Copper-64 radiopharmaceuticals for PET imaging of cancer: Advances in preclinical and clinical research

Carolyn J. Anderson
Washington University School of Medicine in St. Louis

Riccardo Ferdani
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation

https://digitalcommons.wustl.edu/open_access_pubs/2839

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research

Carolyn J. Anderson1–3 and Riccardo Ferdani1

Summation

Copper-64 (T1/2 = 12.7 hours; β+, 0.653 MeV [17.8 %]; β−, 0.579 MeV [38.4 %]) has decay characteristics that allow for positron emission tomography (PET) imaging and targeted radiotherapy of cancer. The well-established coordination chemistry of copper allows for its reaction with a wide variety of chelator systems that can potentially be linked to peptides and other biologically relevant small molecules, antibodies, proteins, and nanoparticles. The 12.7-hours half-life of 64Cu provides the flexibility to image both smaller molecules and larger, slower clearing proteins and nanoparticles. In a practical sense, the radionuclide or the 64Cu-radiopharmaceuticals can be easily shipped for PET imaging studies at sites remote to the production facility. Due to the versatility of 64Cu, there has been an abundance of novel research in this area over the past 20 years, primarily in the area of PET imaging, but also for the targeted radiotherapy of cancer. The biologic activity of the hypoxia imaging agent, 60Cu-ATSM, has been described in great detail in animal models and in clinical PET studies. An investigational new drug application for 64Cu-ATSM was recently approved by the U.S. Food and Drug Administration (FDA) in the United States, paving the way for a multicenter trial to validate the utility of this agent, with the hopeful result being FDA approval for routine clinical use. This article discusses state-of-the-art cancer imaging with 64Cu radiopharmaceuticals, including 64Cu-labeled peptides for tumor-receptor targeting, 64Cu-labeled monoclonal antibodies for targeting tumor antigens, and 64Cu-labeled nanoparticles for cancer targeting. The emphasis of this article will be on the new scientific discoveries involving 64Cu radiopharmaceuticals, as well as the translation of these into human studies.

Key words: antibody, bone metastases, cancer, PET, molecular imaging

Introduction

A significant research effort has been devoted to the copper radionuclides because they offer a varying range of half-lives and positron energies (Table 1). In addition, the well-established coordination chemistry of copper allows for its reaction with a wide variety of chelator systems that can be linked to antibodies, proteins, peptides, and other biologically relevant small molecules. This update will focus on 64Cu radiopharmaceuticals for positron emission tomography (PET) imaging applications. The longer half-life allows 64Cu to be produced at regional or national cyclotron facilities and distributed to local nuclear medicine departments with the loss of approximately one half-life. In addition, the longer half-life is compatible with the time scales required for the optimal biodistribution of slower clearing agents, such as monoclonal antibodies (mAbs), nanoparticles, and higher molecular weight polypeptides requiring longer imaging times.

Production of Copper Radionuclides

The production of no-carrier-added 64Cu via the 64Ni(p,n) 64Cu reaction on a biomedical cyclotron was proposed by Szelenyi et al. In this study, small irradiations were performed demonstrating the feasibility of 64Cu production...
Cu(II) complexes for radiopharmaceutical applications has been an active area of research.

Chelators based on cyclam and cyclen backbones

The most widely used chelators for attaching 64Cu to bio-
logic molecules are tetraazamacrocyclic ligands with pendant
arms that utilize both the macroscopic and chelate effects to
enhance stability. By far, the most extensively used class
of chelators for 64Cu has been the macrocyclic polyamino-
carboxylates shown in Figure 1. Two of the most widely
studied chelators are DOTA (1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid) and TETA (1,4,8,11-tetraazacycle-
tradecane-1,4,8,11-tetraacetic acid). While DOTA has been
used as a BFC (bifunctional chelator) for 64Cu, its ability to
bind many different metal ions and its decreased stability,
compared to TETA, make it less than ideal.13–18 The tetra-
azamacrocyclic ligand, TETA, therefore, has been extensively
used as a chelator for 64Cu, and successful derivatization of
this ligand has allowed researchers to conjugate it to antibo-
dies, proteins, and peptides.19–26

Although 64Cu-TETA complexes are more stable than
64Cu-DOTA and 64Cu-labeled complexes of acyclic ligands,
their instability in vivo has been well documented by our lab.
Bass et al. demonstrated that when 64Cu-TETA-octreotide
(OC) was injected into normal Sprague-Dawley rats, nearly
70% of the 64Cu from 64Cu-TETA-OC was transchelated to a
35-kDa species believed to be superoxide dismutase (SOD) in
the liver 20 hour postinjection.27 These results are supported by
the observations of Boswell et al.28

Sarcophagine chelators

Another class of ligands that has gained attention as po-
tential 64Cu chelators are the hexaazamacroyclic cage-type
ligands, which are based upon the sepulchrate or sarcopha-
gine cage motifs (Fig. 1) and whose syntheses were first de-
scribed by Sargeson.29 Both cage systems are synthesized
by reaction of the inert tris-ethylenediamine cobalt (III) com-
plex with formaldehyde, followed by reaction with ammonia/
formaldehyde or nitromethane/formaldehyde under basic
conditions to generate the sepulchrate or sarcophagine (Sar)
ligands, respectively. Smith et al. investigated a family of Sar

Table 1. Decay Characteristics of Copper Radionuclides

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$t_{1/2}$ (min)</th>
<th>β^- MeV (%)</th>
<th>β^+ MeV (%)</th>
<th>EC (%)</th>
<th>γ MeV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Cu</td>
<td>23.4</td>
<td>2.00 (69)</td>
<td>7.0</td>
<td>0.511 (186)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00 (18)</td>
<td></td>
<td>0.85 (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.92 (6)</td>
<td></td>
<td>1.33 (80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76 (52)</td>
<td></td>
</tr>
<tr>
<td>64Cu</td>
<td>3.32</td>
<td>1.22 (60%)</td>
<td>40</td>
<td>0.284 (12)</td>
<td></td>
</tr>
<tr>
<td>65Cu</td>
<td>9.76</td>
<td>2.91 (97%)</td>
<td>2</td>
<td>0.511 (120)</td>
<td></td>
</tr>
<tr>
<td>66Cu</td>
<td>12.7</td>
<td>0.573 (38.4)</td>
<td>43.8</td>
<td>0.511 (35.6)</td>
<td></td>
</tr>
<tr>
<td>67Cu</td>
<td>62.0</td>
<td>0.395 (45)</td>
<td></td>
<td>0.184 (40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.484 (35)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.577 (20)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 1. Structures of macrocyclic chelators for complexing copper radionuclides.
derivatives with various functional groups at the apical sites, while the SarAr ligand was used to determine the 64Cu complexation rates from pH 4 to 9.30 From the data presented, complexation was 100% complete within several minutes at 25°C over the entire pH range. Biodistribution data was collected by using 64Cu-Sar, 64Cu-diam Sar, and 64Cu-SarAr in Balb/c mice. All three complexes cleared from the blood rapidly, and uptake was low in bone, heart, stomach, spleen, muscle, lungs, and the gastrointestinal tract. Liver clearance was observed to be good over the 30-minute time course of this study, demonstrating that the 64Cu complexes are initially stable in vivo, but clearance of all three 64Cu complexes is much slower through the kidney. Activity levels increased in the case of the 64Cu-Sar complex, though this type of accumulation is not uncommon for positively charged complexes.

The cross-bridged tetraamine ligands

This class of chelators was first conceived of and synthesized by Weisman et al. in the 1990s,31,32 and they were originally designed to complex metal cations, such as Li$^+$, Cu$^{2+}$, and Zn$^{2+}$, within their clamshell-like clefts. Numerous copper complexes of these and related ligands have since been prepared and studied by the Wong and Weisman labs as well as other research groups.33–39 The expected cis-folded coordination geometry of these chelators has been confirmed in all cases via the available structural data. The attachment of two carboxymethyl pendant arms to CB-cyclam to give CB-TE2A (4,11-bis(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methanephosphonic acid) (CB-TE2P)) and 4,8,11-tetraazacyclotetradecane-1-(methanephosphonic acid)-8-(methanecarboxylic acid) (CB-TE1A1P) were synthesized, radiolabeled with 64Cu, and their in vivo behavior was investigated.37 While CB-TE2P labeling with 64Cu was complete within 1 hour in buffer at higher temperatures, radiolabeling yields above 90% were observed even at 37°C. CB-TE1A1P had 100% radiolabeling yields at 37°C. Preliminary biodistribution studies showed that the biodistribution of 64Cu-CB-TE2P and 64Cu-CB-TE1A1P compared favorably to 64Cu-CB-TE2A.

Boswell et al. synthesized a side-bridged monophosphonate monooacid chelator, ((8-phosphonomethyl-1,5,8,12-tetraazabicyclo[10.2.2]hexadec-5-yl)-acetic acid (SB-TE1A1P)), and labeled it with 64Cu.39 This agent required radiolabeling conditions of 95°C, unlike the cross-bridged phosphate chelators. Biodistribution in normal mice showed 64Cu-SB-TE1A1P to be cleared rapidly through blood and other tissues, suggesting it is highly stable in vivo, similar to the cross-bridged chelators.

Imaging Tumor Hypoxia with $^{64/60}$Cu-ATSM

There is one class of copper radiopharmaceuticals where the stability of the Cu(II) complex is not essential for successful targeting. Cu(II) thiosemicarbazones have been evaluated as blood-flow agents and for imaging tumor hypoxia. In this article, we discuss the most recent developments for imaging tumor hypoxia with this class of agents.

It is well established that hypoxia is an important determinant of the overall response of the tumor to conventional therapy. The presence of hypoxia can result in an increase in tumor aggressiveness, failure of local control, and activation of transcription factors that support cell survival and migration.49,50 The ability to locate and quantify the extent of hypoxia within solid tumors by using noninvasive nuclear imaging would facilitate early diagnosis and help clinicians select the most appropriate treatment for each individual patient.50

In 1997, Fujibayashi et al. discovered that the neutral, lipophilic copper(II) complex of the N$_2$S$_2$ tetradebid ligand, diaetyl-1,2- bis(N5-methyl-3-thiosemicarbazone), commonly referred to as Cu-ATSM, showed hypoxia-selective uptake in ex vivo ischemic, perfused, isolated rat-heart models.51,52 Cu-ATSM was later shown to be hypoxia selective in vitro and for tumor hypoxia.52,53 Cu-ATSM has been evaluated with the short-lived copper radionuclides, 60Cu and 66Cu ($T_{1/2} = 0.16$ hours, $\beta^+ = 98\%$, EC = 2%). Takahashi et al. reported
the first human studies of the uptake of 62Cu-ATSM in 10 patients: 4 normal patients and 6 with lung cancer. High tumor uptake was observed (uptake ratio, 3.00 ± 1.50) in all patients with lung cancer. Dehdashti et al. reported the first correlative studies comparing the uptake of 60Cu-ATSM ($T_{1/2} = 0.16$ hour, $\beta^+ = 98\%$, EC = 2%) with response to conventional therapies in patients with non-small-cell lung cancer (NSCLC) and cervical cancer. In the NSCLC study, response to therapy was evaluated by using 60Cu-ATSM tumor-to-muscle (T/M) uptake ratios. Imaging with $[^{18}F]$-FDG was also conducted as part of the routine clinical evaluation. Of the 14 patients studied, 8 responded to radiotherapy (5 showed a complete response with 3 partial responders) and 6 showed no response. The mean 60Cu-ATSM T/M ratio of nonresponders (3.4 ± 0.8) was found to be much larger than uptake observed in responders (1.5 ± 0.4) [$p = 0.002$]. However, no significant differences were observed in the standardized uptake values (SUVs) between the tumors of responders (3.5 ± 1.0) and nonresponders (2.8 ± 1.1) [$p = 0.2$]. The threshold T/M value of 3.0 was identified as an accurate cut-off value for distinguishing responders from nonresponders. In contrast to the results with 60Cu-ATSM, no significant differences were observed in either the mean T/M ratios or SUVs for the uptake of $[^{18}F]$-FDG (2-Fluoro-2-deoxy-d-glucose) in responders (12.7 ± 10.4) and nonresponders (10.9 ± 4.1) [$p = 0.7$]. In addition, no statistically significant correlation between 60Cu-ATSM and $[^{18}F]$-FDG uptake was observed.

Before radiolabeled Cu-ATSM could be used for routine clinical analysis, accurate dosimetry measurements were required. In 2005, Laforest et al. used the Medical Internal Radionuclide Dose (MIRD) approach to provided estimates of human absorbed doses from $^{60}/^{61}/^{62}/^{64}$Cu-ATSM by extrapolating data acquired from biodistribution data in rat models. Calculated organ doses for 61Cu, 62Cu, and 64Cu were extrapolated from the results obtained for 60Cu-ATSM dosimetry. The estimated human dose for safe injection into an adult was predicted to lie between 500 and 800 MBq.

Human doses using 64Cu-ATSM have also been estimated from biodistribution data in non-tumor-bearing hamsters.

Lewis et al. reported the first clinical comparison between the imaging characteristics of 60Cu-ATSM and 64Cu-ATSM (and $[^{18}F]$-FDG) in cancers of the uterine cervix conducted after Cu-ATSM was approved for study as an investigational new drug (IND 62,675) (Figure 2). The study concluded that tumor uptake of Cu-ATSM as measured in images recorded between 1 and 9 days was reproducible, irrespective of the radionuclide used. This important result showed that Cu-ATSM is a marker for chronic tumor hypoxia, as opposed to acute hypoxia. Pretherapy imaging has also confirmed previous results indicating that the PET imaging of Cu-ATSM provides clinically relevant information about tumor oxygenation and is predictive of the likelihood of disease-free survival post-treatment in patients with cervical cancer.

Copper-64-Labeled Somatostatin Analogs for Targeting Neuroendocrine Tumors

Somatostatin is a 14-amino-acid peptide that is involved in the regulation and release of a number of hormones, and somatostatin receptors (SSRs) are present in many different normal organ systems, such as the central nervous system (CNS), the gastrointestinal tract, and the exocrine and endocrine pancreas. Several human tumors of the neuroendocrine system, CNS, breast, and lung are SSR positive, making it a viable disease target. Further, the presence of SSRs in a tumor is predictive of a good therapeutic response. An 8-amino-acid analog of somatostatin, octreotide (OC) has a longer biologic half-life and is shown to be several times more effective than somatostatin in the suppression of growth-hormone secretion in animals. Somatostatin analogs that have been conjugated with various metal chelators and labeled with 64Cu for evaluating SSR-positive tumors in rodent models and humans are represented in Figure 3.
In one of earlier studies with SSRs, in vitro and in vivo evaluation of \(^{64}\)Cu-labeled OC conjugates was performed.\(^{20}\) OC was conjugated with TETA for labeling with \(^{64}\)Cu, and this agent was compared with \(^{111}\)In-DTPA-D-Phe\(^1\)-OC (\(^{111}\)In-DTPA-OC; Octreoscan,\(^{66}\) Coviden, Hazelwood, MO), a single positron emission computed tomography (SPECT) imaging agent approved for routine clinical use as a diagnostic agent for neuroendocrine cancer in the United States and Europe.\(^{67,68}\) \(^{64}\)Cu-TETA-OC was evaluated as a PET imaging agent in humans (8 subjects) and compared to \(^{111}\)In-DTPA-OC with gamma scintigraphy and SPECT imaging.\(^{22}\) \(^{64}\)Cu-TETA-OC and PET imaged more tumors in 2 patients, compared to \(^{111}\)In-DTPA-OC and SPECT, and in 1 patient, \(^{111}\)In-DTPA-OC and SPECT weakly imaged a lung lesion that was not detected with \(^{64}\)Cu-TETA-OC. Overall, \(^{64}\)Cu-TETA-OC and PET showed greater sensitivity for imaging neuroendocrine tumors, in part due to the greater sensitivity of PET, compared to SPECT.

In vitro and in vivo evaluation of a second-generation somatostatin analog, \(^{64}\)Cu-TETA-Y\(^3\)-TATE (Y\(^3\)-TATE: tyrosine-3-octreotate), were conducted, where Y\(^3\)-TATE differs from OC in that tyrosine (Tyr) replaces phenylalanine (Phe) in the 3-position, and the C-terminal threonine (Thr) is an acid rather than an alcohol. Y\(^3\)-TATE previously showed improved targeting of somatostatin-rich tissues.\(^{24,68}\) \(^{64}\)Cu-TETA-Y\(^3\)-TATE had high binding affinity to somatostatin in receptor-positive rat pancreatic tumor-cell membranes, while in rat pancreatic tumor models, \(^{64}\)Cu-TETA-Y\(^3\)-TATE had twice as much uptake as \(^{64}\)Cu-TETA-OC. This reagent demonstrated superior potential as a radiopharmaceutical for the imaging and therapy of SSR-positive tissues.

After demonstrating the superiority of CB-TE2A, compared to TETA, for stably chelating \(^{64}\)Cu in vivo,\(^{28}\) CB-TE2A was conjugated to Y\(^3\)-TATE and directly compared to the \(^{64}\)Cu-TETA-Y\(^3\)-TATE conjugate.\(^{68}\) \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE was radiolabeled in high radiochemical purity with specific activities of 1.3–5.1 mCi/\(\mu\)g of peptide at 95°C and pH 8.0.\(^{70}\) Biodistribution studies, using AR42J tumors implanted in male Lewis rats, revealed that this complex had higher uptake in somatostatin-positive tissues, compared to the TETA conjugate. Accumulation of \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE was lower at all time points, in blood and liver, and less accumulation was observed in the kidney at earlier time points, when compared to \(^{64}\)Cu-TETA-Y\(^3\)-TATE. For example, the tumor-to-blood (T/B) ratio at 4 hours for \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE was 156 ± 55; for \(^{64}\)Cu-TETA-Y\(^3\)-TATE, the T/B ratio was 8.2 ± 1.6 (\(p < 0.001\)). These data suggest that \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE is more resistant to transchelation than the TETA analog.

The majority of somatostatin analogs that have been evaluated for PET and SPECT imaging are somatostatin agonists, and as such, they are internalized into cells via receptor-mediated endocytosis and mimic the behavior of somatostatin itself. The belief has been that greater cellular internalization of a radiolabeled somatostatin analog in vitro is a predictor of improved tumor uptake in vivo. This has been demonstrated by the group at Rotterdam for \(^{111}\)In-labeled somatostatin analogs\(^{71,72}\) as well as by our group.\(^{24,69}\) In 2006, Gijn et al. showed that an \(^{111}\)In-labeled somatostatin receptor type 2 (SST\(\text{r}2\)) antagonist, sst\(\text{2}-\text{ANT}\), had improved uptake, compared to \(^{111}\)In-DTPA-Y\(^3\)-TATE,\(^{73}\) in mice bearing SST\(\text{r}2\)-transfected HEK-cell tumors. The researchers showed that sst\(\text{2}-\text{ANT}\) was not internalized in the HEK cells and demonstrated classical antagonist behavior.\(^{64}\)Cu-CB-TE2A-sst\(\text{2}-\text{ANT}\) was compared with \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE in AR42J tumor-bearing rats.\(^{74}\) \(^{64}\)Cu-CB-TE2A-sst\(\text{2}-\text{ANT}\) showed low levels of internalization in AR42J cells and similar uptake to \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE in vivo at early time points. An interesting characteristic of the SST\(\text{r}2\) antagonist is that it appears to bind to ∼15-fold higher number of receptors than the agonist (23,000 versus 1551 fmol/\(\mu\)g protein), but with ∼17-fold decreased affinity (26 vs 1.5 nM). However, \(^{64}\)Cu-CB-TE2A-sst\(\text{2}-\text{ANT}\) showed longer retention in the AR42J tumor, resulting in improved T/B (72) and T/M (93) ratios at 24 hour postinjection, compared to \(^{64}\)Cu-CB-TE2A-Y\(^3\)-TATE (T/B, 20; T/M, 45).\(^{74}\)

Copper-64-Labeled Integrin-Targeting Peptides

Integrins are transmembrane proteins that regulate cell-cell and cell-matrix interactions. They are dimers that consist of two noncovalently bound subunits (\(\alpha\) and \(\beta\)) that have an extra-

![Diagram of Amino-acid Sequences of Somatostatin Analog](image-url)
cellular domain arranged in a characteristic way that imparts different adhesion properties to the cell. Integrin proteins have been found to play important roles in angiogenesis and tumor metastasis. So far, 24 different integrins have been identified, constituted by combinations of 18-α and 8-β subunits. Alpha v beta 3 (αvβ3) is one of the most widely studied integrins, since it is upregulated in endothelial cells involved in active angiogenesis but not in quiescent endothelial cells, making it an ideal biomarker for angiogenesis and tumor imaging. Tumors where αvβ3 are found to be highly expressed include glioblastomas, breast and prostate tumors, malignant melanomas, and ovarian carcinomas. The αvβ3 integrin binds to extracellular proteins through a specific binding pocket that recognizes the three-amino-acid sequence, arginine-glycine-aspartic acid (Arg-Gly-Asp or RGD). This discovery has led to the design of many RGD-based imaging agents, and several investigations involving the 64Cu radiolabeled complexes have been reported (Figure 4).

Chen et al. conjugated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to c(RGDyK) and labeled it with 64Cu for breast-cancer imaging studies but found only moderate uptake in U87MG human glioma tumors [1.44 ± 0.09 percent injected dose per gram (%ID/g) at 4 hour postinjection] with relatively high liver and kidney retention (2.84 ± 0.17 and 1.98 ± 0.06 %ID/g at 4 hour postinjection, respectively). In order to improve tumor uptake and in vivo kinetics, they substituted the monomeric RGD derivative for dimeric compounds (E[c(RGDyK)2 and E[c(RGDfK)2]) and observed improved tumor targeting. However, kidney uptake remained too high for the compounds to be considered for further clinical studies. In an attempt to modulate kidney retention, polyethylene glycol (PEG) groups were added to the monomeric RGD peptide derivative, and it was observed that 64Cu-DOTA-c(RGDyK)-PEG had very similar uptake in brain tumors, compared to 64Cu-DOTA-c(RGDyK), but a much lower liver uptake and a faster clearance from blood and kidneys. By using tetrameric and octameric RGD derivatives, binding affinity and tumor uptake in glioblastoma cells improved; however, liver and kidney uptake were also increased. Shi et al. examined the effects of linkages (Gly-Gly-Gly and PEG4) between cyclic RGD dimers for agents labeled with 64Cu by using the DOTA chelator. This group showed that these linkages improved the tumor uptake, compared to simple RGD dimers, potentially due to having the appropriate distance between the two RGD peptides that allows binding to two different receptors simultaneously. This strategy can be applied to other receptors as well using molecular modeling to determine the distances between receptors on tumor cells.

In a recent patent, Kimura et al. reported on the conjugation of DOTA to a library of many "miniproteins" derived from knottin peptides whose 25–40-amino-acid sequences have been enriched by an RGD loop. After screening for initial
integrin-binding ability, some of the chelators were labeled with ^{64}Cu. Biodistribution and micro-PET imaging studies showed good specific uptake in U87 MG tumors (glioblastoma). However, kidney uptake was consistently higher than tumor uptake over a 25-hour period.\(^{90}\)

Sprague et al. conjugated c(RGDyK) to a different chelator, CB-TE2A, and found that the corresponding ^{64}Cu complex was taken up specifically by osteoclasts,\(^{91}\) which are upregulated in osteolytic lesions and bone metastases.\(^{92}\) These investigations open the possibility of other applications for imaging α, β_1 in diseases, such as osteoarthritis or osteoporosis, as well as imaging osteolytic bone metastases.

Wei et al. compared two RGD peptides labeled with two highly stable chelating systems, CB-TE2A-c(RGDyK) and diamsar-c(RGDfD), in M21 and M21L human melanoma tumor-bearing mice.\(^{93}\) This study showed that although both chelator-peptide conjugates had similar binding affinity for isolated α, β_1, the tumor targeting in vivo was better for ^{64}Cu-CB-TE2A-c(RGDyK) than the diamsar analog. There was also improved blood and liver clearance for ^{64}Cu-CB-TE2A-c(RGDyK). Some of these differences could be due to the differences in the peptides used, as well as the fact that diamsar had a very short linkage between the aspartic acid in the 5-position and the chelator.

^{64}Cu-Labeled Antibodies for Tumor Targeting

Targeting epidermal growth factor receptor 1

The epidermal growth factor (EGF) family of membrane receptors (EGFR) is one of the most relevant targets in the tyrosine kinase family. EGF expression is increased in many human tumors such as breast cancer, squamous-cell carcinoma of the head and neck, and prostate cancer.\(^{94}\) Activation of EGFR contributes to several tumorigenic mechanisms, and in many tumors, EGFR expression may act as a prognostic indicator, predicting patient survival and/or more of the presence of diseases in advanced stages.\(^{94}\) At present, monoclonal antibodies (mAbs), which block the binding of EGF to the extracellular ligand-binding domain of the receptor, have shown promise from a therapeutic standpoint. Cetuximab (C225; Erbitux,\(^{6}\) Bristol-Myers Squibb, New York, NY) was the first mAb targeted against the EGFR approved by the U.S. Food and Drug Administration (FDA) for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma. Cetuximab binds competitively to the extracellular domain of EGFR with an affinity comparable to the natural ligand ($K_D = 1.0 \text{nM}$), inhibiting the binding of the activating ligand to the receptor.\(^{95,96}\)

Cai et al. reported the evaluation of ^{64}Cu-DOTA-cetuximab in several tumor-bearing mouse models.\(^{97}\) Using Western blot analysis, a positive correlation was shown to exist between the expression of EGFR and uptake of ^{64}Cu-DOTA-cetuximab in several different EGFR-expressing tumor-bearing mouse models. At Washington University, St. Louis, MO, ^{64}Cu-DOTA-cetuximab was synthesized for the small-animal PET imaging of EGFR expression in A431 tumor-bearing mice.\(^{98}\) Highly EGFR-expressing A431 and low-EGFR-expressing MDA-MB-435 cells were compared. An equilibrium dissociation constant (K_D) of 0.28 nM was obtained with the A431 cells, and the K_D and B_{max} (maximum receptor density) were in agreement with the reported literature values of unlabeled cetuximab with A431 cells.\(^{98}\) In vivo evaluation of ^{64}Cu-DOTA-cetuximab was performed in A431 and MDA-MB-435 tumor-bearing mice. Both biodistribution and micro-PET data showed a higher uptake in the EGFR-positive A431 (Figure 5) tumor than in the EGFR-negative MDA-MB-435 tumor. Metabolism experiments were also performed to determine the extent of ^{64}Cu transchelation to blood, liver, and tumor proteins in A431 tumor-bearing mice. The results showed minimal metabolism of ^{64}Cu-DOTA-cetuximab in the blood out to 24 hours postinjection. Liver metabolism studies, using size-exclusion chromatography, demonstrated that transchelation of ^{64}Cu to three proteins occurs; these were identified as SOD and metallothionein, while the third metabolite was believed to be a protein aggregate.

^{64}Cu-DOTA-cetuximab has also been evaluated for correlating EGFR densities on the surface of five different cervical cancer lines with the EGFR-messenger RNA (mRNA) expression. Based on the cellular data, micro-PET imaging was performed on tumor-bearing mice, using the highest expressing cervical cancer cell line, CaSki. For the in vivo analysis, five cervical cancer cell lines were selected after a screen of 23 human cervical cancer lines, based on their level of EGFR gene expression by gene-expression microarray analysis. The five cell lines had different ranges of EGFR expression with the following order: CaSki (high), ME-180 and DcTe2 4510 (both midrange), HeLa (low), and C-33A (negative). The cell-surface EGFR expression was evaluated by conducting saturation binding assays at 4°C, and the results paralleled the levels of EGFR expression determined by microarray analysis. In vivo biodistribution and small-animal PET studies with ^{64}Cu-DOTA-cetuximab in CaSki tumor-bearing nude mice showed relatively high tumor uptake at 24 hour after injection (13.2 %ID/g), with significant retention of radioactivity in blood and liver as well. Overall, this study demonstrated that ^{64}Cu-DOTA-cetuximab is a useful marker of EGFR-expression levels, as well as a potential PET agent for determining patient-specific therapies and therapeutic monitoring.

Other ^{64}Cu-labeled mAbs for tumor targeting

The SarAr chelator was attached to the anti-GD2 mAb, 14.G2a, and its chimeric analog, ch14.18, that target disialogangliosides overexpressed on neuroblastoma and melanoma.\(^{99}\) Biodistribution studies in athymic nude mice bearing subcutaneous (s.c.) neuroblastoma (IMR-6, NMB-7) and melanoma (M21) xenografts showed that 15%–20% of the ID/G accumulated in the tumor at 24 hours after injection, and only 5%–10% of the ID accumulated in the liver, a lower value than typically seen with other chelators. Uptake by a GD2-negative tumor xenograft was significantly lower (<5 %ID/G). This study demonstrates the utility of the highly stable SarAr chelation system, which enables the formation of stable ^{64}Cu complexes attached to mAbs by using mild radiolabeling conditions.

Copper-64-Labeled Nanoparticles

Nanotechnology is an applied science that creates and studies molecules or aggregates that have an overall size in the 1–1000-nm range (<1 μm). In the last few years, nanodevices and -particles have been used in biomedical studies
FIG. 5. (A) Projection micro-PET (positron emission tomography) images of A431 tumor-bearing nude mice after 20 and 46 hours postadministration of ^{64}Cu-DOTA-cetuximab, with and without an injected blocking dose 20 hours prior to the imaging dose (5.6 MBq, 6 g, left; 5.6 MBq, 1 mg of cetuximab, right). (B) Coronal micro-PET images of ^{64}Cu-DOTA-cetuximab in A431 [epidermal growth factor receptor (EGFR)-positive] and MDA-MB-435 (EGFR-negative) tumor-bearing mice after 19 and 48 hours postadministration of ^{64}Cu-DOTA-cetuximab. (C) micro-PET/computed tomography coregistration images of ^{64}Cu-DOTA-cetuximab in a mouse bearing both A431 and MDA-MB-435 tumors (arrow) at 24 hours postinjection. Reprinted by permission of the Mary Ann Liebert, Inc., publishers from reference 98.
investigating new and improved diagnosis and therapy agents. Oncology is one of the disciplines that has benefited the most from nanotechnology. Several nanoparticles are used in diagnostic assays for cancer, as contrast agents for MRI, as drug-delivery agents, as tumor visualisation agents during surgery, and as therapeutic agents. Several types of nanoparticle platforms have been evaluated for imaging applications, including iron-oxide nanoparticles, gold nanoparticles, liposomes, emulsions, dendrimers, and nanotubes (see Figure 6 for some examples). Nanoparticles conjugated with bifunctional chelators and targeting ligands are particularly useful for PET imaging purposes because their higher surface area per volume allows a higher number of targeting residues and radionuclides per particle, which, in turn, translates into higher affinity and higher specific activity, respectively.

Studies have been performed to determine the pharmacokinetics of nontargeted nanostructures labeled with 64Cu by using the DOTA chelator. Pressly et al. prepared well-defined amphiphilic copolymers with a predetermined number of reactive functionalities, with PEG chains of variable length and low polydispersity. Upon collapsing in water, these polymers formed three-dimensional, three-layered nanoparticles with a hydrophobic inner core surrounded by a hydrophilic shell where the functional groups are located and, finally, a PEG outer shell. The thickness of each layer, the number of reactive sites, and the dimension of the particle are determined by the composition of the initial linear polymer. When DOTA molecules were conjugated to these nanoparticles, 64Cu labeling was achieved and biodistribution studies were conducted. Not surprisingly, particles with longer PEG-chain length had longer circulation in blood and lower liver uptake.

Sun et al. synthesized shell-cross-linked nanoparticles (SCKs) by cross-linking to different degree micelles formed by amphiphilic block copolymers. When TETA was incorporated onto the final SCKs, the yield was low and the labeling efficiency was unsatisfactory. This problem was solved by preincorporating the copper chelator (DOTA in this case) into the copolymer before the nanoparticles were formed. Tuning of the pharmacokinetics of these particles was performed by introducing different numbers and different lengths of PEG chains. The extent of cross-linking and the dimensions of the linker between nanoparticle and...
copper chelator were found to have a dramatic impact on the specific activity of the radiolabeled particle. The majority of targeted nanoparticles that have been evaluated have been conjugated with RGD peptide for the targeting of αvβ3 integrin. Cai et al. conjugated c(RGDyK) and DOTA to quantum dots (QD), obtaining a 20-nm nanoparticle having about 28 DOTA and 90 RGD residues on its surface. They observed selective targeting of the vasculature of αvβ3-positive tumors, such as U87MG human glioblastoma, with minimal extravasation, which would be necessary for high tumor uptake. This led to a lower than expected tumor uptake, with most of the 64Cu-DOTA-QD-RGD being taken up by the liver, spleen, and bone marrow. The researchers concluded that smaller particles would have improved tumor-targeting properties due to easier extravasation and lower reticuloendothelial system uptake.

Lee et al. reported 5-nm iron-oxide nanoparticles coated with polyaspartic acid functionalized with an estimated 35 RGD peptides and 30 DOTA macrocycles per particle. PET studies gave high contrast images of the tumor; however, liver uptake was still high. This behavior may be explained by the fact that while the core diameter of the particle was 5 nm, their hydrodynamic size was much larger (45 nm), so the same problems observed with the QD nanoparticles persisted.

One of the most successful examples of tumor targeting with 64Cu-labeled RGD-conjugated nanoparticles involves the use of single-walled carbon nanotubes (SWNTs). Here, a comparison of SWNT that contained different sizes of PEG, 64Cu-SWNT-PEG5400-RGD, was evaluated in U87MG human glioblastoma tumor-bearing mice. The best conjugates were 64Cu-SWNT-PEG5400-RGD, which showed the lowest liver and highest tumor accumulation that was improved over nontargeted SWNT.

Conclusions

64Cu-based radiopharmaceuticals are being explored as agents for the delineation of disease in humans. By exploitation of the chemistry of Cu(II) and the decay characteristics of 64Cu, agents based on small molecules, peptides, and larger biomolecules, such as antibodies and nanoparticles, are in development for clinical translation. A diverse array of highly specific molecular 64Cu-radiopharmaceutical imaging probes will inevitably lead to improved patient-specific treatments.

Acknowledgments

The authors gratefully acknowledge National Institutes of Health (NIH; Bethesda, MD) grants R01 CA64475, R01 CA093375, and U01 HL080729-01 for funding in research in the area of this review article.

Disclosure Statement

No competing financial interests exist.

References

Carolyn J. Anderson is a Professor of Radiology, Biochemistry, and Molecular Biophysics and Chemistry at Washington University in St. Louis. She received a B.S. degree in Chemistry from the University of Wisconsin–Superior in 1985 and a Ph.D. in Inorganic Chemistry from Florida State University in 1990. From 1990 to 1992, she was a postdoctoral research associate at the Mallinckrodt Institute of Radiology in the laboratory of Professor Michael J. Welch. In 1993, she was promoted to Assistant Professor of Radiology, and in 2007 she became full Professor of Radiology and Chemistry, followed by a joint appointment in Biochemistry and Molecular Biophysics in 2008. Professor Anderson’s research interests involve the development of molecular imaging agents, primarily 64Cu radiopharmaceuticals, for targeting cancer and cardiovascular disease. Her research group includes expertise in chelation and conjugation chemistry, as well as biologic evaluation of the molecular imaging agents in cell culture, preclinical animal models, and humans.

Riccardo Ferdani received his B.Sc. and Ph.D. degrees in Chemistry from the University of Parma (Italy) where he worked on calixarenes in the laboratories of Professors Rocco Ungaro and Andrea Pochini. In April 2000, he joined Professor George Gokel’s group at Washington University School of Medicine (St. Louis, MO) and worked as a research associate on synthetic ion channels. In October 2006, he joined Professor Anderson’s research group as a staff scientist at Washington University School of Medicine. His research interests focus mainly on synthesis and applications of macrocyclic chelators. He is currently working on the synthesis of novel cross-bridged azamacrocycles for facile, yet stable, chelation of 64Cu for attachment to biologically targeted molecular-imaging agents.