2006

Validation of string test for diagnosis of Helicobacter pylori infections

Billie Velapatino
University Peruana Cayetano Heredia

Jacqueline Balqui
Asociacion Benefica PRISMA

Robert H. Gilman
Washington University School of Medicine in St. Louis

Alejandro Bussaleu
University Peruana Cayetano Heredia

Willi Quino
University Peruana Cayetano Heredia

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Velapatino, Billie; Balqui, Jacqueline; Gilman, Robert H.; Bussaleu, Alejandro; Quino, Willi; Finger, S. Alison; Santivanez, Livia; Herrera, Phabiola; Piscoya, Alejandro; Valdiva, Jose; Cok, Jaime; and Berg, Douglas E., "Validation of string test for diagnosis of Helicobacter pylori infections." Journal of Clinical Microbiology 44,3. 976-980. (2006).
https://digitalcommons.wustl.edu/open_access_pubs/2521

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Authors
Billie Velapatino, Jacqueline Balqui, Robert H. Gilman, Alejandro Bussaleu, Willi Quino, S. Alison Finger, Livia Santivanez, Phabiola Herrera, Alejandro Piscoya, Jose Valdiva, Jaime Cok, and Douglas E. Berg
Validation of String Test for Diagnosis of Helicobacter pylori Infections

Billie Velapatiño, Jacqueline Balqui, Robert H. Gilman, Alejandro Bussalleu, Willi Quino, S. Alison Finger, Livia Santivañez, Phabiola Herrera, Alejandro Piscoya, Jose Valdivia, Jaime Cok and Douglas E. Berg

Updated information and services can be found at:
http://jcm.asm.org/content/44/3/976

These include:

REFERENCES

This article cites 29 articles, 12 of which can be accessed free at:
http://jcm.asm.org/content/44/3/976#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Validation of String Test for Diagnosis of Helicobacter pylori Infections

Billie Velapatiño,1,2 Jacqueline Balqui,2 Robert H. Gilman,1,2,3* Alejandro Bussalleu,1 Willi Quino,1 S. Alison Finger,1,2 Livia Santivanéz,2 Phabiola Herrera,2 Alejandro Piscoya,1 Jose Valdivia,1 Jaime Cok,1 and Douglas E. Berg4

Universidad Peruana Cayetano Heredia, Lima, Perú; Asociación Benéfica PRISMA, Lima, Perú; Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and Departments of Molecular Microbiology, Genetics, and Medicine, Washington University Medical School, St. Louis, Missouri

Received 20 August 2005/Returned for modification 17 October 2005/Accepted 8 December 2005

The method of recovering Helicobacter pylori DNA or viable cells absorbed on a string that a person has swallowed and that is retrieved an hour later (string test) should be a useful alternative to traditional analysis of cells or DNA obtained by endoscopy, which is invasive, uncomfortable, relatively costly, and ill-suited for community-based and pediatric studies. Here we assayed the sensitivity and validity of the string test versus conventional endoscopic biopsy for detecting and analyzing H. pylori infection. Forty-four people with gastric complaints were studied using both H. pylori culture and urease gene (ureB) PCR. H. pylori organisms cultured from strings and biopsy specimens from the same patients were fingerprinted by the randomly amplified polymorphic DNA (RAPD) method. Biopsy sections were also hematoxylin and eosin and silver stained for H. pylori detection. H. pylori was cultured from 80% of strings and detected by PCR from 91% of strings from participants whose biopsies had been H. pylori positive by culture, PCR, and/or histology. Strains recovered from strings and biopsy specimens yielded identical or closely related RAPD profiles in each of the 24 cases tested. We conclude that the string test is a useful method for H. pylori recovery and analysis when relatively noninvasive procedures are needed.

Helicobacter pylori is a gram-negative bacterium that chronically infects the gastric mucosa of billions of people worldwide and that constitutes a major cause of peptic ulcers and an early risk factor for gastric cancer (5). Poor sanitation and crowding are considered risk factors for H. pylori transmission (13, 19, 23, 27). For example, among Peruvian adults, some 90% of Lima shantytown residents but only about half of more prosperous people are infected with H. pylori (19, 20, 25). Also, infection with H. pylori is associated with chronic atrophic gastritis and hyperchlorhydria; the latter is a risk factor for diarrheal disease (6, 7). Definitive diagnosis of H. pylori infection has been based primarily on endoscopy and then bacterial culture and/or histologic analysis of gastric biopsy sections (28, 30). Each of these methods is highly sensitive and specific, but the requirement for endoscopy, which is costly, invasive, and discomforting, makes it inappropriate for large-scale community-based studies or routine screening of children, the group in which most infections start.

The string test (or Entero-test) is designed as a capsule for easy swallowing with a protruding absorbent string whose end is held outside the mouth. This allows the ingested string to be retrieved and gastrointestinal microbes absorbed to the string to be recovered and studied. It has often been used to detect gastrododenal parasites, such as Giardia lamblia, by microscopy (3, 11, 15) and Salmonella enterica serovar Typhi and Mycobacterium tuberculosis by bacterial culture (8, 9, 29). Recent studies also tested its potential for H. pylori culture (14, 18) but produced highly variable results: there were reported sensitivities of nearly 100% and 75% in Australia and Mexico, respectively, relative to a standard urea breath test (24, 27) and 38% and 81% in China and Germany, respectively, relative to histologic examination or biopsy culture (16, 17). We have found that H. pylori can be detected efficiently by PCR of string test samples from Amazon rain forest residents (22). Left untested in these studies, however, was an assumption that H. pylori organisms obtained by string test were broadly representative of resident gastric H. pylori populations, as sampled by culture from biopsy samples. Here, we report efficient culturing of H. pylori from string test samples and DNA fingerprint evidence that strains cultured from strings are usually closely related to those from gastric biopsies from the same individual.

MATERIALS AND METHODS

Patients and the string test. Adults (18 to 70 years of age) presenting with abdominal pain and referred for endoscopy at the Gastroenterology Endoscopy Service of the Hospital Cayetano Heredia (Lima, Peru) were recruited into this study after informed consent. Excluded were patients with active bleeding, prior gastric surgery, known gastric cancer, human immunodeficiency virus, or cirrhosis or who within 7 days of endoscopy had received antibiotics or a proton pump inhibitor. Subjects came to the outpatient clinic after an overnight fast, gave their medical history, and filled out a socioeconomic questionnaire. Consenting subjects swallowed a gelatin capsule that dissolves in the stomach and that contains a metal weight and an absorbent cotton string (the "string test"), along with 100 ml of water. One end of the string protrudes from the capsule via a small hole and was attached to the patient’s cheek with tape before the capsule was swallowed (16, 17, 24, 27). The string was retrieved from the patient after 1 h, and 20 to 30 cm of its distal portion was put in 500 μl of transport medium, which contains brain heart infusion (BHI) broth (Difco), 20% glycerol (Sigma), and 1% Skirrow supplement (Oxoid). Each sample was held at 4°C and processed for culture and PCR within 4 h of endoscopy. During the endoscopy procedure, three antral biopsy specimens were collected from each patient; one each for urease and PCR assays, for H. pylori culture, and for histopathology. This study was approved by the Human Research Committees of Cayetano Heredia University (UPCH), AB PRISMA, and the Johns Hopkins University School of Public Health.

*Corresponding author. Mailing address: The Johns Hopkins School of Public Health, Department of International Health, 615 N. Wolfe Street, Room W3501, Baltimore, MD 21205. Phone: (410) 955-6964. Fax: (410) 502-6733. E-mail: rgilman@jhsph.edu.
TABLE 1. Comparison of gastric biopsy to string test using culture, Warthin-Starry stain, and PCR

<table>
<thead>
<tr>
<th>Gastric biopsy specimen (n)</th>
<th>No. of culture assay-positive strains/total no. of strains (% sensitivity)*</th>
<th>No. of PCR assay-positive strains/total no. of strains (% sensitivity)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic stain and/or culture-positive group (35)</td>
<td>28/35 (80%)</td>
<td>35/35* (100%)</td>
</tr>
<tr>
<td>Histologic stain or culture-negative group (9)</td>
<td>0/9</td>
<td>0/9</td>
</tr>
</tbody>
</table>

* One gastric biopsy was positive only by stain.
† One string did not have sufficient material present for PCR.
‡ There was no significant difference between PCR and culture of the string nor between PCR of the string and PCR of the biopsy. Culture of the biopsy sample was significantly more sensitive in detecting Helicobacter pylori than was the string culture (P = 0.021).

RESULTS

Forty-four of the 50 eligible patients (21 men and 23 women, each from a different household) who were invited to participate in this study provided informed consent. Their mean age was 41.6 years (standard deviation, 15.08), and their socioeconomic status was lower to lower middle class; 38 of 44 (86.3%) had permanent housing with piped potable water and sewage connections, and the others had temporary (reed or wood plank) housing. Endoscopic observation of these 44 patients indicated that 3 (6.8%) had duodenal ulcers, 2 (4.5%) had gastric ulcers, 1 (2.3%) had an early gastric cancer, 33 (75%) had only gastritis, and 5 (11.3%) had apparently normal gastric mucosa. However, histologically, none of the 42 biopsy samples that were informative were normal (2 biopsy samples were superficial and not well suited for histologic analysis): 10 of them (24%) had chronic superficial gastritis, 20 of them (47.6%) had chronic active superficial gastritis, 1 (2.4%) had chronic deep gastritis, 5 (11.9%) had chronic atrophic gastritis alone, and 6 (14.3%) had chronic atrophic gastritis and intestinal metaplasia.

H. pylori was found by both histology and culture in biopsy samples from 34 of the 44 patients (77.27%) and by PCR but not culture in 1 other patient. Only 29 of the 35 (82.8%) patients that were positive by these two tests were also positive by biopsy urease assay (a typical result, probably due to patchy or low-density infection). All nine biopsies that seemed to be H. pylori negative by culture and histology were also negative by urease test. PCR of biopsy samples was positive for 34 of the 35 patients considered positive by culture or histology, whereas 1 patient was positive by histology (viewed separately by two observers) but negative by culture and PCR.

Most important for the present study, H. pylori was cultured from the strings of 28 of the 35 patients with apparently H. pylori-positive biopsy samples (80% sensitivity), whereas no organisms were cultured from strings from the 9 patients whose biopsy samples had scored negative (Table 1). This indicated a sensitivity of 80% and a specificity of 100%, with negative and positive predictive values of 56.2% and 100%, respectively (95% confidence interval, 0.63 to 0.92). We could not culture H. pylori from strings of 7 of the 35 patients who were found by other tests to be H. pylori infected. In three cases, there was heavy contamination with other bacterial species that would have overgrown any possible H. pylori colonies; the other four were not studied further.
String test PCR of 34 patients judged to be \textit{H. pylori} positive by histology and/or biopsy specimen culture indicated the presence of \textit{H. pylori} in 31 cases and thus a sensitivity of 91% (1 of the 35 strings was not tested by PCR due to insufficient material). Similarly, \textit{H. pylori} was detected by string PCR from 31 of 33 (93.9%) persons considered \textit{H. pylori} positive by gastric biopsy PCR. The two PCR-negative strings still yielded \textit{H. pylori} cultures; the lack of PCR product might be ascribed to sequence divergence in a primer-binding site.

The \textit{H. pylori} organisms cultured from the biopsy sample and string were tested for similarity by comparing RAPD profiles of single colonies and also of pools of colonies from 24 patients (Table 2). With 13 of 24 (54%) patients, the RAPD profiles from each single colony and each pool were identical with each of four primers used (some four to six informative fragments per primer overall); with 11 of 24 patients (46%), all isolates cultured exhibited very similar profiles with a one- or two-band difference. In no patient were the strains from the string and

TABLE 2. Comparison by RAPD PCR fingerprinting of \textit{Helicobacter pylori} strains isolated from string and gastric biopsy specimens, pools, and five single colonies

<table>
<thead>
<tr>
<th>RAPD comparison result</th>
<th>Pooled vs single-colony biopsy isolates</th>
<th>Pooled vs single-colony string isolates</th>
<th>Pooled biopsy vs pooled string isolates</th>
<th>Single-colony biopsy vs single-colony string isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same(^a)</td>
<td>15 (62.5)</td>
<td>15 (62.5)</td>
<td>13 (54.1)</td>
<td>13 (54.1)</td>
</tr>
<tr>
<td>Similar(^b)</td>
<td>9 (37.5)</td>
<td>9 (37.5)</td>
<td>11 (45.8)</td>
<td>11 (45.8)</td>
</tr>
<tr>
<td>Different(^c)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total(^d)</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

\(^a\) Identical profiles.
\(^b\) Similar profiles were ones in which just 1 band was different among the ~20 usually scored.
\(^c\) Different profiles were ones in which there were multiple band differences.
\(^d\) Only 24 of 28 \textit{H. pylori} culture-positive patients were tested using RAPD PCR.

![FIG. 1. Representative RAPD fingerprint patterns. The profiles shown here were generated with DNAs from five single colonies and a pool of colonies. Lane M, molecular size markers (sizes shown are 0.4, 0.5, 1.6, 2.0, and 3.1 kb); lanes 1 to 6, pool and five single colonies from biopsy samples; lanes 7 to 12, equivalent cultures from a string test of the same patients. The profile in panel A was generated with RAPD primer 1281 and was chosen to illustrate a case of subtle but real difference between predominant genotypes of strains cultured from biopsy specimen versus string test: the lower polymorphic band in the 0.9-kb doublet is identified by an arrow in lane 12. (The additional differences in yield of RAPD products \(\geq\)1.8 kb long may reflect differences in size of genomic DNAs used for RAPD analyses and not differences in strain genotype.) The profiles in panel B were generated with primer 1283, are from another subject, and were chosen to illustrate heterogeneity among isolates (in this case, presence/absence of 1.2-kb and 1.5-kb bands in isolates from string).]
biopsy sample clearly different. Equivalent results were obtained when pools of colonies rather than individual colonies were used for comparison of biopsy sample- and string test-derived isolates. RAPD profiles of isolates cultured from a patient’s biopsy sample versus a string test that were judged to be very similar but slightly different are illustrated in Fig. 1.

DISCUSSION

Our study shows that the string test, which is minimally invasive, inexpensive, and not dependent on sophisticated or costly equipment or radioactivity, allows culture of *H. pylori* infected persons about 80% as efficiently as endoscopic gastric biopsies. Contamination with upper gastrointestinal tract bacteria as the string passes the esophagus and pharynx may be most responsible for the slightly lower efficiency of string than biopsy sample culture; changes in culture medium or inclusion of different antimicrobial supplements might further improve efficiency. PCR on DNA extracted from strings exhibited a sensitivity of 91.2%, nearly as high as biopsy DNA PCR (97.4%). PCR is rapid, highly specific, and not affected by bacterial contamination but is not well suited for phenotype analysis or extensive genetic analysis.

Our previous comparison of isolates from antrum and corpus biopsy samples revealed mixed infections in 15% of Peruvian patients, although often one strain tended to predominate (4). In addition, experimental mouse infection has shown that certain strains can differ in gastric tropism, i.e., that not all *H. pylori* strains are antrum specific (1). Even though infections can be mixed, in all cases tested here, the strains recovered from the string were closely matched to those from the antrum biopsy sample by DNA fingerprinting. Therefore, *H. pylori* organisms cultured from strings are likely to be representative of those predominating in the gastric mucosa and not a special, atypical subset. Indeed, given that *H. pylori* infection can be patchy and mixed, the strain that predominates stomach-wide may be sampled more effectively from a string (that collects from throughout the stomach) than from any single biopsy.

Small but real differences were also often seen, however. Most of these may have been generated by recombination after antimicrobial treatment (25). Genetic analysis or extensive genetic analysis.

for children under 3 years of age, the most critical group for infection in long-term Japanese visitors to Peru. Lancet *Helicobacter pylori* infection in Peruvian children. Lancet 345:1017–1018.

Beta and *Salmonella* typhi are the most common cause of enteric fever in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 113:526–537.

REFERENCES

