. No interpretive breakpoints have been established for this compound. Most isolates had low MICs (0.03 to 0.13 µg/ml), with higher MICs noted for *C. glabrata* and *C. krusei*. The MIC₉₀ for *C. tropicalis* was increased due to the trailing phenomenon (see below).

VOR. No interpretive breakpoints have been established. MICs were mostly in the range of 0.03 to 0.25 µg/ml. Higher MICs were noted for *C. krusei* and *C. glabrata*. The MIC₉₀ for *C. tropicalis* was elevated due to trailing (see below).

AFG. There are no established interpretive breakpoints for AFG. Most isolates exhibited MICs of 0.03 to 0.06 µg/ml, but *C. parapsilosis* strains showed MICs of 1 to 4 µg/ml.

CFG. There are no established interpretive breakpoints for caspofungin. Most isolates showed MICs of 0.5 to 2 µg/ml, with *C. parapsilosis* isolates tending to concentrate on the higher end. Paradoxical fungal growth at the highest drug concentrations, the so-called “Eagle” phenomenon, of unknown (but unlikely) in vivo significance (8, 40, 41) and slight trailing were occasionally observed when testing isolates with this drug.

Table 1. MIC₅₀ and MIC₉₀ Summary for the Most Common *Candida* spp. with Nine Antifungal Agents

<table>
<thead>
<tr>
<th>Species</th>
<th>AMB</th>
<th>SFC</th>
<th>FLU</th>
<th>ITR</th>
<th>POS</th>
<th>VOR</th>
<th>AFG</th>
<th>CFG</th>
<th>MFG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>90%</td>
<td>50%</td>
<td>90%</td>
<td>50%</td>
<td>90%</td>
<td>50%</td>
<td>90%</td>
<td>50%</td>
</tr>
<tr>
<td>C. albicans (733)</td>
<td>0.06</td>
<td>0.25</td>
<td>0.13</td>
<td>1</td>
<td>0.25</td>
<td>2</td>
<td>0.06</td>
<td>0.5</td>
<td>0.03</td>
</tr>
<tr>
<td>C. glabrata (458)</td>
<td>0.13</td>
<td>0.5</td>
<td>0.13</td>
<td>0.13</td>
<td>8</td>
<td>32</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>C. parapsilosis (391)</td>
<td>0.13</td>
<td>0.5</td>
<td>0.13</td>
<td>0.13</td>
<td>1</td>
<td>2</td>
<td>0.13</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td>C. tropicalis (307)</td>
<td>0.13</td>
<td>0.5</td>
<td>0.13</td>
<td>0.5</td>
<td>0.16</td>
<td>13</td>
<td>1</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>C. krusei (50)</td>
<td>0.25</td>
<td>0.5</td>
<td>4</td>
<td>32</td>
<td>32</td>
<td>>64</td>
<td>0.5</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>C. lusitaniae (20)</td>
<td>0.13</td>
<td>0.5</td>
<td>0.13</td>
<td>0.13</td>
<td>0.5</td>
<td>2</td>
<td>0.06</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td>C. dubliniensis (18)</td>
<td>0.03</td>
<td>0.06</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.5</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* Shown are the results for MIC-0 at 24 h for AMB and MIC-2 at 48 h for all other drugs. n, number of isolates.
Susceptibility Survey of Candida spp. in the U.S.

Table 3. Resistance rates for antifungals with published interpretive breakpoints

<table>
<thead>
<tr>
<th>Species (n)</th>
<th>AMB</th>
<th>5FC</th>
<th>FLU</th>
<th>ITR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans (733)</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>C. glabrata (458)</td>
<td>0.8</td>
<td>0.2</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>C. parapsilosis (391)</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C. tropicalis (307)</td>
<td>0.3</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>C. krusei (50)</td>
<td>2</td>
<td>12</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>C. lusitaniae (20)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. dubliniensis (18)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>0.8</td>
<td>3</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

* Resistance is defined as the following MICs (in micrograms per milliliter): AMB, >1; 5FC, ≥32; FLU, ≥64; and ITR, ≥1. n, no. of isolates.

MFG. As with the other candins, interpretive breakpoints are unknown, but most isolates exhibited MICs in the range of 0.03 to 0.06 µg/ml, except for C. parapsilosis, which had MICs of 0.5 to 4 µg/ml. C. krusei and C. lusitaniae also tended to have slightly higher MICs.

Cross-resistance. Cross-resistance among the azoles, particularly for pairs of congeners (FLU-VOR and ITR-POS), has been a concern (22, 43, 44). Table 4 shows summaries for the two combinations. As seen in Table 4, VOR MICs generally correlated with FLU MICs, although some dispersion was seen ($r^2 = 0.48$). This correlation was much better for ITR and POS ($r^2 = 0.65$) (Table 4). The ultimate significance of these relationships remains to be determined.

Variations by testing media and drug solubilizing agent. Table 5 shows MIC variations by testing medium and drug solubilizing agent when compared to standard RPMI and recommended solvents for 344 isolates. In general, adding more glucose to the medium tended to increase MICs of AFG and CFG and decrease the MICs of FLU and VOR while it increased those of ITR. Using PEG as a solvent decreased MICs of azoles by one to two dilutions for any isolate. Table 6 shows the frequency of trailing for different drugs and Candida spp. Trailing was a particular issue for C. krusei with 5FC, for
all species except C. parapsilosis in the presence of azoles, and for C. parapsilosis when examining candins.

DISCUSSION

We present antifungal susceptibility data for a large survey of Candida spp. isolates causing bloodstream infections in the United States between 1995 and 1999. Our results confirm data from other surveys (21, 25, 27) and comprehensively present data on currently available and/or new antifungal agents. While species-specific variations and occasional resistance were encountered, we can generally state that Candida spp. were susceptible to the traditional standards of treatment for primary infection: AMB and FLU. We found relatively low levels of FLU resistance and no geographic or temporal variations, as opposed to the findings previously described by Pfaller et al. (26). Resistance to ITR was found in nearly 20% of strains, which is a proportion compatible with previously published reports, and had species-specific trends. As shown in several earlier papers, resistance to older azoles is most commonly demonstrated for C. krusei and C. glabrata (2, 3, 22–24, 37). The new azoles (POS and VOR) have encouraging and potent antifungal activity against all Candida spp. including C. glabrata and C. krusei. Early in vivo and clinical experiences against infections caused by these organisms are encouraging as well (1, 9, 19, 27, 38).

The candins, a new class of antifungal agent, seem to have excellent in vitro activity against these organisms. It might be important to note here that the interpretation of MICs for these drugs is still a matter of some debate. Of note are the

TABLE 4. Cross-distribution of azole congener MICs

<table>
<thead>
<tr>
<th>Drug</th>
<th>MIC (µg/ml)</th>
<th>VOR MIC (µg/ml)</th>
<th>POS MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLU</td>
<td>0.13</td>
<td>191 5 1 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>368 15 3 2</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>293 53 9 3</td>
<td>1 1 1 1 3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>182 46 5 3</td>
<td>2 3 1 4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60 27 20 5</td>
<td>1 1 2 3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14 30 43 25</td>
<td>4 1 1 2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 15 55 66</td>
<td>35 5 4 1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2 3 8 25</td>
<td>48 35 2 1</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3 2 4 21</td>
<td>15 27 5 1 2</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>5 4 13 3</td>
<td>9 2 1</td>
</tr>
<tr>
<td></td>
<td>>64</td>
<td>14 2 2 1</td>
<td>3 9 7 16 11 2</td>
</tr>
</tbody>
</table>

TABLE 5. MIC variations by differences in test medium and solvent when compared to RPMI and standard solvent for 344 Candida spp. isolates

<table>
<thead>
<tr>
<th>Drug</th>
<th>% of isolates for which result of MIC comparison applies in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPMI–2% GLU</td>
</tr>
<tr>
<td></td>
<td>Identical</td>
</tr>
<tr>
<td>AFG</td>
<td>48</td>
</tr>
<tr>
<td>CFG</td>
<td>51</td>
</tr>
<tr>
<td>FLU</td>
<td>54</td>
</tr>
<tr>
<td>5FC</td>
<td>83</td>
</tr>
<tr>
<td>ITR</td>
<td>28</td>
</tr>
<tr>
<td>POS</td>
<td>68</td>
</tr>
<tr>
<td>VOR</td>
<td>81</td>
</tr>
</tbody>
</table>

a Distribution of VOR MICs by FLU MICs ($r^2 = 0.48$) and POS MICs by ITR MICs ($r^2 = 0.65$). All MICs are MIC-2 at 48 h.

a Data are shown for MIC-2 at 48 h. GLU, glucose.
relatively high MICs that were seen for *C. parapsilosis*. While these MICs are comparatively higher than those for the other species, there are no in vitro or in vivo data to suggest that this represents resistance, and the achievable blood concentrations of candins at the currently recommended doses generally equal or slightly exceed these MICs (13). In fact, a recent study of treatment of candidiasis with CFG versus AMB failed to show significant variation in response rates by species (17). The present survey also presents susceptibility data for less common *Candida* spp. While the numbers are limited, generally good activity for most of the drugs was shown.

This survey also provides information on the performance and reliability of the NCCLS M27-A2 method and its variations. Adding glucose to the medium tended to increase candid and ITR MICs and decrease FLU MICs. Adding PEG as a solvent tended to decrease MICs of ITR, POS, and VOR, perhaps due to better solubility and delivery of the drug. Nevertheless, the vast majority of MICs consistently remained within two dilutions of the MIC obtained by the standard NCCLS M27-A2 method.

The frequencies of the trailing phenomenon are consistent with what has been previously reported (2). Our definition was strict and very sensitive. It is also important to consider that trailing isolates were not excluded from the resistance analysis; thus, the true frequency of resistance may be slightly overestimated. The nature of the trailing phenomenon is unknown, as is its contribution to the perception of resistance in vitro and the ultimate possibility of in vivo resistance translation (14, 31, 33, 36, 42).

Cross-resistance between the old and newer azoles deserves further exploration. This phenomenon as been previously considered (28), and this study showed a proportional increase of FLU-VOR and ITR-POS MICs, with r^2 values of 0.48 and 0.65, respectively. While the MICs of the newer azole agents are lower than achievable concentrations, the clinical significance of these observations remains to be determined. Early experience shows good in vivo and clinical activity of these two new compounds against azole-resistant strains, classically azole-resistant species like *C. krusei*, and species with dose-dependent susceptibility like *C. glabrata* (7; L. Ostrosky-Zeichner, A. M. L. Oude Lashof, B. J. Kullber, and J. H. Rex, Abstr. 40th Ann. Meet. Infect. Dis. Soc. Am., Abstr. 352, 2002).

While correlation with clinical outcomes is still needed to validate the method for new drugs and establish interpretative breakpoints, this study provides evidence of the reproducibility and reliability of the NCCLS M27-A2 method and MIC trends and patterns for these drugs.

ACKNOWLEDGMENTS

L.O.-Z., J.H.R., P.G.P., R.J.H., R.A.L., H.W.H., W.G.P., N.H., C.A.K., J.C., J.E.M., and J.L. are members of the National Institute of Allergy and Infectious Diseases Mycoses Study Group Candidiasis Subproject. Other study group sites and participants are as follows: David M. Bamberger, University of Missouri, Kansas City; Robert W. Bradsher, Jr., University of Arkansas, Little Rock; Cortiain Brass, Buffalo Medical Group, Buffalo, NY; Antonio Catanzaro, University of California San Diego, San Diego; Stanley Chapman, University of Mississippi, Jackson; David Cohen, Medical Center Delaware, Newark; Lawrence Con, Eisenhofer Medical Center, Rancho Mirage, Calif.; Larry Danzinger, University of Illinois at Chicago, Chicago; John Edwards, University of California Los Angeles Harbor, Torrance; David Ennis, Baptist Montclair Medical Center, Birmingham, Ala.; Mitchell Goldman, Indiana University, Indianapolis; Jesse L. Goodman, University of Minnesota, Minneapolis; Ron Greenfield, University of Oklahoma, Oklahoma City; Kelly Henning, Thomas Jefferson Hospital, Philadelphia, Pa.; Eileen Hilton, Long Island Jewish Medical Center, New Hyde Park, N.Y.; James Horton, Carolinas Medical Center, Charlotte, N.C.; Edward Johnson, St. Michael’s Medical Center, Newark, N.J.; Virginia Kan, VA Medical Center, Washington, D.C.; A. W. Karchmer, Deaconess Hospital, Boston, Mass.; Daniel Kett, VA Medical Center Miami, Miami, Fla.; Mathew Levison, Allegheny University Hospital, Philadelphia, Pa.; John Lutz, North Palm Internal Medicine, Fresno, Calif.; David S. McKinsey, Antibiotic Research Association Inc., Kansas City, Mo.; Gregory Melcher, Lackland Air Force Base, San Antonio, Tex.; Steven A. Norris, Community Hospital, Indianapolis, Ind.; Michael Perry, The Stamford Hospital, Stamford, Calif.; Annette Rebo, Cooper Hospital, Camden, N.J.; Robert Rubin, Massachusetts General Hospital, Boston; Michael Scheld, University of Virginia, Charlottesville; Mindy Schuster, University of Pennsylvania, Philadelphia; George Sebastian, Cancer and Blood Institute, Rancho Mirage, Calif.; Bryan Simmons, Methodist Hospital of Memphis, Memphis, Tenn.; Jack Sobel, Wayne State University, Detroit, Mich.; David K. Stein, Jacobi Medical Center, Bronx, N.Y.; John Stern, Pennsylvania Hospital, Philadelphia; David Stevens, Santa Clara Medical Center, San Jose, Calif.; Alan Sugar, Boston University Hospital, Boston, Mass.; Ron Washburn, Bowman-Gray School of Medicine, Winston-Salem, N.C.; and Mark Zervos, William Beaumont Hospital, Royal Oak, Mich.

REFERENCES

