Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals

Brian P. Daniels
Washington University School of Medicine in St. Louis

David W. Holman
Washington University School of Medicine in St. Louis

Lillian Cruz-Orengo
Washington University School of Medicine in St. Louis

Harsha Jujjavarapu
Washington University School of Medicine in St. Louis

Douglas M. Durrant
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/3239

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Brian P. Daniels, David W. Holman, Lillian Cruz-Orengo, Harsha Jujjavarapu, Douglas M. Durrant, and Robyn S. Klein
Viral Pathogen-Associated Molecular Patterns Regulate Blood-Brain Barrier Integrity via Competing Innate Cytokine Signals

Brian P. Daniels, David W. Holman, Lillian Cruz-Orengo, et al.

Updated information and services can be found at:
http://mbio.asm.org/content/5/5/e01476-14.full.html

SUPPLEMENTAL MATERIAL
http://mbio.asm.org/content/5/5/e01476-14.full.html#SUPPLEMENTAL

REFERENCES
This article cites 68 articles, 37 of which can be accessed free at:
http://mbio.asm.org/content/5/5/e01476-14.full.html#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more>>
Viral Pathogen-Associated Molecular Patterns Regulate Blood-Brain Barrier Integrity via Competing Innate Cytokine Signals

Brian P. Daniels,a David W. Holman,b Lillian Cruz-Orengo,b Harsha Jujjavarapu,b Douglas M. Durrant,b Robyn S. Klein,a,b,c

Department of Anatomy and Neurobiology,a Department of Internal Medicine,b and Department of Pathology and Immunology,c Washington University School of Medicine, St. Louis, Missouri, USA

ABSTRACT Pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs), such as viral RNA, drives innate immune responses against West Nile virus (WNV), an emerging neurotropic pathogen. Here we demonstrate that WNV PAMPs orchestrate endothelial responses to WNV via competing innate immune cytokine signals at the blood-brain barrier (BBB), a multicellular interface with highly specialized brain endothelial cells that normally prevents pathogen entry. While Th1 cytokines increase the permeability of endothelial barriers, type I interferon (IFN) promoted and stabilized BBB function. Induction of innate cytokines by pattern recognition pathways directly regulated BBB permeability and tight junction formation via balanced activation of the small GTPases Rac1 and RhoA, which in turn regulated the transendothelial trafficking of WNV. In vivo, mice with attenuated type I IFN signaling or IFN induction (Ifnar−/− Irf7−/−) exhibited enhanced BBB permeability and tight junction dysregulation after WNV infection. Together, these data provide new insight into host-pathogen interactions at the BBB during neurotropic viral infection.

IMPORTANCE West Nile virus (WNV) is an emerging pathogen capable of infecting the central nervous system (CNS), causing fatal encephalitis. However, the mechanisms that control the ability of WNV to cross the blood-brain barrier (BBB) and access the CNS are unclear. In this study, we show that detection of WNV by host tissues induces innate immune cytokine expression at the BBB, regulating BBB structure and function and impacting transendothelial trafficking of WNV. This regulatory effect is shown to happen rapidly following exposure to virus, to occur independently of viral replication within BBB cells, and to require the signaling of cytoskeletal regulatory Rho GTPases. These results provide new understanding of host-pathogen interactions at the BBB during viral encephalitis.

The central nervous system (CNS) is normally protected from pathogens by the blood-brain barrier (BBB), which is composed of brain microvascular endothelial cells (BMECs) joined by tight junctions (TJs). TJs are formed by the intercellular association of transmembrane proteins, including claudins and occludins, whose anchoring to the endothelial cytoskeletal network by adaptor proteins, including the zonula occludens family, represents a major regulatory mechanism by which paracellular permeability is controlled (1). Viruses may cross the BBB via several routes, including direct infection of BMECs, trans- or paracellular viral trafficking across the endothelium (2), or entry of infected peripheral leukocytes (3, 4). Trafficking of virus across the BBB is likely made possible by enhanced permeability of the BBB endothelium, caused either directly by viral factors or indirectly by host immune factors, including innate cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) (5, 6). However, the mechanistic explanation of this effect and the functions of innate immune responses at the BBB interface during viral infections have not been explored.

West Nile virus (WNV), a mosquito-borne flavivirus, is the most common cause of epidemic viral encephalitis in the United States (7). Following infection, the pattern recognition receptors (PRRs) TLR3, TLR7, RIG-I, and MDA5 are key sensors of WNV pathogen-associated molecular patterns (PAMPs), inducing the expression of innate Th1 cytokines that limit viral replication, facilitate antigen presentation, and direct the trafficking of antiviral leukocytes (8, 9). Studies with mice have shown that TNF-α signaling is key for CD8+ T cell-mediated clearance of WNV from the CNS (10), as well as protection from CXCR3-mediated apoptosis in neurons (11). Likewise, IL-1β signaling has been shown to limit WNV replication in neurons (12) and is essential for dendritic-cell-mediated reactivation of WNV-specific T cells in the CNS (13). Despite these beneficial effects in the CNS, Th1 cytokine signaling can also contribute to neuropathology, including disruption of the BBB (6, 14).

PRR activation also induces the expression of type I interferons (IFN-α and IFN-β) that share a type I IFN receptor (IFNAR). PRR-mediated expression of IFN ligands results in the amplification of type I IFN signals via both autocrine and paracrine signaling through IFNAR, which stimulates further IFN ligand expression and an array of IFN-stimulated antiviral and immunomodulatory genes (15). Type I IFNs act directly as potent suppres-
sors of viral replication (16) and indirectly by promoting host adaptive immune responses (17). Thus, mice lacking type I IFN receptors, ligands, and key transcription factors exhibit expanded viral tropism and replication, resulting in accelerated and enhanced death (16, 18, 19). In the context of CNS autoimmunity, type I IFNs can enhance BBB function and are used clinically in humans to prevent the CNS entry of autoreactive leukocytes in patients with multiple sclerosis (20, 21). However, the functions of type I IFN at the BBB interface during viral infections of the CNS have not yet been explored.

Here, we demonstrate a novel mechanism underlying the dynamic regulation of BBB structure and function by innate cytokines during viral encephalitis. Using an in vitro BBB model, we show that, in the presence of WNV, the induction of type I IFN directly regulates endothelial permeability and TJ formation via regulation of the small GTPases Rac1 and RhoA and indirectly via suppression of barrier-dysregulating effects of TNF-α and IL-1β. This regulatory regimen modulates transendothelial WNV trafficking, as type I IFN responses significantly decreased the movement of virus across an intact barrier in vitro, while TNF-α and IL-1β increased this crossing. In vivo, genetic attenuation of type I IFN signaling resulted in enhanced BBB permeability with associated TJ disruption following peripheral or intracranial (i.c.) inoculation with WNV. Together, these data demonstrate an additional, previously undescribed, regulatory role for PRR-mediated cytokine expression at the BBB during WNV infection.

RESULTS

Innate cytokines differentially regulate barrier function following WNV infection. To assess the kinetics of BBB permeability following murine WNV infection, we utilized an established model of WNV neuroinvasive disease in which 5-week-old C57BL/6 mice are subcutaneously infected in the footpad with 10² PFU of a virulent strain of WNV-NY. Five-week-old mice uniformly develop CNS infection, with detectable CNS viral loads first emerging ~6 days following infection (22, 23) (see Fig. S1A in the supplemental material). Fluorometric assessment of BBB permeability following the intraperitoneal (i.p.) administration of sodium fluorescein revealed that BBB permeability increased significantly over the course of peripheral infection (days 0 to 4) in all of the CNS regions analyzed (Fig. 1A). Of interest, BBB permeability exhibited a significant decrease at day 6 in cortical and subcortical cerebral tissues, coincident with the timing of detection of virus within the CNS (see Fig. S1A). After this, BBB permeability rebounded and returned to elevated levels on day 8, coinciding with increased trafficking of leukocytes into the CNS (22).

The biphasic kinetics of BBB permeability after WNV infection suggested potentially differential regulation of the BBB by viral and host factors over the course of infection. To assess this, we utilized a standard Transwell in vitro BBB system in which primary murine BMECs are grown on a porous filter membrane in a chamber suspended above primary murine astrocytes. The integrity of the endothelial barrier is assessed via electrode recording of transendothelial electrical resistance (TEER). We treated in vitro BBB cultures in the top (BMEC-only) chamber overnight with cytokines or infected them for 6 h at a multiplicity of infection (MOI) of 0.01 with WNV that had been purified via ultracentrifugation through a sucrose gradient. We utilized a low MOI for BMEC experiments in light of the relatively low viremia present in mammalian hosts during WNV infection (24) and the fact that high MOIs can trigger fast necrotic cell death (25), compromising monolayer integrity and confounding the interpretation of TEER results. Similarly, 6-h infections were chosen because this period of time is insufficient for completion of the viral life cycle and induction of apoptosis in BMECs, as assessed via multistep growth curves and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining (see Fig. S1B and C in the supplemental material). Treatment with Th1 cytokines TNF-α (100 ng/ml), IL-1β (100 ng/ml), and IFN-γ (100 ng/ml) decreased TEER, while IFN-β (100 pg/ml) and WNV infection both significantly enhanced TEER (Fig. 1B). TEER effects induced by Th1 cytokines could be rescued by subsequent infection with WNV, while infection of IFN-β-treated cultures produced no additional increase in TEER (Fig. 1B). Similar to WNV, addition of IFN-β to cultures pretreated with Th1 cytokines also rescued TEER (Fig. 1C). These data suggest that WNV infection may increase TEER either via type I IFN or through convergent mechanisms.

To assess whether type I IFN expression by BMECs and/or astrocytes contributes to increasing TEER, we performed checkerboard experiments with BMECs and astrocytes isolated from wild-type (WT) and/or Iftnar−/− mice. While TEER increased after 6 h of infection in cultures with WT BMECs, similarly infected cultures generated with Iftnar−/− BMECs instead exhibited significant reductions in TEER (Fig. 1D). While type I IFN signaling in BMECs robustly controlled TEER responses after infection, type I IFN signaling in astrocytes produced smaller but significant modulations of TEER responses as well. Experiments with neutralizing antibodies to IFNAR and IFN ligands recapitulated the results obtained with Iftnar−/− BMECs (data not shown). Given the dramatic change in TEER responses in the absence of type I IFN signaling, we next assessed the expression of innate cytokines in BMECs following infection. In WT BBB cultures, the expression of both IFN-β and TNF-α is induced within 6 h in the top chambers of BBB cultures, with mostly undetectable levels of IL-1β. However, infection of Iftnar−/− BBB cultures yielded lower levels of type I IFNs (Fig. 1E; see Fig. S2A and B in the supplemental material), consistent with a loss of IFNAR-mediated amplification, as well as modestly enhanced TNF-α and more robustly enhanced IL-1β expression (Fig. 1E). Baseline expression of cytokines in uninfected cultures did not differ between genotypes (see Fig. S2), and cytokine expression in bottom culture chambers did not differ substantially from that in top culture chambers (data not shown). These data indicate that type I IFN signaling in BMECs mediates permeability both directly and indirectly through the suppression of Th1 cytokine expression.

To determine if permeability changes are associated with structural changes involving TJs, BMEC monolayers treated overnight with cytokines, followed by 6 h of WNV infection, were evaluated by immunocytochemistry (ICC) for the TJ proteins ZO-1 and Claudin-5. Infection of WT cells enhanced TJ protein colocalization at intercellular borders, indicating the recruitment and stabilization of these proteins in functional TJ complexes (Fig. 1F and G). In contrast and consistent with TEER responses, infection of Iftnar−/− BMECs resulted in decreased TJ protein colocalization, suggesting that type I IFN is necessary to enhance TJ formation in the presence of WNV. Also mirroring our prior TEER results, TNF-α or IL-1β treatment resulted in decreased TJ protein colocalization, which could be rescued by subsequent WNV infection in WT, but not Iftnar−/−, BMECs. These data indicate that innate
cytokine signaling in BMECs following exposure to WNV results in the rapid modulation of TJ complexes, which are key regulators of paracellular permeability, and that barrier dysregulation by Th1 cytokines can be controlled by the actions of type I IFN.

PRR activation is sufficient to induce cytokine-dependent changes in endothelial barrier integrity. As type I IFN signaling enhances both TJ formation and BBB permeability after WNV infection, we assessed whether this was the result of classical innate immune signaling through PRRs. First, we inactivated purified WNV via either exposure to UV light (WNV-UV) or incubation with 0.1% (vol/vol) /H9252-propiolactone (WNV-BPL), generating viral stocks that are unable to replicate within cells, as assessed via standard plaque assay (data not shown), but do induce the expression of both IFN-β and IFN-α in BMECs after 6 h (see Fig. S2A and B). Treatment of in vitro BBB cultures consisting of WT versus Ifnar−/− BMECs (both over WT astrocytes) with either WNV-UV or WNV-BPL at an MOI of 0.01 for 6 h revealed enhanced TEER in WT cultures but reduced TEER in Ifnar−/− cultures, largely phenocopying the effect of normal virus. These results suggest that type I IFN-dependent changes in TEER require viral detection but not replication in BMECs.

We next determined if direct activation of PRRs was sufficient to alter TEER. TLR3 agonism via treatment with naked (nontransfected) poly(I·C) at 1 μg/ml significantly decreased

FIG 1 WNV infection modulates endothelial barrier integrity via innate cytokine signaling. (A) Five-week-old C57BL/6 mice were inoculated in the footpad with 100 PFU of WNV and then assessed for BBB sodium fluorescein permeability in CNS regions on the postinfection days indicated. The values reported are arbitrary fluorescence values in CNS tissue normalized to values in serum for individual mice. Group means are normalized to the mean value for uninfected animals. The values on the x axes are times in days, n.s., not significant. (B) In vitro BBBS were treated overnight in the top chamber with the saline vehicle, TNF-α, IFN-γ, IL-1β, or IFN-β, followed by an additional 6 h of infection with WNV and subsequent measurement of TEER. (C) BBB cultures were treated for 2 h with the vehicle or the cytokine indicated, and then the culture medium was washed away and replaced with medium containing the vehicle or IFN-β for 2 h, followed by measurement of TEER. (D) In vitro BBBS were constructed with WT or Ifnar−/− BMECs cocultured with astrocytes of either genotype, as shown on the x axis, with the BMEC genotype on the left and the astrocyte genotype on the right. TEER measurements after 6 h of WNV infection are shown. (E) ELISA of cytokine expression in the top chambers of BBB cultures following 6 h of WNV infection. (F) Quantification of ICC analysis of colocalization of Zo-1 and Claudin-5 in WT and Ifnar−/− BMEC monolayers treated for 2 h with the saline vehicle or the cytokine indicated and subsequently infected for 6 h with WNV at an MOI of 0.01. Values on the y axis (correlation indexes) represent the probability of an individual pixel staining positive for both markers if it stains positive for either. (G) Representative X63 images of cultures with Zo-1 shown in green, Claudin-5 in red, and Topro3 nuclear staining in blue. Scale bar = 25 μm. White arrowheads highlight junctions with loss of TJ protein colocalization. Veh, vehicle.
TEER in both WT and Ifnar−/− BBB cultures (Fig. 2A). However, similar 6-h treatments with agonists for TLR7 (CL264, 10 µg/ml), MDA5 [high-molecular-weight poly(I·C), 1 µg/ml, transfected into cytoplasm], or RIG-I (5′ triphosphate double-stranded RNA [ppp-dsRNA], 1 µg/ml, transfected into cytoplasm) instead resulted in increased TEER in WT cultures but decreased TEER in Ifnar−/− cultures, similar to the results obtained with both infectious and inactivated WNV. Enzyme-linked immunosorbent assay (ELISA) results confirmed that the expression of both IFN-β and IFN-α was induced by all of the treatments used, including a TLR3 agonist (see Fig. S2A and B). Consistent with these results, ICC analysis of Zo-1 and Claudin-5 similarly showed enhanced colocalization in WT BMECs treated for 6 h with WNV-UV, WNV-BPL, and TLR7, MDA5, and RIG-I, but not TLR3, agonists, with decreases in TJ protein colocalization after these treatments in Ifnar−/− cultures. We next assessed if differences in barrier responses to PRR agonists in WT versus Ifnar−/− BBB cultures and between TLR3 and other PRR agonists were due to differential cytokine expression. Similar to experiments with WNV, Ifnar−/− BBB cultures had small modulations of type I IFN and TNF-α signaling after stimulation with inactivated virus and PRR agonists (see Fig. S2A and B).
the absence of type I IFN, are able to increase barrier permeability and disassemble TJs. Moreover, PRR activation in BMECs, even in the absence of direct infection, is sufficient to induce cytokine-mediated changes in BBB physiology.

WNV modulates BMEC Rho GTPase signaling in an innate cytokine-dependent manner. To assess the signaling events that regulate BBB physiology downstream of WNV and cytokine signaling, we examined if WNV infection resulted in changes in the activity of Rho GTPases, a family of signaling molecules that regulate cytoskeletal dynamics, including TJs and paracellular permeability (26). WT and *Ifnar*−/− BMEC monolayers were infected for 6 h with WNV, and protein lysates were collected and incubated with Rhotekin or p21-activated protein kinase (PAK) agarose beads to pull down GTP-bound, activated Rac1, RhoA, and CDC42. Western blot detection of activated forms of these GTPases revealed a significant increase in activated Rac1 in WNV-infected WT BMECs (Fig. 3A and B) and a significantly smaller increase in activated Rac1 in *Ifnar*−/− BMECs. In contrast, while activated RhoA was not increased in WNV-infected WT BMECs, *Ifnar*−/− BMECs exhibited significantly increased amounts of activated RhoA (Fig. 3A and C). Levels of activated CDC42 were not affected by WNV infection in either WT or *Ifnar*−/− BMEC cultures (Fig. 3A and D). As these experiments suggested a dynamic range of Rho GTPase activation responses following WNV infection, we next assessed the manner in which individual innate cytokines regulate Rho GTPase activation. In agreement with infection experiments with WT versus *Ifnar*−/− BMECs, 2 h of incubation of WT BMECs with recombinant IFN-β resulted in significantly enhanced Rac1 activation (Fig. 3E and F) and significantly diminished RhoA activation (Fig. 3E and G). In contrast, 2 h of incubation with TNF-α resulted in decreased Rac1 activation and greater activation of RhoA, while 2 h of IL-1β treatment increased the activation of both GTPases, with a greater fold change in induction of RhoA activation.

Innate cytokine-dependent modulation of Rac1 and RhoA after WNV infection regulates BBB permeability and TJ formation. We next examined whether modulation of BMEC Rho GTPase signaling in the context of WNV infection contributes to type I IFN-dependent regulation of TEER and TJ responses. Pharmacological blockade of Rac1 signaling via 2 h of pretreatment with its specific inhibitor, Z62954982, abolished the increase in TEER after 6 h of WNV infection in WT cells, with TEER values significantly decreased in WNV-infected WT barriers in the absence of Rac1 signaling, while responses remained unchanged in similarly infected and treated *Ifnar*−/− barriers (Fig. 3H). Conversely, inhibition of RhoA signaling via 2 h of pretreatment with its specific inhibitor, H1152P, did not impact TEER changes induced by WNV infection in WT barriers but significantly rescued reductions in TEER in similarly infected and treated *Ifnar*−/− barriers. Inhibition of CDC42 via 2 h of pretreatment with ML141, a specific inhibitor of CDC42, did not significantly alter IFN-β levels in luminal chambers following 6 h of infection and that none of the inhibitors impacted TEER in cultures mock infected for 6 h (see Fig. S3A to C in the supplemental material).

Consistent with analyses of TEER, ICC analysis further revealed that inhibition of Rac1 signaling in WT cells completely ablated the increase in the colocalization of Zo-1 and Claudin-5 observed in WNV-infected WT BMECs (Fig. 3I and J), while inhibition of RhoA or CDC42 did not impact TJ formation in WT cells. However, inhibition of RhoA rescues the loss of TJ formation in WNV-infected *Ifnar*−/− BMECs, abolishing decreases in TJ protein colocalization observed in untreated *Ifnar*−/− BMECs. Inhibition of Rac1 or CDC42 did not significantly impact TJ formation in *Ifnar*−/− BMECs. Control experiments also confirmed that 2 h of pretreatment with GTPase inhibitors, followed by 6 h of mock infection, did not change baseline levels of TJ protein colocalization (see Fig. S3D). Together, these data suggest that cytokines expressed in BMECs following exposure to WNV differentially influence Rho GTPase activity, with type I IFN contributing to the preferential activation of Rac1, thereby stabilizing barrier physiology. This regulation counteracts the activity of the cytokines TNF-α and IL-1β, which preferentially activate RhoA and contribute to barrier disruption.

Innate cytokine regulation of Rho GTPase signaling controls WNV transmigration across the in vitro BBB. We next determined if cytokine and Rho GTPase modulation of TEER and TJ integrity are relevant regulators of viral trafficking across the BBB, limiting the access of WNV to the CNS. For these experiments, WNV at an MOI of 0.01 was added to the top chamber of Transwell BBB cultures; 6 h later, the top chamber was removed, such that only virus that had crossed during the 6 h of incubation was present in the bottom chamber. Amounts of migrated virus in the bottom chambers were then assessed using multistep growth curve analysis. Consistent with changes in TEER and TJ integrity, overnight pretreatment of the top chamber with TNF-α or IL-1β before infection significantly enhanced the transendothelial migration of WNV (Fig. 4A and B), while IFN-β pretreatment of the top chamber significantly reduced viral trafficking (Fig. 4C). Similarly, experiments with barriers with WT versus *Ifnar*−/− BMECs...
over WT astrocytes revealed that Ifnar^{−/−} BMECs either infected with WNV at an MOI of 0.01 for 6 h (A to D) or treated for 2 h with recombinant TNF-α, IL-1β, or IFN-β (E to G). After treatment, BMEC lysates were incubated with RhoFectin or PAK agarose beads to purify GTP-bound, activated Rac1, RhoA, and CDC42. Both purified activated GTPases and total unpurified cell lysates were then probed via Western blot assay to assess activated versus total amounts of each GTPase. UI, uninfected. (B to D, F, G) Density quantification of activated Rac1 (B, F), RhoA (C, G), or CDC42 (D), normalized to the total amount of each protein in each sample. Group averages are normalized to the mean values of uninfected/vehicle-treated WT BMECs. (H) TEER measurements for <i>in vitro</i> BBBS constructed with WT or Ifnar^{−/−} BMECs over WT astrocytes, pretreated for 2 h with Rac1 inhibitor Z62954982, ROCK/RhoA inhibitor H1152P, or CDC42 inhibitor ML141 and then infected for 6 h with WNV at an MOI of 0.01. Data are reported as fold changes in TEER in infected cultures versus uninfected cultures within each treatment group. (I) Representative ×63 images showing colocalization of Zo-1 and Claudin-5 in WT versus Ifnar^{−/−} BMEC monolayers treated for 2 h with GTPase inhibitors (as in panel H), followed by 6 h of infection with WNV at an MOI of 0.01, with Zo-1 shown in green, Claudin-5 in red, and Topro3 nuclear staining in blue. White arrowheads highlight junctions with loss of TJ protein colocalization. (J) Quantification of colocalization in images in panel I. Data are reported as the fold changes in colocalization in infected cells versus uninfected cells within each treatment group.
WNV migration across WT BMECs but resulted in a partial rescue of the enhanced migration observed in Ifnar−/− BMECs (Fig. 4H).

As expected antagonism of CDC42 did not impact the transendothelial migration of WNV (see Fig. S4C). Together, these findings suggest that modulation of BMEC TEER and TJ integrity is consequential to the ability of WNV to traffic across the BBB endothelium.

Mice with impaired type I IFN responses exhibit enhanced BBB permeability and loss of TJ integrity after peripheral WNV infection. Mice lacking a type I IFN receptor, ligands, and regulatory transcription factors exhibit enhanced susceptibility to WNV infection, including early entry of virus into the CNS compared to WT controls. Thus, in light of our in vitro observations, we wondered if mice with impaired type I IFN signaling would also exhibit alterations in BBB permeability and TJ integrity following peripheral infection. To determine whether type I IFN signaling is required for the in vivo decrease in BBB permeability observed on day 6 after WNV infection of the CNS, we examined BBB permeability in the context of i.c. inoculation (10 PFU) of WNV in 8-week-old WT versus Ifnar−/− mice. WT animals experienced a significant decrease in BBB permeability to sodium fluorescein on days 1 and 2 in each CNS region, followed by a large increase in BBB permeability on day 4 (Fig. 5A), coincident with the detection of large numbers of inflammatory cells at this time point in this model (27). However, these kinetics were not observed in Ifnar−/− animals, which instead exhibited a significant and sustained in-
FIG 5 WT mice but not mice with impaired type I IFN signaling exhibit increased BBB integrity following neuroinvasion. (A) Eight-week-old WT and Ifnar−/− mice were i.c. inoculated with 10 PFU WNV. On the days indicated after infection, mice were administered sodium fluorescein and then sodium fluorescein levels in tissue homogenates taken from CNS regions contralateral to the inoculation site were assessed. The values reported are arbitrary tissue fluorescence values normalized to the serum values of individual mice. Group means are normalized to the mean value of mock-infected WT animals. (B) Sodium fluorescein permeability in CNS regions after footpad inoculation with 100 PFU WNV. Values taken from CNS regions (both hemispheres) are reported as in panel A, with normalization to values of uninfected WT mice. (C) IHC detection of serum IgG in parenchymal CNS tissues after peripheral WNV infection, with quantification of group mean fluorescence intensity per low-power field. Scale bar = 100 μm. (D) IHC detection of Zo-1 (green) and Claudin-5 (red) in CNS microvessels on the days after footpad infection indicated. Scale bar = 10 μm. (E) Eight-week-old WT and Ifnar−/− mice were administered 50 μg poly(I · C) i.p., followed by sodium fluorescein 24 h later (processed as described for panel B).
crease in permeability to sodium fluorescein each day following infection. For these studies, we examined permeability in tissues contralateral to the inoculation site, though we ultimately found that permeability did not differ significantly between hemispheres on any day following i.c. infection (data not shown). Concurrent experiments with mice that received mock i.c. inoculations with saline showed only extremely modest increases in BBB permeability, which did not differ between WT and Iftar^{−/−} mice (see Fig. S5 in the supplemental material); thus, the inoculation procedure alone did not explain changes in BBB permeability following i.c. inoculation with WNV. In all, these data suggest that local type I IFN responses in the CNS following WNV entry promote BBB integrity, which may contribute to the decrease in BBB permeability observed between days 4 and 6 following peripheral infection.

As Iftar^{−/−} mice rapidly and uniformly die of septic shock (at about 3.5 days after footpad infection) (16, 28), we next used Ifnar^{−/−} mice, which have impaired expression of IFN-α (29). These mice experience early neuroinvasion of WNV compared to WT mice following footpad infection (29). Sodium fluorescein permeability experiments revealed that WNV-infected 8-week-old WT mice exhibit BBB permeability kinetics similar to those previously observed in 5-week-old animals, including an increase in permeability during peripheral infection (days 0 to 4), followed by a decrease in permeability at day 6 (Fig. 5B). In contrast, WNV-infected 8-week-old Ifnar^{−/−} mice exhibit a sustained increase in BBB permeability over the entire course of infection, with significantly higher permeability than that of WT controls on day 6. Immunohistochemical (IHC) detection of extravasated endogenous IgG revealed similar kinetics of permeability following WNV infection in cortical and cerebellar tissues (Fig. 5C). Consistent with this, IHC detection of Zo-1 and Claudin-5 in CNS tissues revealed that both WT and Ifnar^{−/−} mice exhibited loss of TJ integrity on day 4 following WNV infection, characterized by diminished or diffuse cytoplasmic staining of TJ proteins and substantially decreased colocalization of TJ proteins at cell-cell borders (Fig. 5D). Alteration in TJ assembly was reversed at day 6 within the microvasculature of WNV-infected WT mice, while that of similarly infected Ifnar^{−/−} mice showed sustained dysregulation of TJs. As differences between the viral burdens of WT and Ifnar^{−/−} mice over time complicate the interpretation of BBB changes due to type I IFN signaling, we performed control experiments in which WT and Ifnar^{−/−} mice were treated with the TLR3 agonist poly(I·C), which is known to increase BBB permeability (6). At 24 h following treatment, Ifnar^{−/−} mice exhibited greater CNS permeability to sodium fluorescein than WT mice (Fig. 5E), providing further evidence that type I IFN signaling is required to preserve BBB integrity in the context of systemic inflammatory activation.

DISCUSSION

While the contributions of innate cytokine responses to virologic control and adaptive immunity during WNV infection are known, the regulatory potential of these molecules at the BBB remains poorly understood. Here, we demonstrate that PRR activation in the presence of WNV in the BBB endothelium results in cytokine-dependent modulation of Rho GTPase signaling, exerting regulatory control over BBB permeability and TJ integrity. This, in turn, is consequential for the ability of WNV to traffic across the BBB endothelium. In particular, our data suggest that the induction of type I IFN serves to preserve and stabilize BBB structure and function both directly and indirectly by limiting barrier disruption caused by the cytokines TNF-α and IL-1β. In vivo, BBB permeability increases during peripheral infection but sharply decreases coincident with viral neuroinvasion in WT animals but not in animals with attenuated type I IFN responses, suggesting that local CNS type I IFN responses may act on the BBB to mitigate the access of WNV to the CNS parenchyma.

The Th1 cytokines TNF-α and IL-1β have previously been shown to disrupt barrier endothelium in vitro and in vivo, increasing permeability (30–32) and dysregulating junction complexes (1, 33, 34). During viral infections, TNF-α, in particular, has been linked to enhanced vascular permeability, poor tissue perfusion, and endothelial cell death (28, 35). Here, we show that TNF-α signaling in BMECs activates RhoA, disrupting barrier function and increasing the transendothelial movement of WNV. This is in line with the study of Wang et al. (6), who reported a decrease in BBB permeability in Ifnfr_{1α}−/− mice following WNV infection. These findings together indicate that Th1 cytokine-mediated disruption of the BBB provides an access route for neuroinvasion by WNV.

In contrast to Th1 cytokines, type I IFN treatment has been established to promote BBB function (34, 36). However, for the first time, we demonstrate that *in vivo* induction of type I IFN following WNV infection is a key regulator of BBB permeability and TJ integrity. Type I IFN signaling in BMECs *in vitro* is shown to enhance barrier function over baseline conditions and to rescue Th1 cytokine-mediated barrier dysregulation, suggesting that CNS type I IFN responses may be able to reverse the BBB permeability caused by Th1 cytokine production during infection *in vivo*. This interpretation agrees with *in vitro* observations suggesting that dengue virus activation of type I IFNs reduces vascular leakage in peripheral endothelium, even in the presence of the barrier-disrupting cytokines (35). Type I IFN also preserves barrier integrity by suppression of Th1 cytokine expression, most noticeably, that of IL-1β. While the interactions of type I IFN and IL-1β during WNV infection vary across tissues and times after infection (12, 13), type I IFN has been shown to suppress IL-1β expression via mechanisms that vary by cell type and inflammatory stimulus, including inhibition of inflammasome activity and pro-IL-1α and pro-IL-1β expression (37, 38). To our knowledge, we are the first to demonstrate IFN-mediated suppression of endogenous IL-1β in the BBB endothelium. While this report and others have identified a role for IL-1 signaling in BBB breakdown (39, 40), we note our previous study showing that IL-1 signaling at the BBB is an important facilitator of lymphocyte activation and trafficking into the CNS during WNV infection and was crucial for viral clearance and survival (13). Moreover, Ramos et al. (12) found that type I IFNs and IL-1β worked synergistically to control WNV in neurons. Thus, IL-1 signaling during WNV infection may serve both pathological and protective functions, and the modulation of these effects by type I IFN likely varies over time and by cell type.

Some studies of murine WNV encephalitis have reported a sustained increase in BBB permeability over the course of infection, with permeability rising coincident with neuroinvasion and continuing to increase thereafter (41, 42). However, our findings more closely resemble those showing markedly enhanced BBB permeability 3 to 4 days postinfection, prior to neuroinvasion (6, 43, 44). Wang et al. (6) additionally observed reduced BBB per-
meability on day 5 postinfection, coincident with neuroinvasion, in concordance with our findings. A similar biphasic response in BBB permeability was also observed in a model of Venezuelan equine encephalitis virus infection (45). The reasons for these discrepancies are unclear and may include variations in the viral inoculation site and the age of the experimental animals used. Nevertheless, our data suggest that type I IFN suppresses BBB permeability during viral infection, as loss of intact type I IFN signaling enhanced BBB permeability following both peripheral and CNS WNV inoculations. While tissue viral burden and immune activation differences between Ifnar^{−/−} and Ifr7^{−/−} mice after peripheral infection may independently contribute to the observed differences in BBB permeability, we note that, following i.c. inoculation, BBB permeability was demonstrated to be significantly higher in Ifnar^{−/−} animals, even 1 day after infection when CNS viral titers have been shown to be equivalent (16).

Cytokine-mediated regulation of the BBB is likely to arise from many diverse sources, including peripheral/serum cytokines, CNS cytokines produced by resident and infiltrating cells, as well as cytokines produced by the BBB endothelium that signal in an autocrine or paracrine fashion among BMECs. Here, we have focused our investigation specifically on BMEC-intrinsic cytokine signals, though our data and previous studies provide some clues as to how cytokine signaling from each of these sources may orchestrate the observed changes in BBB permeability. In vivo BBB permeability seems to peak initially at day 4 postinfection, most likely because of the actions of Th1 cytokines that accumulate in serum during peripheral infection (13, 46). After viral neuroinvasion, type I IFN is rapidly produced in the CNS, appearing as early as day 5 postinfection (16), while Th1 cytokines are generally not expressed in significant amounts until day 7 or 8 (12, 13, 47). Thus, the initial interaction of the virus with the BBB endothelium and early IFN production within the infected CNS on days 5 and 6 likely function together to produce a decrease in BBB permeability. Increases in inflammatory cytokine levels during later stages of CNS infection derive from both innate immune responses of CNS cells and infiltrating leukocytes expressing TNF-α and IFN-γ, which also are first detectable in significant quantities 7 to 8 days postinfection (47–49). Likewise, following i.c. inoculation, type I IFNs are induced within 2 days (29) as BBB permeability decreases, followed by the infiltration of inflammatory cells on day 4 (27) and a subsequent increase in BBB permeability. Ultimately, the exact timing of the expression and interaction of IFNs and inflammatory cytokines expressed in various compartments following WNV infection is complex and, as in studies of BBB permeability, sometimes differ among reports. However, on the basis of our findings and the general trends observed in the literature, it appears that systemic immune factors contribute to BBB breakdown during peripheral infection, which may contribute to WNV entry into the CNS. Around the time of CNS neuroinvasion, direct interaction of the virus with the BBB endothelium and early, local innate immune responses in the CNS lead to a type I IFN-dependent decrease in BBB permeability, which may be reversed by infiltration of the CNS by inflammatory cells.

Cytokine-mediated BBB regulation is shown to occur via PRR pathways, independently of viral replication, as detection of viral PAMPs in BMECs was sufficient for the regulation of barrier physiology. In particular, agonism of WNV-sensing PRRs RIG-I, MDA-5, and TLR7 induced cytokine responses dominated by type I IFN, thereby enhancing barrier function. Prior studies have revealed that deficiencies in each of these pathways result in increased disease susceptibility, including early neuroinvasion and greater CNS viral burdens during WNV infection (27, 50, 51). Of note, unlike other PRRs, TLR3 agonism increased barrier dysregulation in both WT and Ifnar^{−/−} BMECs. Compared to other PRRs, TLR3 induced cytokine responses more heavily skewed toward Th1 cytokines and, uniquely, stimulated rapid expression of IL-1β, even in WT cells. These data align with a previous report (6) suggesting that TLR3 activation contributed to BBB breakdown and subsequent WNV neuroinvasion. In our study, in vivo TLR3 agonism also induced BBB permeability and did so more efficiently in Ifnar^{−/−} than WT mice, again suggesting that type I IFN expression may counterregulate the effects of TNF-α and IL-1β at the BBB. The specific role of TLR3 during WNV encephalitis remains uncertain, as another report (3) was unable to link TLR3 activation to BBB breakdown. Ultimately, TLR3 signals through an adaptor different from that used by other PRRs (52) and thus may exhibit different regulatory properties at the BBB, as has been shown in other tissues (53). As demonstrated by Verma et al. (2), we found that WNV is capable of trafficking across the BBB endothelium in vitro, though this study used high MOIs over several days, leading to increased virus in bottom chambers because of replication within endothelium, independently of paracellular permeability. Alternatively, we show that the virus can cross the BBB endothelium quickly after exposure, independently of replication, and that trafficking is correlated with paracellular permeability. Movement of virus in this manner is likely relevant in vivo, as studies have linked host factors that contribute to BBB disruption to WNV neuroinvasion (44, 54, 55). We also demonstrate a rapid (<6 h), cytokine-dependent regulation of TJ protein localization after infection. Type I IFN regulation of BMEC TJs was due to the activation of Rac1 and suppression of RhoA activity, a regulatory regimen well known to control TJ integrity (26). This finding is in line with a report demonstrating that RhoA contributed to the dysregulation of BMEC TJs, enhancing the trafficking of HIV-1-infected monocytes across the BBB (56). Thus, regulation of this pathway may serve to limit CNS trafficking of both free and cell-associated WNV.

Understanding how viral and host factors contribute to the development of neuroinvasive disease is a critical step in developing treatment and prevention strategies for WNV encephalitis. IFN therapy has been used with some success in immunocompetent patients with WNV encephalitis (57, 58), while IFN therapy in immunosuppressed patients, such as recipients of infected transplant organs, has been less successful, according to case reports (59). A limitation of the human treatment literature, however, is that patients have typically developed neuroinvasive disease before treatment; this caveat, combined with the broad systemic effects of IFN therapy, limits our understanding of how IFN may regulate BBB function in human patients. A more promising line of investigation includes the identification of genetic differences in innate immune pathways that may influence disease susceptibility to encephalitis-causing viruses. Studies thus far have associated polymorphisms in several type I IFN pathway elements, including IRF3, MX1, and OAS1, with susceptibility to symptomatic WNV infection (60, 61). In addition, enhanced TLR3 activity and inflammatory cytokine production after WNV infection have been shown in macrophages obtained from elderly patients compared to those of young controls, which may contribute to the enhanced susceptibility of older individuals to neuroinvasive dis-
ease (62). Thus, understanding how variations in innate immune factors contribute to susceptibility to viral encephalitis may inform new strategies for prevention and targeted therapeutics.

MATERIALS AND METHODS

Murine model of WNV encephalitis. Five- and 8-week-old C57BL/6 mice were commercially obtained (Jackson Laboratories). Congenic Ifnar−/− and Ifγ−/− mice were the generous gift of Michael Diamond (Washington University in St. Louis). All animals were housed under pathogen-free conditions in the animal facilities of the Washington University School of Medicine. All experiments were performed in compliance with Washington University animal studies guidelines. Mice were inoculated subcutaneously via footpad injection (50 μl) or i.c. (2 μl) with either 100 or 10 PFU of WNV, respectively, as previously described (23). WNV strain 3000.0259 (isolated in New York in 2000 [63]) was used in all experiments. Viral titers in all experiments were determined via standard plaque assay in BHK21-15 cells as previously described (64).

In vivo assessment of BBB permeability. At various day intervals after infection, mice were injected i.p. with 100 μl of 100 mg/ml fluorescein sodium salt (Sigma-Aldrich) in sterile phosphate-buffered saline (PBS). After 45 min, mice underwent extensive cardiac perfusion with PBS, followed by collection of blood and harvesting of CNS tissues. Tissue homogenates and serum were incubated overnight at 4°C at a 1:1 dilution in 2% trichloroacetic acid (Sigma-Aldrich) to precipitate protein, which was pelleted by 10 min of centrifugation at 4,000 rpm at 4°C. Supernatants were then diluted in equal volumes of borate buffer, pH 11 (Sigma-Aldrich). Fluorescence emission at 538 nm was determined via gel electrophoresis on 10% bis-Tris gels (Invitrogen) and transferred onto iBlot nitrocellulose transfer membranes (Invitrogen) according to standard protocols. Blots were probed with primary antibodies against Rac1, RhoA, and CDC42 (Cell Biolabs), followed by incubation with IRDye-conjugated secondary antibodies (LI-COR). Blots were imaged with the Odyssey fluorescent scanning system (LI-COR). TEER and viral trafficking experiments involving inhibition of GTPase signaling were performed as previously described (68), with in vitro BBBs after 2 h of pretreatment in the top chamber at 37°C with the following agents: the Rac1 inhibitor Z62954982 (1 μM; Cayman Chemical Co.), the Rho/ROCK inhibitor H-1152P (10 μM; Cayman Chemical Co.), and the CDC42 inhibitor ML141 (100 nM; Tocris-R&D Systems).

Statistical analysis. All of the data reported here are mean values ± the standard errors of the means. Data reported for in vitro TEER and cytokine expression experiments include 6 to 12 replicates from two or three independent experiments. In vitro ICC analyses include five or six replicates from two independent experiments. In vivo fluorescent experiments included six mice/group/day from two independent experiments. In vivo IHC analyses included five mice/group/day from two independent experiments. All group effects were compared via one- or two-way analysis of variance; Bonferroni’s post hoc test was subsequently used to compare individual means. Correction for repeated measures was also used where appropriate. All statistical analysis was performed with GraphPad Prism software (v 5.0). P < 0.05 was considered significant for all comparisons. Statistical significance is indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.01476-14/-/DCSupplemental.

Figure S1, TIFF file, 0.9 MB.
Figure S2, TIFF file, 0.5 MB.
Figure S3, TIFF file, 4.3 MB.
Figure S4, TIFF file, 0.5 MB.
Figure S5, TIFF file, 0.2 MB.

ACKNOWLEDGMENTS

This work was supported by NIH grant R01 NS052632 to R.S.K. B.P.D. was supported by a National Science Foundation graduate research fellowship (DGE-1143954). L.C.O. was supported by a Ruth L. Kirschstein postdoctoral NRSA award (F32NS074842-01). We thank Michael Diamond and Helen Lazear for critical insights into the manuscript and Bryan Bollman for technical assistance.

REFERENCES

2. Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjau U, Luo H,

Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brodman CF, John GR. 2006. IL-1beta regulates blood-brain barrier per-

