Multiple pathways of inhibition shape bipolar cell responses in the retina

Erika D. Eggers
University of Arizona

Peter D. Lukasiewicz
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

https://digitalcommons.wustl.edu/open_access_pubs/3321

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Bipolar cells (BCs) are retinal relay neurons that are critical for visual signaling. The main signaling pathway through the retina consists of photoreceptors, BCs, and ganglion cells. Vision begins with photoreceptors that transduce light into an electrical signal. Photoreceptors relay light-evoked signals to BCs that in turn transmit information to the ganglion cells that carry visual information to higher visual centers in the brain. However, BCs are not just passive conduits that funnel light-evoked signals from photoreceptors to ganglion cells. Instead, BCs are thought to extract and then transmit different features of the visual scene. The separation of the visual signal into distinct parallel pathways first occurs at the BC dendrites. In all vertebrate retinas, including primates, at least 10 subtypes of BCs have been identified (Wässle, 2004). Each of these BC types subserves a unique functional role.

The 10 subtypes of BCs can be divided into three major classes: the rod, ON cone, and OFF cone BCs. Rod BCs receive inputs from rod photoreceptors and are critical elements for mediating dim light signaling. ON cone and OFF cone BCs receive inputs from cone photoreceptors that sense bright light levels and signal increments and decrements in illumination, respectively. The separation of the ON and OFF BC responses is determined by different glutamate receptors that respond in opposite ways to glutamate released from cone photoreceptors. Rod and ON cone BCs possess dendritic metabotropic glutamate receptors (mGluR6) that close TRPM1 channels when activated by glutamate (Morgans et al., 2009; Shen et al., 2009; van Genderen et al., 2009). This results in a light-evoked depolarization of ON BCs in response to decreased glutamate release from cones. OFF BCs possess dendritic ionotropic AMPA or kainate receptors that open cation channels when activated by glutamate. This results in a light-evoked hyperpolarization of OFF BCs in response to decreased glutamate release from cones. Furthermore, there are multiple subtypes of ON cone and OFF cone BCs that form additional parallel signaling pathways that encode distinct temporal, spatial, and chromatic features of the visual scene (Awatramani & Slaughter, 2000; DeVries, 2000). Photoreceptor inputs to the different BC pathways have distinct temporal properties, with rod signals much slower than cone signals (Ashmore & Copenhagen, 1980; Schnapf & Copenhagen, 1982; Cadetti et al., 2005). Differences in temporal encoding are also attributed to distinct glutamate receptor subtypes at the dendrites of BCs (Li & DeVries, 2006). Thus, the distinct glutamate receptor subtypes temporally filter photoreceptor inputs, allowing different BC classes to extract unique features of the visual input.
Amacrine cell-mediated inhibition shapes BC output

While visual signals received by BCs are shaped by the properties of dendritic glutamate receptors, modulation of transmitter release from BCs is another critical point where the visual signal can be shaped. Amacrine cells contact BC axons and mediate inhibitory signaling in the inner plexiform layer that modulates the output of BCs. BC terminals may receive both GABA- and glycine-mediated inhibition (Lukasiewicz & Werblin, 1994; Pan & Lipton, 1995; Dong & Werblin, 1998; Euler & Masland, 2000). This potential diversity of inhibitory amacrine cell inputs to BC axon terminals may differentially modulate BC outputs. Below, we detail how the major classes of BCs are differentially influenced by GABAergic and glycinergic inhibition.

GABA and glycine signals to BC terminals (Fig. 1) are mediated by two morphologically distinct groups of amacrine cells (Pourcho & Goebel, 1983; Vaney, 1990; Menger et al., 1998). These two groups of amacrine cells have distinct functional roles. GABAergic amacrine cells (ACs) are generally wide field and carry signals laterally across the retina within a single layer of the inner plexiform layer (Pourcho & Goebel, 1983; Vaney, 1990). In contrast, glycinergic ACs are generally narrow field and carry signals vertically across different layers of the inner plexiform layer (Menger et al., 1998). These morphological distinctions are reflected in the differences in GABAergic and glycinergic inhibition observed in ganglion cells.

GABAergic inputs are implicated in lateral inhibitory signaling within the inner plexiform layer, typically within a single layer. Blocking GABAergic amacrine cell–mediated inhibition changes the spatial and temporal components of visual processing. Previous studies have shown that inhibiting from GABAergic amacrine cells is critical for the spatial tuning of ganglion cells (Cook & McReynolds, 1998; Flores-Herr et al., 2001). When GABA signaling was blocked, some types of ganglion cells lost their surround inhibition, resulting in decreased spatial tuning. GABA-mediated inhibition of BC axon terminals may also be important in temporal signaling. Rod BCs receive direct inhibitory feedback from A17 ACs that shapes the time course of glutamate release (Dong & Hare, 2003; Singer & Diamond, 2003; Chavez et al., 2006). Blockade of GABAergic signaling to some BC terminals causes the normally transient BC output to become more sustained (Dong & Werblin, 1998; Sagdullaev et al., 2006), consistent with the idea that inhibition limits the BC glutamate release. However, transient responses were not completely transformed into sustained responses in ganglion cells, indicating that other factors also contribute to the formation of transient responses. Additionally, a study in goldfish (Li et al., 2007) showed that GABAergic signaling onto BCs can undergo paired pulse depression, which can also contribute to differences in kinetics in downstream neuronal responses.

Glycinergic inputs play critical roles in vertical signaling within the inner plexiform layer. The inner plexiform layer is divided into numerous functional strata that are thought to encode different representations of the visual input (Roska et al., 2006). The ON and OFF signaling pathways are segregated into the inner and outer halves of the inner plexiform layer (IPL), respectively (Famiglietti & Kolb, 1976). The processes of glycinergic amacrine cells typically span many layers of the IPL, suggesting that glycinergic amacrine cells signal between different strata of the IPL. Consistent with this idea, glycinergic signals have recently been shown to mediate crossover inhibition between ON and OFF layers of the IPL (Roska et al., 2006; Chavez & Diamond, 2008; Manookin et al., 2008; Molnar et al., 2009). An important example of this idea is that glycinergic AII amacrine cells receive excitatory input from the ON layers of the IPL and then transmit inhibitory outputs to the OFF layers (Manookin et al., 2008). Glycinergic crossover inhibition has been postulated to act in concert with excitation to linearize signaling in some signaling pathways (Werblin, 2010).

GABA and glycine receptor properties fine-tune inhibitory inputs to BCs

BC inhibition from GABAergic and glycinergic amacrine cells is mediated by three types of inhibitory receptors: GABACRs, GABAARs, and glycine receptors (R, Fig. 1). These receptors have distinct biophysical properties that could affect how BCs respond to GABA and glycine inputs. GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Shields et al., 2000; McCall et al., 2002). Typically, the GABAAR responses are over before the GABACR responses have reached their peaks (Shields et al., 2000), as illustrated in Fig. 3. GABAARs are also about 10-fold more sensitive to GABA than GABACRs (Feigenspan & Bormann, 1994; Chang & Weiss, 1999), with native GABAARs reaching peak amplitude in several milliseconds and turning off much more slowly than GABACRs in tens to hundreds of milliseconds (Shields et al., 2000; McCall et al., 2002). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a). Heterologously expressed GABAARs respond quickly to GABA, rapidly turning on and off in several milliseconds (Eggers & Lukasiewicz, 2006a).
Inhibition shapes BC pathways

Inhibition to a given BC type is determined by 1) the biophysical properties of the inhibitory receptors present on the BCs, 2) the properties of the amacrine cells that mediate the inhibitory input (i.e., GABA vs. glycine, sustained release vs. phasic release, wide-field integration vs. narrow-field integration, etc.), and 3) network interactions that influence BC inhibition, (i.e., serial inhibitory circuits). These three factors interact to determine how inhibition distinctly shapes the output of different BCs. Ultimately, the BC output is shaped by the magnitude and timing of inhibition. The extent of suppression of the BC output is determined by the magnitude of inhibition. The time course of the BC output can be shaped by the timing of inhibition. As noted above, GABA-mediated inhibition can truncate glutamate release, resulting in more phasic excitatory signaling to postsynaptic target cells. Finally, the spatial properties of inhibition depend on the amacrine cell morphology. Wide-field GABAergic amacrine cells mediate spatially extensive surround inhibition, while narrow-field glycineric amacrine cells mediate spatially compact inhibition that synergistically interacts with excitation from BCs. We have investigated the factors that contribute to the distinct shaping of inhibition for different BC classes. Our results suggest that these distinct forms of BC inhibition may be optimized for parallel BC pathways in the retina. Here, we discuss the evidence for this.

The magnitude of GABA\textsubscript{A}R, GABA\textsubscript{C}R, and glycineR-mediated inhibition varies between BC pathways

BCs receive inputs from glycineric and GABAergic amacrine cells that are mediated by three types of receptors, GABA\textsubscript{A}Rs, GABA\textsubscript{C}Rs, and glycineRs. This combination of inputs and postsynaptic receptors suggests that there are potentially at least three distinct inhibitory inputs to BCs. Variations in the magnitudes of each of these inputs between BC pathways can generate even more distinct forms of inhibition. Different forms of inhibition can uniquely modulate the outputs of distinct parallel BC pathways. To determine the roles of these different types of inhibition, we recorded inhibitory postsynaptic currents (L-IPSCs) mediated by each pharmacologically isolated receptor (Fig. 2B). The response differences to GABA puffs in separate BC pathways were also observed with light-evoked inhibition (Eggers et al., 2007). Rod BCs had a large GABA\textsubscript{A}R-mediated input and a smaller GABA\textsubscript{C}R-mediated input. ON cone BCs GABA\textsubscript{A}R mediated most of the L-IPSC, but GABA\textsubscript{C}Rs mediated a larger proportion of the response compared to Rod BCs. Finally, OFF cone BCs had about equal amounts of GABA\textsubscript{A}R- and GABA\textsubscript{C}R-mediated L-IPSCs. We also determined the relative magnitudes of the glycineric L-IPSCs in the different BC classes. The largest magnitude glycineric L-IPSCs were recorded in OFF cone BCs. This observation is consistent with previous reports that OFF cone BCs receive large glycineric inputs from the rod BC-AII AC pathway. By contrast, ON cone BCs did not receive any light-evoked glycine input in agreement with previous glycine application studies (Ivanova et al., 2006). Finally, only small amplitude glycineric L-IPSCs were recorded in Rod BCs. These results suggest that the magnitude of GABA\textsubscript{A}R, GABA\textsubscript{C}R, and glycineR inhibition is different across the main BC pathways. However, the differences in magnitude of inhibition are only one factor that distinguishes types of BC inhibition. The timing of inhibition in response to brief light stimuli is also important in determining the BC output.

GABA\textsubscript{A}, GABA\textsubscript{C}, and glycine receptors mediate inhibitory inputs with distinct kinetics

To determine how the GABA\textsubscript{A}Rs, GABA\textsubscript{C}Rs, and glycineRs contribute to the time course of inhibition, we recorded L-IPSCs in response to a brief light stimulus, mediated by each pharmacologically isolated receptor, in the three main classes of BC (Eggers & Lukasiewicz, 2006b; Eggers et al., 2007). In all BC classes, GABA\textsubscript{C}R-mediated L-IPSCs had a slow time to peak and a slow decay. GABA\textsubscript{A}R-mediated L-IPSCs had a fast time to peak and a fast decay. Glycinergic L-IPSCs had a fast time to peak and a moderately slow decay (Fig. 3). These differences in kinetics suggest that these three receptor inputs have distinct functional properties. Since GABA\textsubscript{A}R- and glycineR-mediated inputs have a fast rise time, this would suggest that they might influence the peak and initial portion of inhibition in BCs. GABA\textsubscript{A}Rs mediate especially brief L-IPSCs that peak well before the GABA\textsubscript{C}R L-IPSCs and in many cases have decayed back to baseline well before the GABA\textsubscript{C}R L-IPSCs reach their maximum. This would suggest that GABA\textsubscript{C}R-mediated inputs would primarily control the decay time of L-IPSCs. However, as we showed in the previous figures, different BC pathways have distinct proportions of these three inhibitory inputs. Therefore, it is likely that the differences in timing and differences in magnitude of inhibitory inputs combine to create distinct inhibition for the BC pathways, an idea we will explore in more detail later.
Fig. 2. The contributions of GABA_{A}, GABA_{C}, and glycineR currents vary across BC class. (A) GABA-evoked currents were measured in BCs by focally applying GABA to the BC axon terminal (inset). GABA_{A,R}- or GABA_{C,R}-mediated currents were isolated and measured using (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) (50 μM) or bicuculline (50 μM), respectively in: rod (A1), ON cone (A2), and OFF cone (A3) BCs. (The dark gray bar below each trace indicates the duration of the GABA puff.) (A4) Fractional GABA-evoked current mediated by GABA_{A,R} and GABA_{C,R}Rs in BC types was calculated by normalizing GABA_{A,R} and GABA_{C,R} charge transfer (Q) to
GABA_A, GABA_C, and glycine receptors distinctly shape the timing of L-IPSCs

We have shown that GABA_A-, GABA_C-, and glycineR-mediated L-IPSCs have distinct magnitudes and time courses in BCs. These response properties could be attributed to the distinct biophysical properties of these three inhibitory receptors. Consistent with this idea, fast agonist application studies of GABA and glycine showed analogous response differences for GABA_A-, GABA_C-, glycine receptors.
and glycineRs (Jones & Westbrook, 1996; Chang & Weiss, 1999; Morkve & Hartveit, 2009). However, direct comparisons with the light response findings are difficult because some of these studies were performed with nonnative heterologously expressed receptors, and studies with native receptors were unable to distinguish between synaptic and extrasynaptic receptors. Also, L-IPSCs are influenced not only by receptor kinetics but also by neurotransmitter release kinetics. To directly investigate the properties of synaptic receptors, we recorded spontaneously released GABA and glycine currents in BCs (Eggers & Lukasiewicz, 2006a, b; Eggers et al., 2007). In this scenario, currents are elicited by the spontaneous release of one vesicle, so the complexities of release kinetics are eliminated and the response time course is thought to exclusively reflect the postsynaptic receptor properties.

We measured the average spontaneous (s)IPSCs mediated by GABA$_\text{A}$R, GABA$_\text{C}$R, and glycineRs to determine how the receptor properties differ in BCs. GABA$_\text{A}$R-mediated sIPSCs have a fast rise and decay (Fig. 4). GABA$_\text{C}$R sIPSCs have a slow rise and decay. GlycineR sIPSCs have kinetics in between GABA$_\text{A}$R and GABA$_\text{C}$R, with a fast rise but a slower decay than GABA$_\text{A}$R. The relative differences in the kinetics of the sIPSCs were similar to the differences observed with light-evoked IPSCs in all BC pathways. Similar differences in the kinetics of GABA$_\text{A}$R and GABA$_\text{C}$R have also been seen in goldfish BCs (Palmer, 2006). Also note that OFF cone BCs had large glycinergic sIPSCs, consistent with their L-IPSCs being dominated by glycinergic input. We conclude that receptor properties are a major contributor to the time course of light-evoked currents. In parts of the central nervous system (CNS), receptor kinetics is the primary determinant of synaptic signal time course. However, the sIPSCs we measured had time courses that were more than 10 times faster than the L-IPSCs we recorded (see Fig. 3 vs. Fig. 4). This suggested that properties of neurotransmitter

Fig. 4. Spontaneous IPSCs (sIPSCs) indicate that GABA$_\text{A}$R, GABA$_\text{C}$R, and glycineRs show distinct biophysical properties. Shown are average sIPSCs from rod, ON cone, and OFF cone BCs (inset). (A) Rod BCs show spontaneous currents mediated by GABA$_\text{A}$R, GABA$_\text{C}$R, and glycineRs, with distinct decay times. (B) ON cone BCs show sIPSCs mediated by only GABA$_\text{A}$R and GABA$_\text{C}$R, with no currents mediated by glycineRs. GABA$_\text{C}$R currents have a significantly longer decay time than GABA$_\text{A}$R currents. (C) OFF cone BCs show sIPSCs mediated by GABA$_\text{A}$R, GABA$_\text{C}$R, and glycineRs, with distinct decay times. The amplitude of glycineR sIPSCs is significantly larger than other sIPSCs consistent with the primary role of glycinergic inhibition in OFF cone BCs.
release from amacrine cells might also be important in determining the time course of L-IPSCs.

Do differences in transmitter release kinetics contribute to differences in inhibitory time courses?

While differences in receptor kinetics are a major contributor to L-IPSC time course, differences in neurotransmitter release can also contribute to L-IPSC time course. There are many subtypes of GABAergic and glycinergic amacrine cells in the retina (Werblin et al., 2001). Different subtypes of amacrine cells may release GABA or glycine with distinct time courses, possibly contributing to differences in L-IPSC time course. To determine the contributions of transmitter release kinetics, we estimated neurotransmitter release using convolution analysis (Diamond & Jahr, 1995; Eggers & Lukasiewicz, 2006). This analysis is based on the premise that light-evoked release is the convolution of the spontaneous current (attributable to the release of a single vesicle) and the time course of neurotransmitter release. For the pharmacologically isolated GABA\(_A\), GABA\(_C\), and glycine receptors, we measured both the light-evoked currents and the spontaneous currents in the three major classes of BCs. Thus, by deconvolving the L-IPSCs with the sIPSCs for each receptor type in rod BCs, we can estimate the time course of transmitter release for each case.

We found that the release time courses estimated from convolution analysis were distinct for GABA\(_A\)-, GABA\(_C\)-, and glycineR-mediated light-evoked currents (Fig. 5). The release time course onto GABA\(_C\)Rs was longer than the release time course onto GABA\(_A\)Rs. There are several potential explanations for these differences, but one intriguing possibility is that GABA\(_A\)Rs and GABA\(_C\)Rs receive inputs from distinct cells with different release kinetics. Another possibility is that GABA spills over from neighboring synapses and then preferentially activates the high-sensitivity GABA\(_C\)Rs, prolonging the time course of neurotransmitter release (Eggers & Lukasiewicz, 2006). Additionally, recent simulations of GABA\(_C\)R activation during synaptic release suggested that GABA\(_C\)Rs are not significantly activated by the release of only one vesicle of neurotransmitter, which generally has a concentration of ~1 mM (Chavez et al., 2010). If this is the case, then it is possible that the GABA\(_C\)R sIPSC we used to estimate the release time course onto GABA\(_C\)Rs is actually composed of the response to several vesicles of GABA. This could partially explain the difference in the magnitude of the release estimated between GABA\(_A\)Rs and GABA\(_C\)Rs (Fig. 5). This is also supported by the necessity of adding

![Fig. 5. GABA\(_A\)-R-, GABA\(_C\)-R-, and glycineR-mediated L-IPSCs have distinct apparent release functions and receptor kinetics, both of which contribute to L-IPSC kinetics. (A) Release functions computed by deconvolving idealized GABA\(_A\)-R- and GABA\(_C\)-R-mediated L-IPSCs. GABA\(_A\)-R-mediated L-IPSCs have a much larger release function than GABA\(_C\)Rs, likely because of the much smaller Q of GABA\(_A\) sIPSCs versus GABA\(_C\) sIPSCs. The GABA\(_A\)-R release function has a prolonged tail not shown by the GABA\(_C\)-R release function. Scale bars are 0.05 quanta/ms and 200 ms. (B) The release functions calculated from the deconvolution of the L-IPSCs and sIPSC traces for GABA\(_A\)-R and glycineR Rs are shown. The glycine release function has much slower decay time than the GABA\(_A\)-R release function. This suggests that part of the differences between GABA\(_A\)-R- and glycineR-mediated L-IPSCs are due to distinct release kinetics. This figure was adapted from Eggers and Lukasiewicz (2006), Journal of Neuroscience.]
Since rod BCs have the most GABACR-mediated input, we would expect the elimination of GABACRs did not significantly change the peak of inhibition, while the more slowly responding OFF cone BCs had the fastest decay time, consistent with the largest GABACR-mediated input, while OFF cone BCs had the slowest decay time, consistent with the least GABACR-mediated input. Together, these findings suggest that amacrine cells have inherently desynchronized release from amacrine cells, accounting for the slow time course of release underlying light-evoked currents. Additionally, it is possible that amacrine cells have inherently desynchronized release in order to match the time course of the excitatory inputs that BCs are receiving. Our experiments described here have not distinguished between these two possibilities.

Taken together, our results show that distinct biophysical inhibitory receptor properties shape light-evoked inhibition to BCs. In addition, distinct neurotransmitter release time courses, either from different presynaptic amacrine cells or from spillover of GABA to neighboring synapses, shape the light-evoked inhibition to BCs. These unique temporal properties of light-evoked inhibition shape the BC output, potentially leading to distinct BC output pathways.

Magnitude and timing differences of GABA, GABA, and glycine receptors shape BC L-IPSCs

The photoreceptor inputs to the distinct BC pathways are filtered by different glutamate receptor subtypes to shape their response time courses. Our results show that GABA, GABA, and glycine receptors also mediate inhibitory input with distinct time courses and that BC classes that possess different combinations of these receptors have differing inhibitory inputs. These findings suggest that the modulation of BC output may be as diverse as that reported for their inputs, allowing for additional computational complexity among the parallel pathways.

We found that the terminals of different classes of BCs have different proportions of GABA and GABA-mediated inputs. How does this diversity of inputs contribute to BC inhibition? The differing time courses of GABA and GABA-mediated L-IPSCs predict that inhibition mediated by fast GABA might preferentially contribute to the earliest phase of inhibition, such as the time to peak of inhibition, while the more slowly responding GABA would contribute to the decay time of inhibition.

To test the relative roles of GABA and GABA-mediated inputs, we used GABA null mice that lack GABA (McCall et al., 2002; Eggers & Lukasiewicz, 2006b; Eggers et al., 2007). Since rod BCs have the most GABA-mediated input, we would expect them to show the largest change in L-IPSC kinetics when GABA were removed, while OFF cone BCs that have the least GABA-mediated input would only show small changes in L-IPSC kinetics. Elimination of GABA decreased the time course of the L-IPSCs, consistent with GABA mediating the later phases of L-IPSCs. As predicted, rod BCs response time course was dramatically shortened in mice that lacked GABA. However, the elimination of GABA did not significantly change the peak of the response, consistent with the notion that GABA and glycineRs, and not GABA, mediate the early components of the L-IPSC (Fig. 6). For ON cone BCs, the time course of the L-IPSCs was moderately shortened in mice lacking GABA, consistent with the somewhat smaller GABA contributions to this BC class. For OFF cone BCs, there was no change in time course observed in mice without GABA, suggesting that GABA did not significantly contribute to the kinetics of these responses.

Our studies with the GABA null mice indicate that the GABA and GABA are the primary determinant of response time course, especially in rod BCs and ON cone BCs. This idea was further supported by our recordings of isolated GABAergic L-IPSCs from BCs in wild-type mice (in the presence of strychnine to block glycineRs). L-IPSCs from rod BCs had the slowest decay time, consistent with the largest GABA-mediated input, while OFF cone BCs had the fastest decay time, consistent with the least GABA-mediated input (Eggers et al., 2007). Together, these findings suggest that amacrine cells have inherently desynchronized release from amacrine cells, accounting for the slow time course of release underlying light-evoked currents. Additionally, it is possible that amacrine cells have inherently desynchronized release in order to match the time course of the excitatory inputs that BCs are receiving. Our experiments described here have not distinguished between these two possibilities.

Taken together, our results show that distinct biophysical inhibitory receptor properties shape light-evoked inhibition to BCs. In addition, distinct neurotransmitter release time courses, either from different presynaptic amacrine cells or from spillover of GABA to neighboring synapses, shape the light-evoked inhibition to BCs. These unique temporal properties of light-evoked inhibition shape the BC output, potentially leading to distinct BC output pathways.

GABA, GABA, and glycine receptors shape distinct components of BC output

We have shown that different combinations of GABA, GABA, and glycineR inputs uniquely shape the kinetics of L-IPSCs in different BC pathways. These amacrine cell inputs directly contact BC axon terminals and are optimally placed to shape the output of BCs. We assessed how inhibition to BCs affected retinal signaling by measuring BC outputs in the retinal slice preparation, where synaptic connections are maintained and can be physiologically activated with light (Eggers & Lukasiewicz, 2006a,b). We determined the BC output by recording light-evoked excitatory postsynaptic currents (L-EPSCs) in postsynaptic amacrine or ganglion cells. As noted above, GABA controls the decay of BC inhibition, while GABA controls the peak, and glycineRs affect both the peak
and the decay of BC inhibition. How does each of these inhibitory inputs regulate the output of BCs?

We determined how each inhibitory input affected the BC output by assaying the effects of specific pharmacological blockers of inhibition upon the rod BC output. Because A17 amacrine cells receive excitatory input exclusively from rod BCs, we recorded L-EPSCs from these neurons and determined how they were affected by inhibitory inputs to BCs. Since inhibition mediated by GABA_ARs produces a fast rising and decaying current, this form of inhibition is likely to limit the initial component of glutamate release and reduce the peak of the L-EPSCs. GABA_CRs mediate slow rising and decaying L-IPSCs, so inhibition mediated by these receptors should primarily reduce the later components of glutamate release and enhance the decay of L-EPSCs. We found that blocking GABA_ARs with bicuculline increased the peak of BC output while leaving the decay unchanged (Fig. 8), confirming that this component of inhibition mainly limited the initial component of the BC output. Eliminating GABA_AR function either genetically or pharmacologically prolonged the decay time of the L-EPSCs, indicating that this component of GABAergic inhibition limited the late sustained components of BC output. These findings demonstrate that GABAergic input to rod BCs affects the early and late phases of

Fig. 6. GABA_ARs shape L-IPSCs in ON cone and rod BCs but not OFF cone BCs. (A–C) Representative L-IPSCs (30-ms light stimulus duration, gray bar) from rod (A), ON cone (B), and OFF cone (C) BCs in WT (black) and GABA_AR null (gray) mice. (D) The histogram plots the average L-IPSCs decay (D_37) from GABA_AR null BCs normalized to WT. GABA_AR null L-IPSCs in rod BCs (WT n = 43, null n = 15, P < 0.0001) and ON cone BCs (WT n = 17, null n = 4, P < 0.05) were significantly briefer than WT. There was no significant difference in L-IPSC decays from GABA_AR null and WT OFF cone BCs (WT n = 13, null n = 6, P = 0.7). Error bars in (D) represent propagated s.e.m.s of the average null to WT values. Adapted from Eggers et al. (2007), *Journal of Physiology*.
BC output by acting through GABA_ARs and GABA_CRs, respectively. Glycinergic inhibition to BCs is mediated by amacrine cells that are functionally and morphologically distinct from GABAergic amacrine cells. GlycineR-mediated L-IPSCs have relatively fast onset kinetics and moderately slow offset kinetics, suggesting that inhibition by these receptors will affect both the early and the late phases of BC output. Consistent with these properties, we found that blocking glycineRs with strychnine both increased the peak amplitude and prolonged the decay of L-EPSCs.

ON cone and OFF cone BCs receive strong and weak GABA_C-mediated inhibition, respectively. These observations suggest that the output of ON and OFF BCs is differentially influenced by GABA_C-mediated L-IPSCs. To determine whether this was the case, we assayed ON cone and OFF cone BC outputs onto ganglion cells in normal mice and in mice that lacked GABA_CRs (Sagdullaev et al., 2006). We recorded excitatory responses in ON and OFF ganglion cells to assay each form of BC output. In mice lacking GABA_CRs, excitatory drive increased in ON ganglion cells but not OFF ganglion cells, indicating that GABA_CRs normally limited the output of ON cone BCs but not OFF cone BCs. These results suggest that the differences we see in L-IPSCs between BC pathways are important for shaping the output.

Fig. 7. The decay of combined glycinergic and GABAergic L-IPSCs varies with WT BC class. (A–C) Representative total L-IPSCs (glycinergic + GABAergic) from rod (A), ON cone (B), and OFF cone (C) BCs evoked by a light stimulus (30-ms light stimulus, dark gray bar). (D) The histogram plots the average decay (D_37) from each BC class. L-IPSCs from rod BCs were significantly slower than ON cone BCs (rod = 43, ON cone n = 17, ANOVA P < 0.001, rod vs. ON Scheffe post hoc P < 0.001, *) but similar to OFF cone BCs (n = 13, P = 0.86). The decay of L-IPSCs from OFF cone BCs also was significantly slower than ON cone BCs (P < 0.05, **). Adapted from Eggers et al. (2007), Journal of Physiology.
of BCs and that unique combinations of GABACR, GABAAR, and glycineR inputs can create distinct types of BC inhibition.

Serial inhibition modulates spatial signaling to BCs

As noted above, BCs receive direct presynaptic inhibition from GABAergic amacrine cells onto GABAAR and GABACRs. In addition, there are also serial inhibitory signals between GABAergic amacrine cells that are mediated by GABAAR (Zhang et al., 1997; Roska et al., 1998; Eggers & Lukasiewicz, 2006). Serial inhibition limits the direct GABAergic inhibition to BCs (Fig. 1). Serial inhibition has been shown to affect the kinetics of transmission between BCs and ganglion cells (Zhang et al., 1997; Roska et al., 1998). However, the role of serial inhibitory circuits in spatial processing is less well understood. Because direct and serial inhibitory inputs are spatially narrow and extensive, respectively, different sizes of light stimuli preferentially activate them. Narrow-field light stimuli may preferentially activate direct inhibition, while wide-field light stimuli that activate the more extensive amacrine cell network may preferentially activate serial inhibition.

To determine the effects of serial inhibition on the direct inhibitory inputs to BCs, we recorded L-IPSCs in response to narrow-field and wide-field light stimuli under conditions when serial inhibition was either present or absent (Fig. 9) (Eggers & Lukasiewicz, 2010). Serial inhibition was eliminated by adding bicuculline to the bath to block GABAAR serial inhibitory connections between GABAergic amacrine cells. The direct inhibitory input to BCs was assayed by recording the GABACR-mediated component of the L-IPSCs. We found that wide-field L-IPSCs increased after GABAARs were blocked, suggesting that serial inhibitory connections between amacrine cells limit wide-field light-activated L-IPSCs. If GABAARs were present only on BCs, then the wide-field L-IPSCs, attributed to direct inhibition, would decrease because a component of the direct input was blocked. This was never observed with wide-field light stimuli, indicating that the net effect of bicuculline was the blockade of serial inhibition. However, when we used narrow-field light stimuli, L-IPSCs decreased when GABAARs were blocked, suggesting that narrow-field light only activated direct connections. These findings suggest that serial connections are spatially regulated; these connections are activated by wide-field stimulation but not narrow-field stimulation, which fails to activate the amacrine cell network.

To determine how serial connections affect the total spatial response properties of L-IPSCs in BCs, we measured the area–response function elicited by light stimuli of increasing sizes (25–825 μm). In all BC types, the response increased as a function of light size up to an intermediate-sized light stimulus, and then the response decreased as the area further increased. These findings show that the L-IPSCs were suppressed by large area spots, which activate serial inhibitory circuitry. However, when bicuculline...
blocked serial connections, the L-IPSCs were not suppressed by large spot stimuli and, unlike the control conditions, the area–response functions increased as a function of light size. These findings suggest that the spatial tuning seen in control conditions is attributable to serial inhibition limiting BC L-IPSCs. When serial inhibition is active, larger spot areas activate GABAAR-mediated serial connections between amacrine cells that result in spatial tuning of direct inhibition to BCs. These results show that the spatial modulation of inhibition by serial connections is another level of modulation of BC inhibition.

Future directions

Our studies show that BC inhibition is both diverse and complex (Fig. 10). Inhibition varies between different BC pathways. This variation is largely attributable to differing proportions of GABAAR-,
GABA_A-Rs, and glycineRs-mediated inhibitory inputs that mediate L-IPSCs with distinct time courses. These distinct inhibitory inputs interact to shape the timing of BC inhibition, which, in turn, modulates the BC output, glutamate release. BC inhibition is also spatially tuned by serial inhibitory connections between ACs. While these studies provide new insights into BC inhibition, several open questions remain open.

Our data suggest that the distinct kinetics of inhibition mediated by varying contributions of GABA_A-Rs across BC class may be well matched to the excitatory inputs to BC classes that are shaped by differing rod and cone kinetics and distinct glutamate receptors. However, this idea has never been tested directly by correlating the kinetics of both excitatory and inhibitory inputs in distinct BC types. Although we have divided BCs into three main classes, there are many subtypes of ON and OFF BCs (Ghosh et al., 2004). Agonist application studies have suggested that the proportions of GABA and glycine receptors may vary between these subtypes of BCs, as well as between the major classes (Euler & Wäsle, 1998; Ivanova et al., 2006). Previous studies have also suggested differences between subtypes of OFF BCs based on their distinct glutamate receptor complement (Devries & Schwartz, 1999; DeVries, 2000; Li & DeVries, 2004). Experiments that look specifically at the light-evoked excitatory and inhibitory inputs in the subtypes of BCs are needed to determine if the idea of similarly shaped inhibitory and excitatory inputs is correct. This could serve several functions in the retina. First, if the goal of inhibition in BCs is to shape glutamate output, then the inhibition has to be temporally well matched to the excitation to be effective. However, it is possible that inhibition also has other functions, like enforcing a nonresponsive period after a stimulus. In this case, the ideal inhibition might last for much longer time than the excitatory inputs.

We have also shown that serial inhibitory connections between amacrine cells can shape the spatial activation of inhibition to BCs. Determining the spatial properties of inhibition of BCs is important for establishing how inhibitory inputs to BCs contribute to the inhibitory surround of ganglion cells. In addition to serial connections shaping of BC inhibition, differences between GABAergic and glycinergic amacrine cells may also contribute to the spatial sensitivity of BC inhibition. The wide-field GABAergic cells suggest that GABAergic inhibition has a larger spatial extent, while narrow-field glycinergic cells suggest that glycinergic inhibition has a smaller spatial extent. However, serial inhibitory connections between GABAergic amacrine cells and electrical coupling between some glycinergic amacrine cells suggest that the spatial extent of GABA- and glycine-mediated inhibition is more complex. Therefore it is yet to be determined if these two inhibitory inputs specifically mediate distinct spatial sensitivities of BC inhibition.

Fig. 10. GABA_A-R, GABA_B-R, and glycineRs control distinct properties of glutamate release from BCs. (A) GABA_A-R and glycineRs mediated light-evoked currents with a fast rise and decay, which primarily limit the peak of glutamate release from BCs. (B) GABA_B-Rs mediated light-evoked inhibition with slow decay, which primarily limits prolonged glutamate release from BCs. The time course of light-evoked BC inhibition is controlled both by biophysical receptor properties as well as prolonged GABA and glycine release from amacrine cells. (C) The magnitude of inhibition varies between BC pathways. Rod BCs receive large GABA_B-mediated inhibition and less GABA_A-R and glycineR inhibition. ON cone BCs receive moderate amounts of GABA_A-R and GABA_B-R inhibition with no glycinergic inhibition. OFF cone BCs receive little GABA_B-R inhibition, some GABA_A-R inhibition, and are dominated by glycinergic inhibition. The magnitude of GABAergic inhibition is also controlled by GABAR-mediated synapses between GABAergic amacrine cells that serve to limit inhibition to BCs.

References

