Evolutionary dynamics of insertion sequences in Helicobacter pylori

Awdhesh Kalia
Washington University School of Medicine in St. Louis

Asish K. Mukhopadhyay
Washington University School of Medicine in St. Louis

Giedrius Dailide
Washington University School of Medicine in St. Louis

Yoshiyki Ito
Washington University School of Medicine in St. Louis

Takeshi Azuma
Fukui Medical School

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/2714

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Awdhesh Kalia, Asish K. Mukhopadhyay, Giedrius Dailide, Yoshiyki Ito, Takeshi Azuma, Benjamin C. Y. Wong, and Douglas E. Berg
Evolutionary Dynamics of Insertion Sequences in *Helicobacter pylori*

Awdhesh Kalia, Asish K. Mukhopadhyay, Giedrius Dailide, Yoshiyuki Ito, Takeshi Azuma, Benjamin C. Y. Wong and Douglas E. Berg

Updated information and services can be found at: http://jb.asm.org/content/186/22/7508

REFERENCES

This article cites 59 articles, 37 of which can be accessed free at: http://jb.asm.org/content/186/22/7508#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more»](#)
Evolutionary Dynamics of Insertion Sequences in *Helicobacter pylori*

Awdhesh Kalia,† Asish K. Mukhopadhyay,* Giedrius Dailide, Yoshiyki Ito,† Takeshi Azuma,† Benjamin C. Y. Wong, and Douglas E. Berg†

Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri; Second Department of Internal Medicine, Fukui Medical School, Fukui, Japan; and Division of Gastroenterology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong

Received 21 April 2004/Accepted 5 August 2004

Prokaryotic insertion sequence (IS) elements behave like parasites in terms of their ability to invade and proliferate in microbial gene pools and like symbionts when they coevolve with their bacterial hosts. Here we investigated the evolutionary history of IS605 and IS607 of *Helicobacter pylori*, a genetically diverse gastric pathogen. These elements contain unrelated transposase genes (orfA) and also a homolog of the *Salmonella* virulence gene *gipA* (orfB). A total of 488 East Asian, Indian, Peruvian, and Spanish isolates were screened, and 18 and 14% of them harbored IS605 and IS607, respectively. IS605 nucleotide sequence analysis (n = 42) revealed geographic subdivisions similar to those of *H. pylori*; the geographic subdivision was blurred, however, due in part to homologous recombination, as indicated by split decomposition and homoplasy tests (homoplasy ratio, 0.56). In contrast, the IS607 populations (n = 44) showed strong geographic subdivisions with less homologous recombination (homoplasy ratio, 0.2). Diversifying selection (ratio of nonsynonymous change to synonymous change, >>1) was evident in ~15% of the IS605 orfA codons analyzed but not in the IS607 orfA codons. Diversifying selection was also evident in ~2% of the IS605 orfB and ~10% of the IS607 orfB codons analyzed. We suggest that the evolution of these elements reflects selection for optimal transposition activity in the case of IS605 orfA and for interactions between the OrfB proteins and other cellular constituents that potentially contribute to bacterial fitness. Taken together, similarities in IS elements and *H. pylori* population genetic structures and evidence of adaptive evolution in IS elements suggest that there is coevolution between these elements and their bacterial hosts.

The insertion sequences (IS) of bacteria are discrete DNA segments that are distinguished by their ability to move within genomes without a need for extensive DNA homology. These elements move within and between species by DNA transfer and transposition, and they proliferate within bacterial genomes by transposition per se (for general reviews see references 3, 15, and 16). Most elements seem to be innocuous or parasitic (19). However, coadaptation between elements and their hosts during long-term association may also make carriage beneficial in certain cases (38, 43).

Chance and natural selection may each contribute to the maintenance of IS elements in bacterial populations. Once a given element has entered a gene pool, its abundance should reflect its rates of interstrain transfer and transposition, coupled with any benefit or cost resulting from its carriage in terms of bacterial survival, growth, or adaptability in variable and often hostile environments. Elements that confer resistance to antibiotics or metals provide dramatic examples of contributions to host fitness. Certain mutations caused by IS element movement may also be adaptive (11, 53, 56), and the product of the transposase gene of at least one element (IS50) contributes to host fitness, independent of movement (25). The known deleterious effects of transposable elements are related to their movement, and they include inactivation of genes by insertion, adjacent deletion, and other chromosomal rearrangements. The position of a mobile element in the spectrum from parasitic to beneficial in its interactions with its host may depend, at least in part, on the selection imposed by the host’s background genotype and environment.

Much of our understanding of mechanisms that regulate IS element maintenance and evolution in bacterial populations has come from studies of the elements that are common in natural isolates of *Escherichia coli* and *Salmonella* (5, 26, 41, 45, 48, 53). These enteric organisms have strongly clonal population structures and often carry multiple unrelated elements in their chromosomes and/or plasmids. Interstrain transfer is relatively frequent, and transfer between species has also been observed. Consequently, IS phylogenies are often incongruent with the phylogenies of the chromosomal genes of the bacterial hosts; nearly identical elements are often found in divergent bacterial lineages, and conversely, divergent elements are sometimes found in closely related lineages (5, 24, 41, 54). In *E. coli* nucleotide sequences within each class of IS elements are highly conserved (>99% similar to a consensus sequence), and comparisons with sequences from chromosomal genes suggest that these elements move often among host lineages (41). Nucleotide sequence analysis of IS1 and IS2 homologs from diverse enteric species also indicated that there is significant intragenic recombination, which might contribute to IS element evolution (41).

To gain insight into the role of natural selection in the maintenance and evolution of IS elements in bacterial populations, we investigated the evolutionary histories of IS605 and IS607 of *Helicobacter pylori*, a gram-negative bacterium that is...
implicated in peptic ulcer disease and gastric cancer (6, 14). *H. pylori* is of particular interest for such studies because it is extremely diverse genetically and has robust geographic subdivisions that are far more robust than those of any other bacterial pathogen (1, 22, 23, 36, 46, 52). Its great genetic diversity can be ascribed to multiple factors, including (i) mutation, (ii) recombination, (iii) highly localized (preferentially intrafamilial) transmission and the resulting lack of species-wide selective sweeps, and (iv) selection for different bacterial traits in different human hosts (20, 21, 47, 61). Barriers to gene flow resulting from geographic isolation of ancestral *H. pylori* populations may also have caused considerable genetic drift and thus differentiation of various *H. pylori* subpopulations (22). Each of these factors may also have influenced the evolutionary dynamics of IS elements in the *H. pylori* gene pool. IS605 and IS607 belong to a novel family of transposable elements that are chimeric; each element contains two genes, orfA and orfB, which apparently have different phylogenetic origins (9, 10, 34, 35). The orfA genes of IS605 and IS607 encode transposases belonging to two different families. IS607 orfA is predicted to encode a serine recombinase, most homologs of the second gene of these elements, orfB, is not required for transposition in the *E. coli* model, but it is "predicted" to encode a serine recombinase based on amino acid homologies. Consistent with transposase differences, the elements differ in their insertion specificities. IS605 inserts preferentially downstream of a pentanucleotide motif, 5'-TTTAA, whereas IS607 inserts preferentially between G residues in a GG target sequence. The second gene of these elements, orfB, which is related to the genes encoding several putative bacterial transposases (10), is not required for transposition in the *E. coli* model, but it is related to the gene encoding the *Salmonella* prophage-encoded GipA protein, which promotes *Salmonella*’s growth and survival in Peyer’s patches of the intestine (60).

Nucleotide sequence analysis of IS elements in bacterial populations can provide insights into the evolutionary histories of the elements and sometimes also into the histories of their microbial hosts (5, 41). In this study, we elucidated the evolutionary histories of IS605 and IS607 in the context of *H. pylori*’s extensive genetic diversity and geographic population subdivision.

MATERIALS AND METHODS

Bacterial isolates and geographical origins. *H. pylori* isolates were cultured by standard conditions and were maintained as frozen stocks at −70°C in sterile brain heart infusion broth containing 15% glycerol. A total of 488 *H. pylori* isolates from different parts of the world were included in this study. The individual population profiles are described below.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Nucleotide sequence Location</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS605 orfA</td>
<td>ORF18F</td>
<td>5'-CGCCCTTGATCGTTCGAGATTGC</td>
<td>112 bp from left end of IS605</td>
</tr>
<tr>
<td></td>
<td>ORF18R</td>
<td>5'-CAACCAACCGAAGCAAGCATATC</td>
<td>482 bp from left end of IS605</td>
</tr>
<tr>
<td></td>
<td>ORF19F</td>
<td>5'-GGCTGTTCTAGGTCGTTAACA</td>
<td>658 bp from left end of IS605</td>
</tr>
<tr>
<td></td>
<td>ORF19R</td>
<td>5'-AAAGCTAGATCGCAACATGC</td>
<td>1319 bp from left end of IS605</td>
</tr>
<tr>
<td>IS607 orfA</td>
<td>FkF</td>
<td>5'-GGCTACAAACAGAATCAATA</td>
<td>237 bp from left end of IS607</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>5'-ATGCGTGATCTAGCTG</td>
<td>740 bp from left end of IS607</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>5'-AGCTGTCAGTTGATCC</td>
<td>1386 bp from right end of IS607</td>
</tr>
<tr>
<td>IS607 orfB</td>
<td>R1</td>
<td>5'-GCTAGATATTTAAGCGCTAGAG</td>
<td>1351 bp from left end of IS607</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>5'-TCCTTAATTTAGGTTTG</td>
<td>1984 bp from left end of IS607</td>
</tr>
</tbody>
</table>

Sixty-eight Spanish isolates obtained from Teresa Alarcón and Manuel Lopez Brea have been described previously (37), as have 76 isolates cultured from biopsies provided by Abhijit Choudhury from ethnic Bengali patients in Calcutta, India (47). Fifty-one strains isolated from American (native Peruvian) patients from Lima, Peru, were provided by Robert H. Gilman. For the East Asian strains, 140 isolates were obtained from ethnic Japanese patients in Fukushima, Honshu, Japan, 103 isolates were obtained from ethnic Japanese or Okinawan patients in Okinawa, and 50 isolates were obtained from ethnic Chinese patients in Hong Kong. All isolates were obtained from patients with gastric complaints that had undergone diagnostic endoscopy with informed consent.

PCR amplification, dot blot hybridization, and nucleotide sequencing. Chromosomal DNA was prepared from confluent cultures on brain heart infusion agar plates either by the hexadecyltrimethylammonium bromide extraction method as described previously (39) or with a QIAamp DNA minikit (QIAGEN Inc., Chatsworth, Calif.). Primers used for generating probes for hybridization, PCR, and nucleotide sequencing are listed in Table 1. Dot blot hybridization was performed by using Hybond-N nylon membranes and an ECL kit (Amersham Pharmacia Biotech, Piscataway, N.J.) according to the manufacturer’s instructions. Probes for the IS605 orfA and orfB genes were generated by PCR using *H. pylori* strain 26695 genomic DNA as the template with primer pairs ORF18F-ORF18R and ORF19F-ORF19R, respectively. A probe for IS607 was generated by using *H. pylori* strain CPY41 genomic DNA as the template with primers FkF and F10. Specific PCR were carried out in 20-μl mixtures containing 10 ng of DNA, 1 U of Taq polymerase (Promega, Madison, Wis.), 10 mmol of each primer, each deoxynucleoside triphosphate at a concentration of 0.25 mM, and 2 to 3 mM MgCl₂ in standard PCR buffer for 30 cycles, generally under the following conditions: 94°C for 40 s, 55°C for 40 s, and 72°C for a time chosen based on the size of the expected fragment (1 min/kb).

To assess the extent of geographic subdivision in IS element populations, PCR products obtained from IS605 (n = 42) and IS607 (n = 44) were sequenced. Isolates were selected primarily to sample the geographic extremes of East Asia (Japan, Hong Kong) and Europe (Spain). Peruvian and Indian *H. pylori* isolates in our collection exhibited socioeconomic or geographic differences (44). The more, for the purposes of this study, Indian, Spanish, and Peruvian strains were placed in the Indo-European group, and strains from Japan (including Honshu and Okinawa) and Hong Kong were placed in the East Asian group. Sampling within each group was randomized to test the hypothesis of geographic isolation between the two groups.

The IS605 orfA and orfB genes were amplified in a single PCR with primers ORF18F and ORF19R. To ensure twofold redundancy, the PCR product was sequenced by using primers ORF18F and ORF19R and also primers ORF18R and ORF19F (internal primers) (Table 1). Similarly, the IS607 FkF-F10 PCR product was sequenced by using primers FkF and F10 and also primers F3, R6, and F2 (internal primers) (Table 1). PCR products were sequenced directly after purification with a QIAquick gel extraction kit (QIAGEN Inc.) by using a Big-Dye terminator cycle sequencing kit (Perkin-Elmer Applied Biosystems, Foster City, Calif.) and an ABI 377 automated sequencer. Of the 86 IS elements for which nucleotide sequences were determined, 38 were resequenced to check for possible sequencing or PCR errors. The IS elements selected for verification included those which had identical sequences or those which had stop codons in the coding region. The resequencing data were 100% concordant with the first data set.

Repositories. Preliminary sequence data management, including editing and alignment, was done by using the VectorNTI suite of programs (Informax Inc., Carlson, Calif.).
between populations (D_{st}), and F_{ST} and permutation tests for geographic isolation and genetic differentiation were done with DNASP, version 4 (58). A permutation (randomization) approach was used to detect geographic subdivision and genetic differentiation (30, 31). The significance of the observed values for K_{ST}, F_{ST}, Z_{ST}, L_{ST}, and S_{ST} test statistics was obtained by 10,000 random permutations as implemented in DNASP, version 4.

(6) Phylogenetic analysis. Phylogenetic reconstruction of IS605 and IS607 nucleotide sequences was performed by using the maximum-likelihood (ML) approach implemented in PAUP*4b10 (63). All available sequences were used. An optimal model of DNA substitution that best described the pattern of nucleotide variation and sequence evolution of IS elements was determined by using MODELTEST, version 3.06 (55). For this purpose, an initial neighbor-joining tree was computed with the uncorrected p-distance measure and used as the input to estimate the likelihood parameters for 56 nested models of evolution. Models that were nested (i.e., where the simpler model [null hypothesis, H0] was a special case of the more general model [alternate hypothesis, H1]) were compared statistically by using the hierarchical likelihood ratio test (LRT) (32). The LRT includes generating a likelihood ratio statistic (LRS), which is computed as follows: LRS = 2 × (InLH0 − InLH1), where InL is the log-likelihood score of a given model. The product 2LRS follows a \(\chi^2 \) distribution with the degrees of freedom equal to the difference in the number of parameters between the two models. An ML phylogeny was reconstructed under the best-fit model by using a combination of heuristic searches and branch swapping (with the tree bisection reconnection algorithm) to further optimize the likelihood score and substitution parameters, including among- and within-site rate variation. The significance of observed groupings in the phylogeny was assessed by a bootstrap analysis performed with 1,000 replicates under the distance optimality criterion. While the ML-optimized model parameters were incorporated by using a combination of heuristic searches and branch swapping, Phylogenetic trees were visualized with TreeView, version 1.6.6 (49), and were edited further in Microsoft PowerPoint.

Homologous recombination in IS605 and IS607 was assessed by split decomposition (SD) analysis (2) and the homoplasy test (44). SD analysis uses a relaxed condition for estimating splitting patterns among taxa, and both the signal (suggesting the tree structure) and the noise (suggesting patterns inconsistent with the tree structure, such as those arising from recombination and/or convergent evolution) can be presented simultaneously. Unlike standard tree-building methods, SD analysis can usually produce a network that helps delineate anomalies in the history of gene trees (3, 50, 62). In particular, recombination generates sequences linked by multiple ancestors, which with this method are depicted as an interconnected network of phylogenetic relationships (50). For the analysis reported below, nucleotide data were transformed into a matrix of pairwise distances incorporating ML-optimized substitution parameters. In some cases, SD analysis was also done by using the uncorrected p-distance measure. The analysis was done with SplitsTree, version 3.2 (33). The homoplasy test was done by using the program HOMOPLASY (kindly provided by Mark Achman). Estimates of se (effective site number) and the homoplasy ratio (h) were obtained using all three levels of expression (low, medium, and high) in three independent runs. Results were reported by averaging over all runs.

(iii) Analysis of selection pressures. The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})).

The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})). (iii) Analysis of selection pressures. The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})).

The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})). (iii) Analysis of selection pressures. The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})).

The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})).

The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})). (iii) Analysis of selection pressures. The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})).

The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})). (iii) Analysis of selection pressures. The selection pressure on a protein-encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N}) (amino acid altering) to the synonymous substitution rate (d_{S}) (silent, encoding gene can be measured by comparing the nonsynonymous substitution rate (d_{N})).
extremely low and ranged from 0% in Japan (Honshu) to 8% in Hong Kong.

Nucleotide sequence diversity. We determined the nucleotide sequences for 378 bp of orfA and 549 bp of orfB from IS605 in 42 strains and for 537 bp of orfA and 563 bp of orfB from IS607 in 44 strains; in each case the strain was chosen as described in Materials and Methods. The average nucleotide diversity (i.e., nucleotide divergence per site) in these elements ranged from 0.021 (IS607 orfA) to 0.051 (IS605 orfA). The average nucleotide diversity at synonymous sites, where the accumulated changes reflect the ages of alleles (4), ranged from 0.021 (IS605 orfA) to 0.051 (IS607 orfA). The average nucleotide diversity values for nonsynonymous sites ranged from 0.007 in IS607 orfA to 0.029 in IS607 orfA. The values were fairly similar to those of five other H. pylori chromosomal genes (housekeeping genes) (Table 3). The average nucleotide diversity between groups, which supported the phylogenetic relationships inferred from IS605 sequences. The East Asian isolates formed one weakly supported group (group I; bootstrap support, 41%) and sequences from Hong Kong, Honshu, and Okinawa were intermingled with sequences from Spain and Peru. A second weakly supported group (group II; bootstrap support, 50%) consisted mostly of Spanish isolates that were intermingled with Peruvian and Indian isolates; one Honshu isolate (CPY3281) also clustered with group II. Three distinct groups were seen among 14 Indian H. pylori isolates. IS605 sequences from four Indian H. pylori isolates (I-41, I-69, I-111, and I-48) clustered with group II Spanish and Peruvian H. pylori isolates, and IS605 sequences of the other 10 isolates formed two additional clusters, group IndA (four isolates; bootstrap support, 99%) and group IndB (six isolates; bootstrap support, 51%). Taken together, the IS605 phylogeny exhibited blurred population subdivisions, in which three of the four major groups were only weakly supported.

The nucleotide sequence diversity within subpopulations ranged from 1% in group IndA to 3.4% in group II (Table 4). In all pairwise comparisons of IS605 subpopulations, the mean divergence between groups (D_	ext{xy}) was higher than the mean divergence within groups, which supported the phylogenetic distinctness (51). Statistical tests that measured the extent and significance of genetic differentiation (30, 31) suggested that IS605 sequences of the other 10 isolates had undergone very great genetic differentiation (F_	ext{ST} = 0.281) (Table 4) (27). Individual pairwise comparisons also revealed significant geographic isolation and genetic differentiation among IS605 subpopulations.

Subpopulations that diverge from a common ancestor and subsequently evolve in isolation are expected to accumulate fixed polymorphisms (sites at which all sequences in one population differ from all sequences in a second population),

TABLE 3. DNA divergence in H. pylori IS elements and chromosomal genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>No. of sequences</th>
<th>Sequence length (bp)</th>
<th>Mean nucleotide diversity [\pi_{(\text{JC corrected})}]^a</th>
<th>Mean nucleotide diversity at synonymous sites [\pi_{(\text{JC corrected})}]</th>
<th>Mean nucleotide diversity at nonsynonymous sites [\pi_{(\text{JC corrected})}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS605 orfA</td>
<td>42</td>
<td>378</td>
<td>0.051</td>
<td>0.153</td>
<td>0.029</td>
</tr>
<tr>
<td>IS605 orfB</td>
<td>42</td>
<td>549</td>
<td>0.035</td>
<td>0.128</td>
<td>0.013</td>
</tr>
<tr>
<td>IS607 orfA</td>
<td>44</td>
<td>537</td>
<td>0.021</td>
<td>0.078</td>
<td>0.007</td>
</tr>
<tr>
<td>IS607 orfB</td>
<td>44</td>
<td>563</td>
<td>0.033</td>
<td>0.113</td>
<td>0.013</td>
</tr>
<tr>
<td>atpA</td>
<td>607</td>
<td>orfB</td>
<td>0.021</td>
<td>0.078</td>
<td>0.007</td>
</tr>
<tr>
<td>IS</td>
<td>44</td>
<td>537</td>
<td>0.021</td>
<td>0.113</td>
<td>0.013</td>
</tr>
<tr>
<td>IS</td>
<td>42</td>
<td>378</td>
<td>0.051</td>
<td>0.153</td>
<td>0.029</td>
</tr>
<tr>
<td>IS</td>
<td>317</td>
<td>398</td>
<td>0.025</td>
<td>0.107</td>
<td>0.005</td>
</tr>
<tr>
<td>IS</td>
<td>332</td>
<td>510</td>
<td>0.006</td>
<td>0.164</td>
<td>0.014</td>
</tr>
<tr>
<td>IS</td>
<td>335</td>
<td>585</td>
<td>0.031</td>
<td>0.123</td>
<td>0.006</td>
</tr>
</tbody>
</table>

^a Sequences for the housekeeping genes listed were downloaded from http://helicobacter.mlst.net and have been described previously (22). Jukes-Cantor correction was applied for multiple hits.

TABLE 4. Sequence divergence within and between phylogenetically distinct IS605 taxa

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Genes</th>
<th>Mean nucleotide diversity within group^a</th>
<th>Mean nucleotide diversity between groups^c</th>
<th>No. of fixed polymorphisms^b</th>
<th>No. of shared polymorphisms</th>
<th>F_	ext{ST}</th>
<th>PM test P value^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I vs Group II</td>
<td>orfA + orfB</td>
<td>[\pi_1 = 0.033; \pi_T = 0.034]</td>
<td>0 [6S + 3N]</td>
<td>52</td>
<td>0.303</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group I vs IndA</td>
<td>orfA + orfB</td>
<td>[\pi_1 = 0.033; \pi_{IndA} = 0.01]</td>
<td>0.047</td>
<td>5</td>
<td>0.341</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group I vs IndB</td>
<td>orfA + orfB</td>
<td>[\pi_1 = 0.033; \pi_{IndB} = 0.025]</td>
<td>0.037</td>
<td>29</td>
<td>0.225</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group II vs IndA</td>
<td>orfA + orfB</td>
<td>[\pi_{II} = 0.034; \pi_{IndA} = 0.01]</td>
<td>0.041</td>
<td>1N</td>
<td>0.163</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Group II vs IndB</td>
<td>orfA + orfB</td>
<td>[\pi_{II} = 0.034; \pi_{IndB} = 0.025]</td>
<td>0.048</td>
<td>25</td>
<td>0.364</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>IndA vs IndB</td>
<td>orfA + orfB</td>
<td>[\pi_{IndA} = 0.01; \pi_{IndB} = 0.025]</td>
<td>0.055</td>
<td>14 [10S + 4N]</td>
<td>9</td>
<td>0.2527</td>
<td><0.01</td>
</tr>
<tr>
<td>All groups</td>
<td>orfA + orfB</td>
<td>NA^e</td>
<td>NA</td>
<td>NA</td>
<td>0.281</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

^a Values were calculated with the Jukes-Cantor correction (correction for multiple hits).
^b S, synonymous polymorphisms; N, nonsynonymous polymorphisms.
^c A permutation test was done with 10,000 replications; P values were calculated for the K_	ext{ST}, K_	ext{ST*}, Z_	ext{S}, Z_	ext{S*} (30), and S_{SN} (31) test statistics. All test statistics demonstrated identical significance levels.
^d NA, not applicable.
shared polymorphisms, and unique polymorphisms (i.e., sites polymorphic in one population but monomorphic in a second population) in their DNA sequences (28). The distributions of these polymorphisms are useful in inferring the times of population divergence; recently split populations show only shared polymorphisms, and populations that split a long time ago show an inverse relationship between fixed and shared polymorphisms or only fixed polymorphisms (64). Of six possible pairwise comparisons of IS605 subpopulations, only three provided evidence for the presence of fixed polymorphisms, and all three of these involved the well-supported IndA group (Table 4). For all other comparisons, only polymorphisms shared by subpopulations were observed, suggesting that either the subpopulations diverged very recently or that recombination between subpopulations had obscured population differentiation (see below).

Phylogenetic relationships inferred from IS607 sequences. An 1,100-bp sequence obtained from concatenating IS607 orfA and orfB was used for phylogenetic reconstruction. Figure 2A shows an unrooted ML tree for IS607 nucleotide sequences obtained from the 44 H. pylori isolates. Two distinct sequence similarity clusters were evident that broadly distinguished group I (n = 20), consisting of East Asian H. pylori isolates, and group II (n = 22), consisting of Spanish, Peruvian, and Indian H. pylori isolates. Only 3 of the 23 East Asian H. pylori isolates, F-37 from Japan and pcm2 and DUQT-52 from Hong Kong, were not assigned to group I. The phylogeny also provided evidence for population subdivision within each group. Specifically, IS607 elements from Japanese (Honshu) isolates and from Okinawan-Hong Kong H. pylori isolates formed two well-supported groups, designated group Ia (bootstrap support, 99%) and group Ib (bootstrap support, 85%), although two Okinanwan IS607 sequences clustered with group Ia. IS607 sequences from three Indian isolates formed a strongly supported group, designated group IIa (bootstrap support, 99%), which was distinct from all other group II IS607 sequences. Taken together, the IS607 phylogeny exhibited well-supported geographic clustering that was markedly stronger than that in the IS605 phylogeny.

The nucleotide diversity within IS607 subpopulations ranged from 0.4% in group Ia to 1.8% in group II (Table 5). As seen with IS605 populations, D_{xy}, the mean divergence between...
groups, was higher than \(\pi \), the mean divergence within groups, suggesting the phylogenetic distinctness of IS607 subpopulations. The probabilities for the KS*, KST*, ZS, ZS*, and SNN test statistics obtained by the permutation test with 10,000 replicates were highly significant (\(P < 0.001 \)) (Table 5). This suggested that (i) the data deviated significantly from the null hypothesis of no genetic differentiation or geographic isolation and (ii) the observed IS607 popula-

FIG. 2. (A) Unrooted, radial gene tree generated by the ML method by using an 1,100-bp concatenated sequence from IS607 orfA (537 bp) and orfB (563 bp). Sequences with stop codons in orfA and orfB are indicated by double daggers and solid diamonds, respectively. The TVM + I + \(\Gamma \) model was used in phylogenetic reconstruction with \(\alpha = 0.304 \) and \(I = 0.46 \). The TVM rate substitution matrix specifies that transitions have two distinct rate categories and transversions have only two specified rate categories (\(A \rightarrow C \) and \(G \rightarrow T \) have one rate and \(A \rightarrow T \) and \(C \rightarrow G \) have one rate). Bootstrap values of \(\geq 50 \) are indicated at the nodes; distinct IS607 sequence similarity clusters are circled. *H. pylori* strain GS1 is from Honshu, Japan; for an explanation of all other strain designations see the legend to Fig. 1. nt, nucleotide. (B) Summary of polymorphisms in IS607 subpopulations: Venn diagram summarizing the unique, shared, and fixed polymorphisms observed in IS607 group Ia (\(n = 9 \)), group Ib (\(n = 11 \)), and group II (\(n = 19 \)). Fixed differences between populations are indicated below the arrows outside the conjoined circles.

TABLE 5. Sequence divergence within and between phylogenetically distinct IS607 taxa	

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Genes</th>
<th>Mean nucleotide diversity within group</th>
<th>Mean nucleotide diversity between groups</th>
<th>No. of fixed polymorphisms</th>
<th>No. of shared polymorphisms</th>
<th>(F_{ST})</th>
<th>PM test</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Ia vs Group II</td>
<td>orfA + orfB</td>
<td>(\pi_a = 0.004; \pi_b = 0.018)</td>
<td>0.035</td>
<td>11 (8S + 3N)</td>
<td>6</td>
<td>0.691</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group Ib vs Group II</td>
<td>orfA + orfB</td>
<td>(\pi_a = 0.015; \pi_b = 0.018)</td>
<td>0.034</td>
<td>1S</td>
<td>18</td>
<td>0.499</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group Ia vs Group Ib</td>
<td>orfA + orfB</td>
<td>(\pi_a = 0.004; \pi_b = 0.015)</td>
<td>0.026</td>
<td>8 (5S + 3N)</td>
<td>6</td>
<td>0.634</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group Ia vs Group Ia</td>
<td>orfA + orfB</td>
<td>(\pi_a = 0.004; \pi_b = 0.005)</td>
<td>0.028</td>
<td>24 (19S + 5N)</td>
<td>0</td>
<td>0.839</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group Ib vs Group Ia</td>
<td>orfA + orfB</td>
<td>(\pi_a = 0.015; \pi_b = 0.005)</td>
<td>0.031</td>
<td>16 (12S + 4N)</td>
<td>1</td>
<td>0.659</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Group II vs Group Ia</td>
<td>orfA + orfB</td>
<td>(\pi_a = 0.018; \pi_b = 0.005)</td>
<td>0.029</td>
<td>4 (2S + 2N)</td>
<td>3</td>
<td>0.593</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>All groups</td>
<td>orfA + orfB</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.648</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

* See footnotes to Table 4.
tion structure was highly improbable by chance alone under a neutral model. The F_{ST} value was 0.65, which suggested very great genetic differentiation (27) between IS607 subpopulations.

Pairwise comparisons of IS607 groups Ia, Ib, II, and Ia revealed a negative correlation between fixed and shared polymorphisms (Table 5), which indicated that these subpopulations had diverged from a common ancestor. Since group Ia had only three sequences, a detailed analysis of polymorphisms is presented here for only groups Ia, Ib, and II. Group Ia IS607 shared six polymorphisms with group Ib and six polymorphisms with group II, and groups Ib and II shared 18 polymorphisms (Fig. 2B). Furthermore, group Ia IS607 showed only 11 unique polymorphisms, in contrast to the 58 and 89 unique polymorphisms in groups Ib and group II, respectively. These patterns suggest that there was strong genetic drift from few founders (founder effect) or a population bottleneck in group Ia IS607 rather than a long time of separation from other IS607 populations. A long time of separation would have allowed steady accumulation of unique polymorphisms and greater nucleotide diversity in group Ia, similar to the diversity seen in group Ib and group II (Table 5). Only one fixed difference between group Ib and group II with correspondingly large numbers of shared polymorphisms was identified. This suggests either that group Ib experienced a recent increase in population size or that the two groups diverged recently from their common ancestor.

Homologous recombination among *H. pylori* IS elements.

The impact of recombination on IS605 and IS607 population structure was analyzed by using split decomposition. The splits graph of the complete IS605 data set showed that the majority of sequences were linked to a single multifurcating node (star phylogeny) (Fig. 3A), which reaffirmed the lack of the sharp population subdivision seen in the IS605 ML tree. Distant outgroups often show large random fluctuations and also different systematic biases (i.e., deviations between a parameter and parameter estimate due incorrect assumptions in the estimation method), with a tendency to hide information on in-group systematic bias (62). In such situations the splits graph...
loses resolution, as indicated by a low fit parameter (a fit parameter of 100 indicates that all conflicts in the data set are fully resolved). With the IS605 splits graph a low fit parameter was obtained (fit parameter, 7.9), indicating that very few conflicts (multiple pathways linking sequences) in the data set could be resolved. Recalculation of the splits graph after removal of cluster IndA and IndB IS605 sequences resulted in an improved fit parameter and revealed networks among IS605 sequences (Fig. 3B). The multiple pathways linking East Asian and Spanish-Peruvian-Indian IS605 sequences suggest that recombination had blurred the phylogenetic distinction between lineages. This suggestion was strengthened by removing sequences forming the network linking East Asian and Indo-European sequences in the splits graph. This revealed distinct East Asian and Indo-European IS605 subpopulations (Fig. 3C).

In the case of IS607, the splits graph showed the clear phylogenetic distinctness of the East Asian elements from the elements in other regions but provided no evidence for networked evolution (Fig. 4A). Because the great length of the branch linking the two groups could have obscured networked evolution within groups, we also analyzed separately sequences from the two major lineages corresponding to groups I and II. In both groups few sequences formed interconnected networks, suggesting that there was a history of limited recombination (Fig. 4B and C).

Homoplasy ratio calculations complemented the outcomes from the SD analysis (Table 6). The complete concatenated IS607 data set yielded an extremely low h value (0.2), indicating a lack of gene flow between IS607 subpopulations. Even within IS607 subpopulations, only low to moderate levels of recombination were detected. In contrast, the h values for IS605 were in greater accord with values observed for other H. pylori chromosomal genes, which typically range from 0.6 to 1 (1, 61). Furthermore, for the complete data set, intragenic recombination seemed to be relatively more frequent within IS605 orfA (h = 0.53) than within orfB (h = 0.32). Consistently low levels of recombination were detected in both IS607 orfA (h = 0.21) and orfB (h = 0.201). These outcomes suggest that recombination between divergent lineages has been more common in the evolution of IS605 than in the evolution of IS607.

FIG. 4. Split decomposition analysis of IS607. (A) Annotated splits graph of the 1,100-bp concatenated sequence from IS607 orfA and orfB generated with a pairwise TVM + I + Γ distance matrix. A fit parameter of 28.7 indicated that all conflicts in the data set could not be resolved. Removal of distant outgroups in the data set improved the fit parameter (indicating better resolution of conflicts), as shown in the annotated splits graph for group I IS607 (B) and the annotated splits graph for group II IS607 (C). All branch lengths are drawn to scale.
not adversely affect the ability of the ML method to detect positive selection in the IS605 phylogeny. Taken together, these data provide evidence for adaptive evolution in IS605 transposase.

In 183 of the 427 IS605 orfB codons analyzed, the average \(\omega \) for all sites ranged from 0.12 to 0.15 for all models except M1, which, although better than M0, was rejected in favor of all other models that allowed for sites under positive selection (Table 8). M3 fit the data better than M0, M1, or M2, and parameter estimates from M3 suggested that \(\sim 90\% \) of the sites were under functional constraints (purifying selection) with an \(\omega_0 \) of 0.071, \(\sim 8\% \) of the sites were moderately conserved with an \(\omega_1 \) of 0.47 (which also implies purifying selection), and \(\sim 1.5\% \) of the sites were under positive selection with an \(\omega_2 \) of 2.613. Both M3 and M8 identified sites 100 and 183 with a \(P \) value of \(>99\% \).

(ii) IS607. In 179 of the 217 orfA codons analyzed, the average \(\omega \) ranged from 0.2 to 0.25, indicating that the transposase was under purifying selection (Table 9). The more complex models (M1, M2, and M3) were significantly better than M0, thereby suggesting that selective pressures (indicated by \(\omega \)) varied among sites. The best-supported M1 (neutral) model estimated that \(\sim 75\% \) of the codons analyzed were subject to strong purifying selection (with \(\omega_0 \) fixed at 0), while the rest of the codons underwent neutral evolution (\(\omega_1 = 1 \)). These data suggest that the IS607 transposase evolution was dominated by purifying and neutral selection, in contrast to the positive selection evident in the unrelated IS605 transposase.

In 189 of the 419 IS607 orfB codons analyzed, the average \(\omega \) ranged from 0.21 to 0.27 among the best-fitting models (Table 10). Parameter estimates and LRTs suggested the presence of sites under positive selection. For example, the discrete model (M3), which fit the data significantly better than M0, M1, or M2, estimated that \(\sim 10\% \) of the orfB codons analyzed were under positive selection with an \(\omega_2 \) of 1.665. Similarly, parameter estimates from M8, which fit the data better than M7, also suggested that \(\sim 10\% \) of the orfB codons analyzed were under positive selection with an \(\omega_2 \) of 1.65. The failure of M2 to detect positive selection in biological data sets has been noted previously and is apparently due to the fact that the M1 model, on which M2 is based, is unrealistic and does not optimally

Natural selection and evolution of H. pylori IS elements

We assessed the relative contributions of selective forces on the evolution of \(H. pylori \) IS elements by measuring site-specific \(\omega/d_\text{s} \) ratios using the ML approach implemented in the CODEML program of PAML, version 3.13d (68).

(i) IS605. The IS605 orfA gene encodes a 142-amino-acid transposase that is not related to the IS607 transposase. In the 126 codons analyzed here, the average \(\omega \) ranged from 0.31 to 0.47, implying that purifying selection dominated the evolution of this transposase (Table 7). Models that allowed for positive selection (M2, M3, and M8) all suggested the presence of positively selected sites. M3 suggested more sites than M2 or M8 because the parameter estimates with this model identified an additional 12.4% of the sites that were under relatively weak (diversifying) selection (\(\omega_1 = 1.12 \)). Since the ML approach explicitly assumes a phylogenetic tree, to test whether high levels of recombination in IS605 orfA (\(h = 0.56 \) to 0.7) could have produced a false-positive signal for positive selection, we repeated the analysis assuming a star phylogeny. In a star phylogeny lineages diverge simultaneously from a single root node, thereby removing the effect of phylogenetic history. This analysis again produced significant evidence for positive selection (\(P < 0.0001 \) for M3 versus M0, M1, and M2 and for M8 versus M7), and in general the same sites fell into the positively selected class that they fell into in the original analysis (data not shown). This indicated that recombination did

TABLE 6. Homologous recombination within IS elements

<table>
<thead>
<tr>
<th>IS element</th>
<th>No. of sequences</th>
<th>No. of informative sites</th>
<th>Mean shuffled (h)</th>
<th>(h) ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS607AB</td>
<td>44</td>
<td>61</td>
<td>40</td>
<td>0.217</td>
</tr>
<tr>
<td>Group Ia</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Group Ib</td>
<td>11</td>
<td>26</td>
<td>14</td>
<td>0.348</td>
</tr>
<tr>
<td>Group II</td>
<td>19</td>
<td>59</td>
<td>39</td>
<td>0.525</td>
</tr>
<tr>
<td>IS605AB</td>
<td>42</td>
<td>67</td>
<td>53</td>
<td>0.558</td>
</tr>
<tr>
<td>GroupI</td>
<td>10</td>
<td>41</td>
<td>18</td>
<td>0.654</td>
</tr>
<tr>
<td>GroupII</td>
<td>14</td>
<td>54</td>
<td>39</td>
<td>0.701</td>
</tr>
</tbody>
</table>

\(a \) The \(h \) ratio is the average of \(h \) ratio assuming high, low, and medium expression.

\(b \) ND, not determined due to insufficient number of synonymous variable sites.

\(c \) IS605 group designations are based on the split decomposition analysis shown in Fig. 3C.

TABLE 7. Selection pressures acting on IS605 orfA: ML parameter estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>(\text{lnL}^a)</th>
<th>(\omega/d_\text{s}^b)</th>
<th>Estimates of parameters</th>
<th>LRT (df) (^c)</th>
<th>(P)</th>
<th>Positively selected sites ((\omega > 1)) (^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0 (one ratio)</td>
<td>(-1,716,813)</td>
<td>0.263</td>
<td>(\omega = 0.263)</td>
<td>None</td>
<td>Not allowed</td>
<td></td>
</tr>
<tr>
<td>M1 (neutral)</td>
<td>(-1,797,783)</td>
<td>0.336</td>
<td>(p_0 = 0.663, \omega_0 = 0; p_1 = 0.336, \omega_1 = 1)</td>
<td>M0 vs M2 (2)</td>
<td>74.06</td>
<td>(<0.000)</td>
</tr>
<tr>
<td>M2 (selection)</td>
<td>(-1,663,452)</td>
<td>0.475</td>
<td>(p_0 = 0.656, p_1 = 0.321; p_2 = 0.021, \omega_2 = 7.066)</td>
<td>M1 vs M2 (2)</td>
<td>32.66</td>
<td>(<0.000)</td>
</tr>
<tr>
<td>M3 (discrete)</td>
<td>(-1,649,582)</td>
<td>0.318</td>
<td>(p_0 = 0.856, \omega_0 = 0.073; p_1 = 0.124, \omega_1 = 1.125; p_2 = 0.019, \omega_2 = 5.842)</td>
<td>M0 vs M3 (4)</td>
<td>134.46</td>
<td>(<0.000)</td>
</tr>
<tr>
<td>M7 ((\beta))</td>
<td>(-1,667,806)</td>
<td>0.212</td>
<td>(p = 0.134, q = 0.497)</td>
<td>M1 vs M3 (4)</td>
<td>60.40</td>
<td>(<0.000)</td>
</tr>
<tr>
<td>M8 ((\beta) and (\omega))</td>
<td>(-1,654,705)</td>
<td>0.302</td>
<td>(p_0 = 0.972, p_1 = 0.210, q = 0.940, p_2 = 0.027, \omega_2 = 4.767)</td>
<td>M2 vs M3 (2)</td>
<td>27.74</td>
<td>(<0.000)</td>
</tr>
</tbody>
</table>

\(a \) \(\text{lnL} \), log-likelihood score. Tree lengths and kappa estimates were homogeneous for all models.

\(b \) \(\omega/d_\text{s} \) averaged over all lineages and all sites.

\(c \) Likelihood ratio test (degrees of freedom).

\(d \) Site probability in boldface type, >95%; site probability underlined, >75% and <95%; site probability not in boldface type and not underlined, >50% and <75%.
which/or orientation, stable, reflecting long-term IS residence in the
emain to be eliminated. The levels of nucleotide divergence at
arose recently as elements spread among lineages and that
lori
sequences indicated that most East Asian elements
607
nucleotide sequences of normal chromosomal (housekeeping)
tinctions resulted from evolution in geographic isolation. The
Statistical tests for population subdivision suggest that the dif-
605
IS
bination between subpopulations (Fig. 3B and Table 6). Sim-
ropean elements (Fig. 3C and Table 4) was blurred by recom-
605
IS
subpopulations (Fig. 2 and 4A and Table 6). In the case of
607 orfA, in which there was little recombination between
hosts. This was most striking in the
607
and IS
are discussed below.
Population differences in IS element alleles might be evolu-
tory constraints, were generally less than the synonymous
site divergence levels for both IS and other chromosomal genes
selective constraints, can be used to test these alternatives because changes accumulated at synonymous sites
reflect the ages of alleles (4, 66). The cumulative (all popula-
tions) mean divergence values at synonymous sites (corrected
for multiple hits) for the IS607 orfA and orfB and IS605 orfA
and orfB sequences were 7.8, 11.3, 15.3, and 12.8%, respec-
tively (Table 3). These values resembled the mean divergence
values at synonymous sites seen in several of H. pylori’s normal
chromosomal genes, such as ppu (10.7%), ureI (12.3%), atpA
(13.6%), yphC (16.4%), and efp (17.5%) (22). The levels of
nonsynonymous site divergence, which is subject to greater
selective constraints, were generally less than the synonymous
site divergence levels for both IS and other chromosomal genes
(Table 3). These data suggest that IS elements are ancient
components of the H. pylori gene pool and evolved at approx-
imately the same rate as normal chromosomal genes. Long-
term IS residence in the H. pylori gene pool would provide
ample opportunities for element adaptation to the host or
ecoevolution.

Polymorphism levels within geographic subdivisions depend
on population history, including bottlenecks that directly de-
crease effective population sizes (8, 27). Assuming that the IS
elements each invaded the H. pylori gene pool prior to sepa-
ration of populations and that only a fraction of the ancestral
H. pylori strains also harbored each IS element, the effect of
random genetic drift, which reduces the net nucleotide diver-
sity, would have been greater on IS elements than on normal

TABLE 8. Selection pressures acting on IS605 orfB: ML parameter estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>lnL</th>
<th>(d_\omega/d_\sigma)</th>
<th>Estimates of parameters</th>
<th>LRT (df)</th>
<th>(\chi^2)</th>
<th>(P)</th>
<th>Positively selected sites ((\omega > 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0 (one ratio)</td>
<td>-1,947.005</td>
<td>0.141</td>
<td>(\omega = 0.141)</td>
<td>M0 vs M2 (2)</td>
<td>47.59</td>
<td><0.000</td>
<td>None</td>
</tr>
<tr>
<td>M1 (neutral)</td>
<td>-1,942.164</td>
<td>0.27</td>
<td>(p_0 = 0.729, a_0 = 0; p_1 = 0.270, a_1 = 1)</td>
<td>M1 vs M2 (2)</td>
<td>37.91</td>
<td><0.000</td>
<td>None</td>
</tr>
<tr>
<td>M2 (selection)</td>
<td>-1,923.208</td>
<td>0.125</td>
<td>(p_0 = 0.0, p_1 = 0.054; p_2 = 0.945), (a_0 = 0.075)</td>
<td>M0 vs M2 (2)</td>
<td>53.40</td>
<td><0.000</td>
<td>100D, 183T</td>
</tr>
<tr>
<td>M3 (discrete)</td>
<td>-1,920.305</td>
<td>0.145</td>
<td>(p_0 = 0.90, a_0 = 0.071; p_1 = 0.084, a_1 = 0.474; p_2 = 0.015, a_2 = 2.613)</td>
<td>M1 vs M3 (4)</td>
<td>43.71</td>
<td><0.000</td>
<td>None</td>
</tr>
<tr>
<td>M7 ((\beta))</td>
<td>-1,927.993</td>
<td>0.1531</td>
<td>(p = 0.202, q = 1.096)</td>
<td>M7 vs M8 (2)</td>
<td>15.09</td>
<td><0.000</td>
<td>100D, 183T</td>
</tr>
<tr>
<td>M8 ((\beta) and (\omega))</td>
<td>-1,920.445</td>
<td>0.145</td>
<td>(p_0 = 0.982; p = 0.869, q = 7.280; p_2 = 0.017, a_2 = 2.511)</td>
<td>M2 vs M3 (2)</td>
<td>5.80</td>
<td><0.05</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>

* See Table 7 footnotes.

TABLE 9. Selection pressures acting on IS607 orfA: ML parameter estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>lnL</th>
<th>(d_\omega/d_\sigma)</th>
<th>Estimates of parameters</th>
<th>LRT (df)</th>
<th>(\chi^2)</th>
<th>(P)</th>
<th>Positively selected sites ((\omega > 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0 (one ratio)</td>
<td>-1,393.247</td>
<td>0.207</td>
<td>(\omega = 0.207)</td>
<td>M0 vs M2 (2)</td>
<td>17.232</td>
<td><0.000</td>
<td>None</td>
</tr>
<tr>
<td>M1 (neutral)</td>
<td>-1,385.371</td>
<td>0.246</td>
<td>(p_0 = 0.753, a_0 = 0; p_1 = 0.246, a_1 = 1)</td>
<td>M1 vs M2 (2)</td>
<td>1.48</td>
<td>NS7</td>
<td>None</td>
</tr>
<tr>
<td>M2 (selection)</td>
<td>-1,384.631</td>
<td>0.206</td>
<td>(p_0 = 0.673, p_1 = 0.119; p_2 = 0.207), (a_0 = 0.41)</td>
<td>M0 vs M2 (2)</td>
<td>16.954</td>
<td><0.001</td>
<td>None</td>
</tr>
<tr>
<td>M3 (discrete)</td>
<td>-1,384.777</td>
<td>0.208</td>
<td>(p_0 = 0.115, a_0 = 0.0001; p_1 = 0.62, a_1 = 0.03; p_2 = 0.26, a_2 = 0.76)</td>
<td>M1 vs M3 (4)</td>
<td>1.202</td>
<td>NS</td>
<td>None</td>
</tr>
<tr>
<td>M7 ((\beta))</td>
<td>-1,384.701</td>
<td>0.208</td>
<td>(p = 0.086, q = 0.329)</td>
<td>M2 vs M3 (2)</td>
<td>-0.278</td>
<td>NS</td>
<td>None</td>
</tr>
<tr>
<td>M8 ((\beta) and (\omega))</td>
<td>-1,384.483</td>
<td>0.217</td>
<td>(p_0 = 0.98; p = 0.144, q = 0.638; p_2 = 0.011, a_2 = 3.059)</td>
<td>M7 vs M8 (2)</td>
<td>0.138</td>
<td>NS</td>
<td>None</td>
</tr>
</tbody>
</table>

* See Table 7 footnotes.

b NS, not significant.
H. pylori genes, because of smaller IS population sizes. Additionally, constraints on lateral movement of these elements (e.g., due to H. pylori’s preferential intrafamilial transmission) or possible selection against IS element carriage in certain lineages would increase drift by keeping the fraction of IS element-containing strains small (8). Analysis of IS607 subpopulations suggested that there was particularly strong drift among group Ia elements (Fig. 2a); the nucleotide diversity in this group (π = 0.4%) was ~5- to 10-fold less than that in normal chromosomal genes from Japanese strains (π ranged from 1.5 to 2.8% for six chromosomal genes [Dailide and Berg, unpublished data] but see GenBank accession numbers AY152917 to AY152929, AY152970 to AY152986, AY153290 to AY153309, AY153321 to AY153328, AY153368 to AY153388, and AY153164 to AY153177]). In contrast, the nucleotide diversity in IS607 group II (π = 1.8%) was ~1-3- to 3-fold less than that in Indo-European strains (π ranged from 2.4 to 4.6% for six chromosomal genes [Dailide and Berg, unpublished but see GenBank accession numbers AY152881 to AY152893, AY152930 to AY152941, AY152941 to AY152952, AY152952 to AY153216, AY153338 to AY1533367, and AY153151 to AY153263]). The Indo-European H. pylori population is far more complex than the Japanese population; further sampling of IS607 and H. pylori populations would help us judge better how reduced the nucleotide diversity in group II is and how much of the diversity stems from genetic drift.

In contrast to IS607, the nucleotide diversity within East Asian (group I π = 3.3%) and Indo-European (group II π = 3.4%) IS605 elements (Table 4) was similar to that in normal chromosomal genes from corresponding populations. However, the data also suggested greater recombination among IS605 subpopulations than the recombination observed with IS607 (Fig. 3 and Table 6). Recombination between different subpopulations can increase the net nucleotide divergence within a given subpopulation (13) and can also reduce genetic differentiation between populations (12). This is seen in the FST values for IS605 populations (FST = 0.281; PM test P values, <0.01) relative to those of IS607 (FST = 0.648; PM test P values, <0.001) (Tables 4 and 5).

In most studies of IS element population genetics the workers have focused on elements from model enteric bacterial species (E. coli, Salmonella) and have used strains from North American or European collections. We anticipate, however, that additional sampling of Asian enteric strains would reveal little, if any, geographic clustering. The strong geographic clustering of IS element sequences seen in H. pylori is ascribed to the different population genetic structures and biology of the bacterial host species (H. pylori versus E. coli and Salmonella).

Strains of E. coli containing any one IS element were far more likely to contain additional, unrelated elements than would be expected by chance (26). This suggested that enteric IS elements were often transferred on high-capacity plasmid vectors. In contrast, only 9 (6%) of the 157 H. pylori isolates of the 488 isolates that we screened that carried either IS607 or IS605 carried both elements. This predominance of strains carrying only single elements would be explained if such high-capacity mobilizable plasmid vectors are uncommon in H. pylori populations.

Natural selection and IS element evolution. We sought evidence for positive selection in IS genes based on the premise that IS element adaptation to its host should accelerate the accumulation of new divergent alleles (4, 66). ML analysis of ratios of nonsynonymous to synonymous nucleotide changes provided a measure of selective pressures acting along a protein-encoding sequence, and the results suggested that IS605 and IS607 genes had been subjected to different selective pressures at different sites (Tables 7 to 10). Purifying selection dominated at most codon sites of IS elements, but positive (diversifying) selection was evident at specific codons in IS605 orfA (12.9% of the codons with an ωA of 1.125 and 1.9% of the codons with an ωA of 5.842), in IS605 orfB (1.5% of the codons with an ωB of 2.613), and in IS607 orfB (10% of the codons with an ωB of 1.665). In contrast, only purifying selection and neutral selection were detected in IS607 orfA (ωA was 0 in 75% of the codons, and ωA was 1 in ~25% of the codons); no positive selection was detected.

The finding that there was positive selection in ~15% of IS605 orfA (transposase) codons but not in IS607 orfA suggests that the unrelated transposases evolved under different selective regimes. We also detected positive selection (ωA = 1.63) at ~10% of the codons in the transposase of ISHp608 (data not shown), which is related to the transposase of IS605 but not to the transposase of IS607 (37). Several bacterial IS incorporate host proteins in their transposition complexes (10, 15); given the genetic variability in natural H. pylori populations, we suggest that IS605 and ISHp608 transposases adapted to interact
with more than one accessory factor (or common factor with polymorphic features), whose abundance varies geographically. This proposed difference in selective forces acting on the unrelated transposases of IS605 and IS607 is consistent with the distinct insertion specificities (34, 35) and the possibility of fundamentally different mechanisms of transposition. Differences in selective pressures, recombination frequency, and random genetic drift (see above) together suggest that IS605 and IS607 have distinct evolutionary dynamics.

The dominance of purifying selection seen here, which is also evident in eukaryotic mobile elements (18, 40, 65), is consistent with a model in which transposition causes IS element proliferation in the host gene pool (38). Bacterial IS elements tend to be more active when they are introduced into a naïve cell (free of the homologous IS element) than after they are established (3, 10, 57). Counteracting the short-term selective advantage of any element that transposes frequently would be host defenses that minimize potentially deleterious consequences of transposition (usually gene inactivation or genome rearrangements) plus negative regulating mechanisms of the element itself. Several different mechanisms for regulating transposition have been identified in various elements (3, 10, 15).

Mutational studies have shown that wild-type transposable themselves are less than maximally active and that certain amino acid substitutions can increase their transposition activity (10, 17, 57). Accordingly, an alternate hypothesis for the amino acid substitutions can increase their transposition activities would result in different evolutionary dynamics. Understanding when and how IS605 and IS607 affect bacterial fitness and any reciprocal effects of host factors on the fitness of IS elements themselves (the give and take of any evolutionary process) may in turn provide new insights into H. pylori's transmission, colonization, and virulence mechanisms and the evolution of its genome.

ACKNOWLEDGMENTS

We thank many colleagues for the H. pylori strains used in this study. This study was supported by research grants RO1 AI38166, RO3 AI49161, RO1 AI63441, RO1 DK53727, RO1 DK057826, and P50 DK52574 from the National Institutes of Health.

REFERENCES
