The MUS81 endonuclease is essential for telomerase negative cell proliferation

Sicong Zeng
Washington University School of Medicine in St. Louis

Qin Yang
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Zeng, Sicong and Yang, Qin, "The MUS81 endonuclease is essential for telomerase negative cell proliferation." Cell Cycle. 8, 15. 2157-2160. (2009).
https://digitalcommons.wustl.edu/open_access_pubs/3006
A substantial number of human tumors (~10%) are telomerase negative, and cells in such tumors have been proposed to maintain telomere length by the alternative lengthening of telomeres (ALT) pathway. Although details of the molecular mechanism of ALT are largely unknown, previous studies have shown that telomere homologous recombination (HR) is implicated in the ALT pathway. MUS81 is a DNA structure-specific recombination endonuclease and functions on aberrant DNA replication and recombination. Recently, we demonstrate that MUS81 plays a key role in the maintenance of telomeres in ALT cells (Zeng, et al. Nature Cell Biology, 2009). The MUS81 endonuclease specifically localizes to ALT-associated promyelocytic leukemia nuclear bodies (APBs) and interacts with telomeres in ALT cells. Depletion of MUS81 leads to reduced telomere recombination resulting in the growth arrest of ALT cells. The endonuclease activity of MUS81, regulated by its binding partner TRF2, is found to be essential for telomere post-replicative recombination. This study provides the first direct evidence that MUS81 specifically functions on ALT recombination-based cell survival. The specific function of MUS81 on the ALT pathway provides a potential powerful diagnostic marker and a therapeutic target for ALT tumors.

Telomere Maintenance and Telomere Recombination

Telomeres are specialized structures at chromosome ends consisting of tandem repetitive DNA sequences [(TTAGGG)n in humans] and associated proteins, which are necessary for telomere function. The structure and function of telomeres are regulated by a multiprotein complex termed “shelterin,” which allows cells to distinguish natural chromosome ends from DNA double-strand breaks and maintains telomere length and stability. Progressive telomere shortening in normal cells during DNA replication leads eventually to a permanent halt of cell division referred to as replicative senescence. This end replication problem of human telomeres has received particular attention due to its implications in ageing and cancer. Most human tumor cells acquire indefinite replicative capacity to escape from the normal proliferative limitations through maintaining their telomeres, either by telomerase or by an alternative lengthening of telomeres (ALT) mechanism. Telomerase-negative cancer cells maintain their telomeres via the alternative lengthening of telomeres (ALT) pathway. Although a growing body of evidence demonstrates that the ALT mechanism is a post-replicative telomere recombination process, molecular details of this pathway are largely unknown. In particular, the highly significant increase in the number of post-replicative telomere exchanges demonstrates that the ALT pathway is HR-dependent. The increased telomere recombination is ALT-specific and extends the proliferative life of ALT cells. A growing body of evidence hints that HR proteins and telomere associated proteins play a primary role in the ALT pathway. These proteins co-localize with telomeric (TTAGGG)n repeats at nuclear substructures known as ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs), which are present only in ALT cells. Imaging of live cells has revealed that an individual telomere may move in and out of contact with an APB, suggesting possible on-going telomere extension in ALT cells. Additionally, APBs are enriched during the G2 phase of the cell cycle when HR is most active and ALT activity is likely occurring. APBs preferentially accumulate linear extrachromosomal telomeric DNA, which may provide DNA substrates for telomere recombination. ALT has only been detected in abnormal situations, such as tumor-derived cell lines or cell lines immortalized in vitro. It seems likely that ALT occurs due to a dysfunction in the highly regulated mechanisms controlling telomere recombination.

Activities of MUS81 in ALT Cells

MUS81, a highly conserved DNA structure-specific endonuclease, is required for the survival of cells undergoing aberrant
MUS81 functions as an endonuclease by cleaving intact and nicked Holliday junctions, replication forks, 3’ flap and D-loop substrates which are preferred for DNA replication and recombination.21-24 RNA interference experiments show that MUS81 is required for mitotic recombination in somatic human cells.21 MUS81 homozygote and heterozygote knockout mice have a predisposition to develop cancer28 and show sensitivity to agents that stall replication forks, such as hydroxyurea, methyl methane sulfonate and mitomycin C.28,29 Because MUS81 functions on aberrant DNA replication and recombination, it is a candidate “ALT protein”, which might be required for abnormal telomere recombination in ALT cells.

In our recent study,1 we have demonstrated that the MUS81 endonuclease specifically localizes to APBs and associates with telomeric DNA in ALT cells, which is enriched during G2 phase of the cell cycle (Fig. 1). Knockdown of MUS81 results in reduction of ALT specific-telomere recombination leading to proliferation arrest of ALT cells. Furthermore, proliferation of ALT cell requires the endonuclease activity of MUS81, and the interaction of MUS81 with TRF2 regulates this enzymatic activity to maintain telomere recombination. Thus, our results indicate that MUS81 is essential for ALT cell viability by ensuring efficient telomere recombination.

Role of MUS81 in Telomere Recombination

We find that MUS81 contributes to ALT cell survival by promoting telomere recombination.1 In yeast, MUS81 is required for the survival of cells undergoing aberrant replication and recombination.22,24 However, the biological functions of MUS81 in human cells are largely unknown. A variety of models predict the formation and resolution of different DNA structures during homologous recombination.21-24 These structures include 3’ flaps, forks, D-loops, nicked, gapped and intact Holliday junctions. Recent studies have indicated that these structures are possible in vivo substrates of MUS81.30-32 Our results show that cleavage of telomere recombination substrates by MUS81 may be necessary for ALT cells survival, directly linking MUS81 endonuclease activity with abnormal telomere recombination in ALT cells. In addition, we present evidence indicating that telomere maintenance in the ALT pathway is a post-replicative recombination process, which is essential for ALT cell survival. MUS81 does not regulate telomere maintenance in non-ALT cells, in agreement with the hypothesis that MUS81 only functions on abnormal DNA recombination, such as in ALT cells with a high frequency of telomere recombination. Our studies also provide clues for studying functions of MUS81 in other biological processes, for example, in DNA damage and repair pathways.

We carefully examine telomere length after depletion of MUS81 by using Q-FISH and TRF assays and do not observe significant telomere length changes. One possibility is that telomere recombination leads to unequal sister chromatid exchange (SCE) at telomeres, which is responsible for rapid telomere elongation and shortening events. Before mitosis, telomere recombination leads to exchanges of equal amounts of telomeric DNA or results in a net gain of telomere sequences in one chromatid and a net loss in the other. Thus, the average changes of telomere length are not significantly altered. The Q-FISH and TRF assays could only detect the overall changes of telomere length and could not address on the specific chromosomes. This interpretation is consistent with a current model, which indicates maintenance of telomeres by unequal telomere SCE.12 Because telomeres are repetitive...
sequences, sister chromatids can find sites of homology anywhere to align two telomere strands asymmetrically. Telomere recombination results in a gain or loss between two telomeres. The daughter cell inheriting chromosomes with elongated telomeres would bypass the limits on proliferative potential. Our data indicate that MUS81 enhances telomere recombination to maintain the ALT cell proliferation without significant alteration of overall telomere length, supporting this model.

We do not observe obvious chromosome end-to-end fusion in ALT cells after depletion of MUS81 (data not shown). These results are consistent with the fact that knockdown of MUS81 do not induce the formation of telomere dysfunctional induced-foci (data not shown), suggesting that MUS81 does not affect telomere end protection in ALT cells. Furthermore, MUS81 depletion do not change TRF2 binding on telomeres by the ChIP assay (data not shown), supporting this conclusion. Although we observe increased telomere loss on some chromosome ends in the MUS81-depleted ALT cells, it is possible that enough telomere sequences are still present in these chromosome ends to ensure chromosome end protection.

APBs for Telomere Maintenance

APBs are a hallmark of ALT cells and are usually found in ≤5% of cells within an asynchronously growing ALT cell population. Although the function of APBs is not well understood, they have been proposed to serve as depots for storage of nuclear factors and provide a platform for telomere maintenance in ALT cells. The fact that APBs largely increase in G2 phase of the cell cycle and that HR is active in this phase has led to the conclusion that they function on the maintenance of telomeres by recombination. We find that MUS81 specifically localizes to APBs and is enriched in G2 phase cells (Fig. 1), supporting the notion that APBs in G2 phase are the sites for telomere recombination. MUS81 localizes to nucleoli, but is not present in PML bodies in human telomerase-positive cells, suggesting that MUS81 is recruited into APBs in ALT cells. These results support a model that activation of the ALT pathway is through recruiting “ALT proteins” to telomeres.

A recent study reports that the proportion of ALT cells with APBs is increased following methionine starvation. These induced APBs contain TRF1, TRF2, TIN2, RAP1, the PML protein, the MRN complex, 53BP1, SP100 and telomeric DNA. We have also observed induction of APBs containing telomeric DNA upon methionine restriction. However, MUS81 is not present in these induced APBs in G0/G1 phase cells (data not shown), indicating that it might be a specific effect of the methionine starvation on MUS81 cellular metabolism/localization. These results also suggest that APBs may have different functions in different phases of the cell cycle. APBs in G2 phase cells may help to conduct telomere recombination. Unlike other recombination and telomere associated proteins present in APBs, MUS81 to APBs is only enriched in G2 phase cells. This implies that MUS81 specifically functions on the ALT pathway, and not on global telomere maintenance. These results also implicate that the localization of MUS81 in ALT might be a unique marker for ALT tumors.

Interaction of TRF2 and MUS81 in the ALT Pathway

TRF2 is thought to be a suppressor for telomere recombination, although the mechanism by which TRF2 governs telomere recombination is unclear. We find that TRF2 forms a complex with MUS81, inhibits the endonuclease activity of MUS81 by suppressing MUS81 binding to the DNA substrates, and mediates T-SCE through interaction with MUS81. These findings, together with the fact that the MUS81 enzymatic activity is required for telomere recombination and ALT cell viability, support a model that TRF2 suppresses telomere recombination through regulation of the endonuclease activity of MUS81 in the ALT pathway (Fig. 2). We observe that there is no significant change of telomere circle (t-circle formation) after depletion of MUS81 (data not shown), suggesting that t-circles may be not involved in MUS81-mediated ALT cell survival. However, because a lower level of t-circles may be insufficient to detect, we could not rule out the role MUS81 on t-circle formation. TRF2 mediates t-loop formation and disruption of t-loop by TRF2ΔB mutant generates t-circles. MUS81 does not interact with TRF2ΔB mutant, implicating that the MUS81 endonuclease may be involved in the disruption of t-loop, which is mediated by TRF2.

The levels of MUS81 protein in G2 phase cells do not change, suggesting that the recruitment of MUS81 to APBs is subjected to regulation in ALT cells. TRF2 and MUS81 interaction suggests that TRF2 may regulate MUS81 access to APBs, since TRF2 affects APBs formation in G0/G1 cells. To test this hypothesis, we examine the localization of MUS81 in APBs after depletion of TRF2. However, depletion of TRF2 does not change APB formation and localization of MUS81 to APBs at G2 phase in ALT cells (data not shown), excluding that TRF2 regulates the...
recruitment of MUS81 to APBs. Further investigation will be needed to clarify which protein is involved in the recruitment of MUS81 into APBs.

MUS81 for Telomere Maintenance in ALT Cancer Cells

Our observations demonstrate that MUS81 endonuclease is specifically involved in telomere recombination and in the maintenance of ALT cell survival.\(^1\) We propose a model where telomeres move into APBs for processing recombination based telomere maintenance after DNA replication during G2 phase of the cell cycle. MUS81 is recruited into recombination sites to cleave the recombination structure, for example, D-loop (Fig. 2). TRF2 negatively regulates the MUS81 enzymatic activity to balance this process. Then, telomeres that completed recombination move out from APBs into next step of the cell cycle. In this manner, ALT cells maintain their telomeres and extend the proliferative lifespan.

The telomere maintenance mechanism is essential for the indefinite proliferation of cancer cells. Understanding the specific requirements of ALT is key to developing diagnostic tools and therapies that target this pathway. Inhibiting telomerase activity in non-ALT tumors may activate the ALT pathway, suggesting that suppression of ALT activity is important for most tumors. MUS81, which is specifically present in APBs and is essential for the ALT cell survival, will provide a powerful diagnostic marker and a putative therapeutic target for ALT tumors.

Acknowledgements

We thank Roger R. Reddel for providing the ALT cells, and Clare H. McGowan for providing the wild-type and mutant MUS81 constructs, MUS81 antibody and Mus81\(^{1/4}\) and Mus81\(^{1/2}\)-MEFs. This work is supported in part by grants from Concern Foundation (Q.Y.).

References