Coronavirus replication does not require the autophagy gene ATG5

Zijiang Zhao
Washington University School of Medicine in St. Louis

Larissa B. Thackray
Washington University School of Medicine in St. Louis

Brian C. Miller
Washington University School of Medicine in St. Louis

Teresa M. Lynn
Washington University School of Medicine in St. Louis

Michelle M. Becker
Vanderbilt University

See next page for additional authors

Recommended Citation

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Research Paper

Coronavirus Replication Does Not Require the Autophagy Gene ATG5

Zijiang Zhao1
Larissa B. Thackray1
Brian C. Miller1
Teresa M. Lynn1
Michelle M. Becker4
Eric Ward4
Noboru N. Mizushima2,3
Mark R. Denison4
Herbert W. Virgin IV1,*

1Department of Pathology and Immunology and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri USA
2Department of Physiology and Cell Biology, Tokyo Medical and Dental University; Tokyo, Japan
3Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
4Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, Tennessee USA

*Correspondence to: Herbert W. Virgin IV; Department of Pathology and Immunology; Washington University School of Medicine; 660 S. Euclid Ave.; Box 8118; St. Louis, Missouri 63110 USA; Tel.: 314.362.9223; Fax: 314.362.4096; Email: virgin@wustl.edu

Original manuscript submitted: 06/13/07
Manuscript accepted: 07/24/07
Previously published online as an Autophagy E-publication: http://www.landesbioscience.com/journals/autophagy/article/4782

ABSTRACT

Macroautophagy (herein autophagy) is a cellular process, requiring ATG5, by which cells deliver double membrane-bound packets containing cytoplasm or cytoplasmic organelles to the lysosome. This process has been reported in some cases to be antiviral, while in other cases it has been reported to be required for efficient viral replication or release. A role for autophagy in RNA virus replication has been an attractive hypothesis because of the association of RNA virus replication with complex membrane rearrangements in the cytoplasm that can generate opposed double membranes. In this study we demonstrate that ATG5 is not required for murine hepatitis virus (MHV) replication in either bone marrow derived macrophages (BMMΦ) lacking ATG5 by virtue of Cre recombinase mediated gene deletion or primary low passage murine ATG5−/− embryonic fibroblasts (pMEFs). We conclude that neither ATG5 nor an intact autophagic pathway are required for MHV replication or release.

INTRODUCTION

Autophagy is an evolutionarily conserved cellular process in which a series of cytoplasmic proteins generate isolation membranes that envelop cytoplasm and cytoplasmic organelles, resulting in double-membrane bound packets of cytoplasmic constituents about 0.5 to 1.5 μm in diameter.12,13,20,21,32,42 This enveloped packet of cytoplasm is delivered to the lysosome for degradation via fusion of the outer membrane of the autophagosome with the lysosomal membrane. Autophagy plays an important role in multiple biological processes including development,12,19,20,26,51 tumor suppression,4,14,18,30,43 prevention of neurodegeneration,7,10 survival during starvation or growth factor withdrawal,11,17,20 and T cell homeostasis.29

Autophagy requires the concerted action of a series of proteins that together generate the curved membranes responsible for envelopment of cytoplasm and delivery of captured cytoplasmic constituents to the lysosome.21,42 Envelopment of cytoplasm during autophagy requires two ATG5-dependent protein conjugation systems.21,22,24 The first of these generates ATG5-ATG12 conjugates which become associated with the elongating isolation membrane during autophagy.21 This system is highly efficient; the majority of ATG5 in cells is found conjugated to ATG12. A second conjugation system modifies the free C-terminal glycine of the autophagy protein ATG8/LC3 (termed LC3-I) with phosphatidylethanolamine generating LC3-II which associates with autophagosomes. LC3-I and LC3-II can be distinguished by mobility in electrophoretic gels. The conversion of LC3-I to LC3-II depends on ATG5-ATG12 conjugation.22 Homozygous deletion of ATG5 results in neonatal lethality in mice.11 Therefore mice in which the third exon of ATG5 is flanked by LoxP sites have been used in combination with cell type-specific expression of the Cre recombinase to study autophagy in adult animals [ATG5lox/lox;7,11].

Two attributes of autophagy have drawn the attention of virologists. First, the potential ability to deliver cytoplasmic virions or replication factories to the lysosome suggests that autophagy could serve as a mechanism for combating cytoplasmic viral replication. Data consistent with such an antiviral role for autophagy and autophagy genes was originally obtained for Sindbis virus15 and subsequently for herpes simplex virus25,36,37 and tobacco mosaic virus.16 The observation that two different herpesvirus proteins, a viral Bel-2 family member27 and the herpes simplex virulence factor ICP34.533,36 inhibit autophagy indicates that viruses have evolved potent ways to antagonize the antiviral effects of
autophagy. The existence of such autophagy evasion proteins supports the concept that autophagy is an important antiviral innate immune pathway.

However, as opposed to the idea that autophagy is antiviral, the similarity in structure between the curved double membrane of autophagosomes and membrane structures observed by electron microscopy in association with RNA or poxvirus replication has suggested that the autophagic pathway, or at least specific autophagy genes, might be subverted to foster viral replication. This concept is supported by studies of coronavirus replication in embryonic stem cells and poliovirus replication in MCF7 and Hela cells. In each case, initial support for a role for autophagy in viral replication came from studies colocalizing viral proteins with autophagy proteins. In embryonic stem cells lacking ATG5, replication of the coronavirus murine hepatitis virus (MHV strain A59) was decreased more than 1000-fold compared to cells expressing ATG5. In contrast to these observations, replication of vaccinia virus, a DNA poxvirus whose replication also involves a series of complex cytoplasmic membrane rearrangements, does not require ATG5.44

We sought to further evaluate the possible role of ATG5 and an intact autophagy pathway in coronavirus replication. It is well recognized that primary cells and continuous or transformed cell lines can differ in their permissiveness for viral replication. Moreover, viruses exhibit tropism for specific cells in vivo, making it important to evaluate the role of host proteins in relevant primary cell types when experimentally feasible. Since the autophagic machinery may be altered in transformed cell lines, and since embryonic stem cells are not directly involved in viral pathogenesis, we determined whether ATG5 and an intact autophagic pathway is required for coronavirus replication in both primary BMMφ and primary low passage MEFs. In contrast to studies in embryonic stem cells using the same strain of virus, ATG5 was not required for MHV-A59 replication in either cell type. We conclude that, similar to studies of vaccinia virus replication, neither an intact autophagy pathway nor the autophagy gene ATG5 is required for coronavirus replication.

MATERIALS AND METHODS

Mice. ATG5±/± and ATG5flox/flox mice have been described.7,11 Mice expressing the Cre recombinase from within the lysozyme M locus (Lyz-Cre mice) were purchased from the Jackson Laboratory (Strain # 004781). Mice were genotyped as described,7 with the ATG5 gene detected with the primers exon3-1, short2 and check2 run using PCR [94˚C (4 min); 30 cycles of 94˚C (30 sec), 60˚C (30 sec), 72˚C (1 min); 72˚C (5 min)]. The Cre gene was detected with primers cre1 and cre2 using PCR [94˚C (4 min); 25 cycles of 94˚C (30 sec), 60˚C (30 sec), 72˚C (1 min); 72˚C (5 min)].

Macrophages and viral infection of macrophages. BMMφ cultures were maintained in low-endotoxin DMEM with 4.5 g/ml glucose Mediatech, Herndon VA), 100 U/ml penicillin/100 μg/ml streptomycin (Mediatech, Herndon VA), and 10% HEPES (Mediatech, Herndon VA) at 37˚C with 5% CO2 unless otherwise noted. BMMφ were isolated from the femurs and tibias of mATG5+/- and mATG5-/- mice by trypsinization and replated for experiments. For detection of MHV-A59 replication in pMEFs, 5 x 105 cells in 2 ml of non-starved DMEM10 medium (DMEM10 with 1% MEM nonessential amino acids, 2% MEM amino acids). pMEFs were harvested by scraping on day 7 of culture, and replated with BM10 (same as BM20 except containing 10% LCM) for experiments. For all experiments murine coronavirus strain MHV-A59 stocks were generated and titered by plaque assay using 17 C1 1 cells.34 For detection of viral replication in BMMφ, 1.5 x 105 cells were plated in 1.0 ml of BM10 in 12-well tissue culture treated plates (Corning, Cornning NY) for two days. BM10 medium was then removed and replaced with either BM10 plus 1% MEM nonessential amino acids (Mediatech, Herndon VA) and 2% MEM amino acids (Invitrogen, Grand Island NY) or Earle’s balanced salt solution (EBSS; Sigma, St. Louis MO) for 2 hours. Medium was then removed and replaced with 0.2 ml of starved or non-starved medium containing 7.5 x 104 plaque forming units (PFU) of MHV-A59 (moi = 0.5). After incubating for 1 hr at 37˚C, monolayers were washed three times with BM10 to remove unbound virus, and 1.0 ml of BM10 was added. A plate was frozen immediately for later titration as the t = 0 time point. To assess released virus, 0.5 ml of supernatant from each well was removed and stored at -80˚C for viral titration. To assess total virus production, a plate was frozen for later titration after removal of 0.5 ml supernatant for “released” virus. Samples were freeze-thawed three times and tittered by plaque assay on 17 C1 1 cells.

Fibroblasts and viral infection of fibroblasts. All fibroblast cultures were maintained in 100 U/ml penicillin, 100 μg/ml streptomycin, and 10 mM HEPES at 37˚C with 5% CO2 unless otherwise noted. Primary ATG5+/- or ATG5-/- mouse embryonic fibroblasts (pMEFs) were prepared from 13.5-day embryos by carefully dissecting the embryo from associated uterine and placental tissue and mincing prior to culture. pMEFs were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% characterized FCS (Hyclone, Logan VA), 2 mM L-glutamine, 1% MEM nonessential amino acids, 2% MEM amino acids. pMEFs were harvested by trypsinization and replated for experiments. For detection of MHV-A59 replication in pMEFs, 5 x 105 cells in 2 ml of non-starved DMEM10 medium (DMEM10 with 1% MEM nonessential amino acids, 2% MEM amino acids) were plated per well in 6 well plates (Corning, Cornning NY) and cultured overnight. After washing three times with 4˚C EBSS, cells were incubated in 2 ml non-starved DMEM-10 medium or “starved” medium (EBSS) for 2 hr. Medium was then removed and replaced with 0.5 ml of either starved or unstarved medium containing 2.5 x 105 PFU of MHV-A59 (moi = 0.5) and incubated at 37˚C for 1 hr. Infected cells were washed three times with 2 ml of DMEM10 per well to remove unbound virus and then incubated in 2 ml of non-starved DMEM10 for the indicated time prior to freezing for later titration by plaque assay as described above.

Immunoblots. Cells pellets were lysed on ice in lysis buffer [50 mM Tris-HCl (Fisher Scientific, Fair Lawn NJ), pH 7.4, 150 mM NaCl (Fisher Scientific, Fair Lawn NJ), 1% Triton X-100 (Sigma, St. Louis MO), 1mM EDTA (Fisher Scientific, Fair Lawn NJ)] for 30 min in presence of 1 μM PMSF (Sigma, St. Louis MO) and 4% protein inhibitor cocktail-III (Roche Applied Science, Indianapolis IN) and subjected to western blotting using antibodies specific
for ATG5, LC3 (Novus Biologicals, Littleton CO), and β-actin (Sigma-Aldrich, St. Louis MO). Immunoblots were developed with HRP-conjugated secondary antibodies (Jackson Immunoresearch, West Grove PA) and visualized by chemiluminescence (Amersham Biosciences, Pittsburgh PA).

Statistical analysis. All data were analyzed with Prism software (GraphPad, San Diego, CA) using two-tailed unpaired t test.

RESULTS AND DISCUSSION

Mφ are involved in the pathogenesis of coronavirus infection. Mφ are infected in the lungs of patients with coronavirus-induced SARS,23,41 the virulence of feline coronavirus is associated with macrophage tropism,33 macrophages amongst the first cells infected in mice inoculated with the coronavirus MHV-A59,39,40 and BMMφ are permissive for MHV-A59 replication.35 We therefore selected macrophages as a relevant primary cell type in which to test the hypothesis that ATG5 and an intact autophagy pathway is required for coronavirus replication.

To generate Mφ lacking ATG5 we bred ATG5^{flox/flox} mice⁷ to mice in which the Cre recombinase is expressed from the endogenous lysozyme M locus (Lyz-Cre).² Lysozyme M expression is restricted to myelomonocytic cells, specifically Mφ and granulocytes.1,3,5 We then cultured BMMφ from ATG5^{flox/flox}-Lyz-Cre and ATG5^{flox/flox} mice (Fig. 1A) and analyzed expression of ATG5-ATG12 conjugates and the conversion of LC3-I to LC3-II (Fig. 2). These data are representative of at least two experiments.

We next examined the replication of MHV-A59 in ATG5^{flox/flox}-Lyz-Cre BMMφ compared to ATG5^{flox/flox} bone marrow (data not shown). ATG5^{flox/flox}-Lyz-Cre BMMφ expressed significantly lower levels of ATG5-ATG12 conjugates than ATG5^{flox/flox} BMMφ (Fig. 1B). In addition, we observed a significant decrease in the amount of LC3-II in ATG5^{flox/flox}-Lyz-Cre BMMφ compared to ATG5^{flox/flox} BMMφ under both starved and unstarved conditions. These data indicated that expression of the Cre recombinase from the lysozyme M locus effectively deletes the ATG5 gene in cultured BMMφ, and that, as expected, ATG5 is required for efficient conversion of LC3-I to LC3-II in macrophages.

We then compared the amount of virus released into the supernatant compared to the total amount of infectious virus produced because of the proposed role of autophagy in virus release.9 In addition, we compared BMMφ cultured under starved and unstarved conditions. MHV-A59 replicated to the same levels regardless of the presence or absence of ATG5 or the culture conditions. There was no effect of ATG5 on the amount of released MHV-A59. This demonstrated that neither ATG5 nor an intact autophagic pathway is required for MHV-A59 replication in, or release from, BMMφ. Further, the induction of autophagy by starvation did not alter viral replication or release.

These results are in contrast to studies in embryonic stem cells.28 It could be argued that this difference between embryonic stem cells and BMMφ was due to the presence of ATG5 or autophagic conversion of LC3-I to LC3-II at levels below those detectable by western blot. To address this possibility using cells that lack ATG5 due to a null mutation in the ATG5 gene rather than Cre-recombinase mediated deletion of the ATG5 gene, we isolated ATG5^{−/−}, ATG5^{+/−} and ATG5^{+/+} murine embryonic fibroblasts. These cells were used as low passage (less than 5 passages, termed primary MEFs or pMEFs) cells in order to prevent changes in cell physiology associated with passage crisis and selection of continuous MEFs.
We confirmed the genotype of these cells by PCR (Fig. 3A). Western blot revealed the expected lack of ATG5-ATG12 conjugates in ATG5−/− MEFs (Fig. 3B). As expected, ATG5+/+ MEFs contained undetectable LC3-II even under starvation conditions (Fig. 3B). Together these data show that pMEFs had the predicted ATG5 deficiency and consequent lack of normal autophagy.

Next we performed growth experiments in starved and unstarved pMEFs. Cells were infected with MHV-A59 and virus titers determined over four days in culture (Fig. 4A and B). Consistent with results obtained in ATG5−/− MEFs (Fig. 2), ATG5 was not required for replication of MHV-A59 in pMEFs. We also assessed the growth of MHV-A59 during the first 24 hours of infection (Fig. 4C). There was no role for ATG5 or an intact autophagic pathway in MHV-A59 replication at these earlier time points. Similar experiments were performed in Saint Louis, Missouri and Nashville, Tennessee, confirming that these data are representative across institutions and that they are independent of subtle differences in experimental techniques between laboratories.

These experiments indicate that, as observed for vaccinia virus,44 ATG5 is not required for coronavirus replication. To determine if there was an alternative pattern of virus infection-induced membrane modifications in the absence of ATG5, we used electron microscopy to compare the ultrastructure of MHV infected ATG5+/+ and ATG5−/− pMEFs 24 hours after infection at an MOI of 5 under either starved or unstarved conditions. Pleiomorphic membrane changes were noted in infected cells, including expanded ER, multilamellar membranes, and vesicles containing large numbers of virus particles (data not shown). No differences in the morphology of intracellular membranes were observed in ATG5+/+ compared to ATG5−/− cells. Similar data were obtained at 36 hours after infection in an independent experiment. The results indicate that there are multiple ATG5-independent membrane modifications associated with MHV infection of pMEFs. Membrane rearrangements that are necessary for coronavirus replication do not require the participation of either ATG5 or the conversion of LC3-I to LC3-II in primary low passage pMEFs and BMMØ. Of note, we have confirmed the initial observation28 that SARS replicate proteins and LC3 distribution overlaps in punctate cytoplasmic foci in infected Vero Cells (data not shown). The physiologic meaning of such colocalization is uncertain, but the results reported here showing that an intact autophagic pathway is not required for coronavirus replication indicates that colocalization between viral proteins and autophagy proteins in continuous cell lines should not be used as a sole indicator that autophagy is involved in viral replication. While ATG5 and an intact autophagic pathway are not required for coronavirus replication in vitro, it remains possible that other proteins of the autophagic pathway may play a role in coronavirus replication or pathogenesis.

References

30. Q
39. W
44. Zhang
43. Y
32. P
27. P
25. O
24. O
23. N
16. Liu
12. B
4. A
3. B
2. A
1. D

