Incubation of metanephroi with vitamin D3 increases numbers of glomeruli

Sharon A. Rogers
Washington University School of Medicine in St. Louis

David Droege
Washington University School of Medicine in St. Louis

Adriana Dusso
Washington University School of Medicine in St. Louis

Marc R. Hammerman
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Rogers, Sharon A.; Droege, David; Dusso, Adriana; and Hammerman, Marc R., "Incubation of metanephroi with vitamin D3 increases numbers of glomeruli." Organogenesis. 1, 2. 52-54. (2005).
https://digitalcommons.wustl.edu/open_access_pubs/2542

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Research Paper

Incubation of Metanephroi with Vitamin D₃ Increases Numbers of Glomeruli

Sharon A. Rogers¹
David Droege¹
Adriana Dusso¹
Marc R. Hammerman¹,²,*

Renal Division; ¹Department of Medicine; ²Department of Cell Biology and Physiology; Washington University School of Medicine; St. Louis, Missouri USA

*Correspondence to: Marc R. Hammerman; Renal Division; Box 8126; Department of Medicine; Washington University School of Medicine; 660 S. Euclid Ave.; St. Louis, Missouri 63110 USA; Tel.: 314.362.8233; Fax: 314.362.8237; Email: mhammerm@wustl.edu

Received 08/20/04; Accepted 10/11/04

This manuscript has been published online, prior to printing for Organogenesis, Volume 1, Issue 2. Definitive page numbers have not been assigned. The current citation is: Organogenesis 2004; 1(2): http://www.landesbioscience.com/journals/organogenesis/abstract.php?id=1292

Once the issue is complete and page numbers have been assigned, the citation will change accordingly.

KEY WORDS
kidney, organogenesis, transplantation

ACKNOWLEDGEMENTS
S.A.R. and M.R.H. were supported by grants DK45181 and DK53487 from the National Institutes of Health (NIH).

S.A.R., M.R.H. and Washington University may receive income based on a license of related technology by Washington University to Intercytex LTD and based on equity holdings in Intercytex LTD.

ABSTRACT
To characterize actions of vitamin D₃ on metanephroi transplanted from rat embryos to adult recipients, we incubated metanephroi with or without 0.01, 0.1 or 1 ug/ml vitamin D₃, 25-hydroxyvitamin D₃ [25(OH)D₃] or 1, 25-hydroxyvitamin D₃ [1,25(OH)₂D₃] prior to implantation. The number of glomeruli in developed metanephroi three weeks post-transplantation that had been incubated with 1.0 ug/ml vitamin D₃ was increased relative to the number in metanephroi that were not incubated with vitamin D₃ (control), an effect that was not recapitulated by administration of vitamin D₃ directly to hosts at the time of transplantation. Incubation of metanephroi with 1.0 ug/ml vitamin D₃ also enhanced inulin clearances of metanephroi measured at 12 weeks post-transplantation. The hydroxylated derivative of vitamin D₃, 25(OH)D₃, increased glomerulus number when applied at 0.01ug/ml but not at higher concentrations, while the twice-hydroxylated derivative 1,25(OH)₂D₃, failed to increase glomerulus number at any concentration tested.

We conclude that incubation with vitamin D₃ prior to implantation enhances inulin clearance possibly by increasing the number of glomeruli that develop post-transplantation. Our findings suggest the vitamin D₃ effect is mediated locally.

INTRODUCTION
We have shown that metanephroi from rat embryos transplanted into the omentum of adult rat hosts undergo growth, differentiation, and vascularization, clear inulin from the host's circulation after anastomosis between the ureter of the transplant and host¹ and can support life in otherwise anephric recipients.² Successful xenotransplantations of metanephroi have also been performed.³-⁵ Xenotransplantation (pig into mouse) was optimal under conditions such that renal anlagen were incubated prior to implantation in a solution that contained a number of growth factors and other growth promoting agents including vitamin D₃.⁴ Vitamin D₃, an endogenous steroid synthesized in the skin, is biologically inactive. Formation of its major biologically active product, 1, 25-hydroxyvitamin D₃ [1,25(OH)₂D₃], results from hydroxylations at position C-25 primarily in the liver and C₁α primarily in the kidney.⁶,⁷ Therefore, an action of vitamin D₃ per se on transplanted metanephroi would be unexpected.

To shed light on whether incubation of metanephroi with vitamin D₃ alone prior to implantation affects subsequent differentiation and function, we incubated metanephroi from rat embryos with or without vitamin D₃, 25(OH)D₃, or 1,25(OH)₂D₃ in the absence of other growth factors. Here we show that incubation with 1.0 ug/ml vitamin D₃ prior to implantation increases the number of glomeruli measured at three weeks post-transplantation, and enhances inulin clearances measured in metanephroi 12 weeks post-transplantation. The action of vitamin D₃ in vitro to increase numbers of glomeruli is not recapitulated by systemic administration of vitamin D₃ to hosts.

METHODS
Transplantation of metanephroi, measurement of inulin clearance and histology: Metanephroi were surgically dissected from embryonic day (E) 15 Sprague-Dawley rat embryos or, where indicated Lewis rat embryos, under a dissecting microscope using previously described techniques.¹ Immediately after dissection metanephroi were placed in 1 ml of a 50:50 mixture of Ham’s F12:Dulbecco’s modified Eagles medium at 4°C containing 25 nM prostaglandin E1, and iron-saturated transferrin (5 ug/ml) (HF12:DMEM) for 45 minutes.¹-¹ When indicated, the following additions were made to the HF12:DMEM (incubation solution): none (control); 0.01, 0.1, or 1.0
ug/ml vitamin D₃ (Sigma Chemicals, St. Louis MO), 25(OH)D₃, or 1,25(OH)₂D₃ (provided by Dr. Milan Uskokovic, Hoffman-La Roche Nutley NJ); 10⁻⁷ M recombinant human insulin-like growth factor 1 (IGF I) (Genentech Inc. S. San Francisco CA); or 10⁻⁶ M retinoic acid (RA) (Sigma Chemicals). Metanephroi were removed from the incubation solution, and implanted in the omentum of anesthetized six week old female (host) Sprague Dawley or Lewis rats. During the same surgery, host rats had one kidney removed.

In some hosts, three weeks following transplantation, end-to-end ureteroureterostomy was performed using microvascular technique (interrupted 10-0 suture) between the ureter of a metanephros implanted in the omentum and the ureter of the kidney that had been removed. Nine weeks later all remaining native renal tissue (the contralateral kidney) was removed from host rats, following which inulin clearances were measured on conscious rats exactly as in previous studies. Baseline measurements for inulin were performed after placement of an indwelling bladder catheter and intravenous line concomitant with transplantation of DMEM:HF12 (control media) or 1.0 ug/ml vitamin D₃, RA, known to increase the number of nephrons formed post-transplantation. To this end, we measured numbers of glomeruli per whole metanephros weight (mg) 62 ± 3.7 71 ± 5.9 52 ± 1.8 45 ± 2.0

<table>
<thead>
<tr>
<th>Incubation</th>
<th>Control</th>
<th>Vitamin D₃</th>
<th>Vitamin A</th>
<th>IGF I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of experiments</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
</tr>
<tr>
<td>Metanephros weight (mg)</td>
<td>62 ± 3.7</td>
<td>71 ± 5.9</td>
<td>52 ± 1.8</td>
<td>45 ± 2.0</td>
</tr>
<tr>
<td>Glomeruli</td>
<td>4140 ± 569</td>
<td>9620 ± 1139*</td>
<td>9010 ± 1207*</td>
<td>5320 ± 964</td>
</tr>
<tr>
<td>Glomeruli per mg metenephros weight</td>
<td>66 ± 8.0</td>
<td>140 ± 23**</td>
<td>174 ± 22**</td>
<td>114 ± 18</td>
</tr>
</tbody>
</table>

Transplantations were carried out from Lewis rat embryos to adult Lewis rats. Data are presented as mean ± SEM different than control. *p<0.05; **p<0.01.

RESULTS

Initial experiments were performed to determine whether incubation of metanephroi with vitamin D₃ prior to implantation affects numbers of nephrons formed post-transplantation. To this end, we measured numbers of glomeruli in metanephroi incubated prior to implantation in DMEM:HF12 containing 1.0 ug/ml vitamin D₃, but not the two lower concentrations (Fig. 1).

Table 1 Numbers of glomeruli in metanephroi

<table>
<thead>
<tr>
<th>Incubation</th>
<th>n</th>
<th>Glomeruli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12</td>
<td>3673 ± 353</td>
</tr>
<tr>
<td>25(OH)D₃</td>
<td>9</td>
<td>*7384 ± 610</td>
</tr>
<tr>
<td>0.01 ug/ml</td>
<td>8</td>
<td>6092 ± 713</td>
</tr>
<tr>
<td>1.0 ug/ml</td>
<td>8</td>
<td>3723 ± 769</td>
</tr>
<tr>
<td>1.25(OH)₂D₃</td>
<td>12</td>
<td>4464 ± 504</td>
</tr>
<tr>
<td>0.01 ug/ml</td>
<td>5</td>
<td>6490 ± 945</td>
</tr>
<tr>
<td>1.0 ug/ml</td>
<td>4</td>
<td>5067 ± 363</td>
</tr>
</tbody>
</table>

Transplantations were carried out from Sprague Dawley rat embryos to adult Sprague Dawley rats. Data are presented as mean ± SEM. *Different than control p<0.05.

There was no difference between nephron numbers in metanephroi implanted in vitamin D₃-treated rats (5725 ± 803) (n = 10) or saline-treated rats (4284 ± 396) (n = 12).

We next incubated metanephroi prior to implantation in DMEM:HF12 containing varying concentrations of vitamin D₃ (0.01, 0.10, or 1.0 ug/ml) and counted glomeruli three weeks post-transplantation. Numbers of glomeruli were increased significantly compared to control in metanephroi that had been incubated in DMEM:HF12 containing 1.0 ug/ml vitamin D₃, but not the two lower concentrations (Fig. 1).

www.landesbioscience.com Organogenesis 53
DISCUSSION

The kidney is a target organ for active forms of vitamin D. The pattern of intracellular 1,25(OH)₂D₃ vitamin D receptor (VDR) expression during renal ontogenesis has been defined in the rat. Starting at E15, epitopes for the VDR are found in cells of branching ureteric buds and in the surrounding mesenchyme, and at later stages, in glomerular parietal and visceral epithelial cells. The VDR cannot be detected in metanephroi from E13 rats. However, beginning after 3 days in organ culture, the pattern of expression is identical to that detected in vivo.

Presently we have shown that incubation of metanephroi with vitamin D₃ prior to implantation increases the number of glomeruli three weeks post-transplantation and enhances inulin clearance 12 weeks post-transplantation. In developed kidneys numbers of glomeruli reflect numbers of nephrons since each nephron has a single glomerulus. However, this equation cannot necessarily be made in developing metanephroi. Therefore, it is possible, but not proven, that the enhanced inulin clearance reflects larger numbers of nephrons.

It is of interest that incubation of metanephroi with 0.01 μg/ml 25(OH)D₃, but not higher concentrations increases the number of glomeruli. Possibly, the biological activity of 25(OH)D₃ in vitro is explained by its 1α-hydroxylation in metanephroi to form 1,25(OH)₂D₃. However, this is unlikely because 1,25(OH)₂D₃ does not recapitulate the 25(OH)D₃ effect.

The mechanisms for these biological actions of vitamin D₃ are not defined in our studies, and the identity of the vitamin D₃ metabolite or metabolites that are biologically active is not delineated.

To compare actions of vitamin D₃ on glomerulus numbers with actions of hydroxylated metabolites of vitamin D₃, we counted numbers of glomeruli three weeks post-transplantation in metanephroi that had been incubated in DMEM:HF12 containing 0.01, 0.10 or 1.0 μg/ml of 25(OH)D₃ or 1,25(OH)₂D₃ prior to implantation. The number of glomeruli was increased significantly relative to control only after incubation in 0.01 μg/ml 25(OH)D₃ (Table 2).

To determine whether incubation with vitamin D₃ affects function in transplanted metanephroi, urine volumes and inulin clearances were measured at 12 weeks post-transplantation, in metanephroi that had been transplanted following incubation with vehicle or vitamin D₃. Incubation with vitamin D₃ increased both parameters (Table 3).