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Resting-state Modulation of Alpha Rhythms by
Interference with Angular Gyrus Activity

Paolo Capotosto1, Claudio Babiloni2,3, Gian Luca Romani1,
and Maurizio Corbetta1,4

Abstract

■ The default mode network is active during restful wakeful-
ness and suppressed during goal-driven behavior. We hypothe-
size that inhibitory interference with spontaneous ongoing,
that is, not task-driven, activity in the angular gyrus (AG), one
of the core regions of the default mode network, will enhance
the dominant idling EEG alpha rhythms observed in the rest-
ing state. Fifteen right-handed healthy adult volunteers under-
went to this study. Compared with sham stimulation, magnetic

stimulation (1 Hz for 1 min) over both left and right AG, but
not over FEF or intraparietal sulcus, core regions of the dorsal
attention network, enhanced the dominant alpha power den-
sity (8–10 Hz) in occipitoparietal cortex. Furthermore, right
AG-rTMS enhanced intrahemispheric alpha coherence (8–10 Hz).
These results suggest that AG plays a causal role in the modula-
tion of dominant low-frequency alpha rhythms in the resting-
state condition. ■

INTRODUCTION

Alpha rhythms (about 8–12 Hz), first described by Berger
(1929), are the most prominent feature in the EEG of a
person in a state of quiet alert wakefulness (herein “rest-
ing state”). They have predominant occipitoparietal topog-
raphy and are thought to correlate with cortical arousal
and attenuated information processing. Alpha rhythms
are possibly related to cortical inhibition induced by the
synchronization of thalamic and cortical granular and pyra-
midal neurons (Bollimunta, Mo, Schroeder, & Ding, 2011;
Pfurtscheller & Lopes da Silva, 1999; Steriade, Datta, Paré,
Oakson, & Curró Dossi, 1990).
The resting brain, as seen through the lens of fMRI,

is characterized by low-frequency (about 0.1 Hz) fluctua-
tions of the blood oxygenation signal (BOLD) that are tem-
porally correlated across large-scale distributed networks
resembling those activated during task performance (Deco
& Corbetta, 2011; Smith et al., 2009; Fox & Raichle, 2007;
Biswal, DeYoe, & Hyde, 1996). One of these networks,
the default mode network (DMN), originally identified as
a set of parietal and medial frontotemporal regions consis-
tently suppressed during goal-driven behavior (Shulman
et al., 1997), was noted to have tonically increased meta-
bolic activity (Raichle et al., 2001), especially glycolythic
consumption (Vaishnavi et al., 2010). Although many and
disparate cognitive functions, including self-referential
autobiographical processing (Dastjerdi et al., 2011), mem-

ory retrieval (Sestieri, Corbetta, Romani, & Shulman, 2011;
Sestieri, Shulman, & Corbetta, 2010), simulation of fu-
ture events (Buckner, Andrews-Hanna, & Schacter, 2008),
and suppression of irrelevant sensory events (Chadick &
Gazzaley, 2011; Lewis, Baldassarre, Committeri, Romani,
& Corbetta, 2009), have been proposed for the DMN, its
functional importance during quiet resting wakefulness
is undisputed. Also, notably, the DMN shows a competi-
tive relationship both at rest (Fox et al., 2005) and during
attention and memory tasks (Sestieri et al., 2010) with
the so-called dorsal attention network (DAN; Corbetta
& Shulman, 2002, 2011), a set of frontoparietal regions
involved in the selection of behaviorally relevant sensory-
motor information. For instance, during visual selection
tasks, the DAN is strongly recruited while the DMN is sup-
pressed, whereas during retrieval of memory information,
the reverse occurs (Sestieri et al., 2010).

The relationship between activity in the DMN and
alpha band power in the awake restful state has been in-
vestigated with conflicting results by recording simulta-
neously EEG rhythms and fMRI BOLD signals. Although
one study found a positive correlation between fluctua-
tions of the BOLD signals in the DMN at rest and alpha
power fluctuations (Mantini, Perrucci, Del Gratta, Romani,
& Corbetta, 2007), others reported either weak or no
correlation (Knyazev, Slobodskoj-Plusnin, Bocharov, &
Pylkova, 2011; Wu, Eichele, & Calhoun, 2010; Gonçalves
et al., 2006; Laufs et al., 2003). In contrast, more consis-
tent and robust negative correlations have been reported
between BOLD signal fluctuations in the DAN and alpha
power (Sadaghiani et al., 2010; Mantini et al., 2007; Laufs
et al., 2003) and BOLD signal fluctuations in the DMN
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and beta power (Mantini et al., 2007; Laufs et al., 2003).
This brief review indicates that the relationship between
BOLD signal fluctuations in specific cortical networks and
EEG rhythms is complex.

Correlations between fMRI BOLD and EEG signals are
quite interesting but provide only indirect evidence for
a causal relationship between these two sets of signals.
More direct evidence about the generation or modula-
tion of cortical rhythms can be obtained by examining
the effects of excitatory or inhibitory repetitive TMS
(rTMS) to a given cortical region onto the ongoing EEG
rhythms.

We have recently used this method to study the causal
role of dorsal attention regions, intraparietal sulcus (IPS),
and FEF, in the control of anticipatory (pretarget) occipito-
parietal alpha desynchronization, a putative correlate of
top–down attention control (Capotosto, Babiloni, Romani,
& Corbetta, 2009, 2012). Interference with IPS and FEF
preparatory activity following a spatial cue induced an ab-
normal enhancement of alpha rhythms in the occipital-
parietal region contralateral to the expected visual stimuli,
consistent with a disruption of top–down modulation
(Capotosto, Babiloni, et al., 2012; Capotosto et al., 2009).

Here, we test the role of a core region of the DMN, the
angular gyrus (AG), in the modulation of alpha rhythms
under the assumption that this region is spontaneously
active during rest (Raichle et al., 2001) and that mediates
ongoing internally directed cognitive processes (Sestieri
et al., 2010). Accordingly, suppression of AG by rTMS at
rest should produce, as in the case of DAN regions during
attention, an abnormal increase in alpha power in pos-
terior cortical regions where alpha rhythms are typically
dominant in the resting-state condition. Furthermore, the
propagation of the inhibitory enhancement of alpha
rhythms are expected to be preponderant in the hemi-
sphere ipsilateral to TMS interference, because of the
well-known, more efficient functional connectivity within
any hemisphere. To ascertain the location and frequency
specificity of these effects and in relation to the inverse re-
lationship between alpha and beta rhythms and BOLD
fluctuations, respectively, in the DAN (Sadaghiani et al.,
2010; Mantini et al., 2007; Laufs et al., 2003) and DMN
(Mantini et al., 2007; Laufs et al., 2003), core nodes of
the DAN (IPS, FEF) were also tested, and the frequency
analysis was extended to both alpha and beta bands.

METHODS

Participants

Fifteen right-handed (Edinburgh Inventory) healthy adult
volunteers (age range = 21–27 years old, six women) with
no previous psychiatric or neurological history partici-
pated in the experiment. Their vision was normal or
corrected-to-normal. All experiments were conducted
with the understanding and written consent of each par-
ticipant according to the Code of Ethics of the World

Medical Association and the standards established by the
University of Chieti Institutional Review Board and Ethics
Committee.

Experimental Task

All measurements were carried out at the Institute of
Technology and Advanced Bioimaging by the first author
(P. C.). Participants were seated in a comfortable reclin-
ing armchair. They maintained fixation on a small white
cross stimulus (subtending 0.7° of visual angle) displayed
on a black background in the center of a computer screen
positioned at a distance of 80 cm.

Procedures for rTMS and Identification of Target
Scalp Regions

rTMS was used to interfere with neural activity. The stimu-
lation was delivered through a focal, figure-eight coil (outer
diameter of each wing 7 cm) connected with a standard
Mag-Stim Rapid 2 stimulator (Carmarthenshire, UK; maxi-
mum output = 2.2 T). A mechanical arm maintained the
handle of the coil angled at about 45° away from the mid-
line. The exact position was adjusted based on the results
of the on-line neuronavigation such that the center of the
coil wing was oriented perpendicularly to the point to be
stimulated with the maximum power. The center of the
coil wings was positioned at a position on the scalp corre-
sponding to each cortical ROI. Individual resting excitability
threshold for right motor cortex stimulation was prelimi-
narily determined by following standardized procedures
(Rossini et al., 1994). The rTMS train was delivered based
on the following parameters: 1-min duration, 1-Hz fre-
quency, and intensity set at 100% of the individual motor
threshold. These parameters are consistent with published
safety guidelines for TMS stimulation (Rossi, Hallett,
Rossini, & Pascual-Leone, 2009; Anderson et al., 2006;
Machii, Cohen, Ramos-Estebanez, & Pascual-Leone, 2006;
Wassermann, 1998). Of note, 1-Hz rTMS for 1 min is thought
to inhibit the target cortical area for 1or 2minpoststimulation.
The experimental design included seven conditions,

applied in different blocks, and randomized across par-
ticipants. Each participant performed all the conditions.
Two consecutive TMS sessions were separated by an in-
terval of about 5 min. In the Sham condition, the stim-
ulation was delivered at the scalp vertex with the position
of the coil reversed with respect to the scalp surface,
such that the magnetic flux was dispersed in the air. In
the six active conditions, the center of the coil wings was
positioned at a position on the scalp corresponding to
different cortical regions obtained from a meta-analysis
of spatial attention studies (He et al., 2007; Fox et al.,
2005). Four of these regions corresponded to core
regions of the DAN: right pIPS (x, y, z: 23, −65, 48), left
pIPS (x, y, z: −25, −63, 47), right FEF (x, y, z: 32, −9,
48), left FEF (x, y, z: 26, −9, 48). The two other regions
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are hubs of the DMN: right AG (x, y, z: 53, −67, 46), left
AG (x, y, z: −47, −67, 36). The positioning of the TMS
coil onto the participantsʼ scalp was based on a procedure
developed as part of the SofTaxic software that allows
to reconstruct an individualized head model based on a
set of digitized skull landmarks (nasion, inion, and two
preauricular points) and on about 40 scalp points entered
with a Fastrak Polhemus digitizer system (Polhemus).
Such model is then warped to a standard mean MRI-based
head template (152 participants, SPM tool version 2)
through affine linear transformation. The present procedure
has been successful in previous rTMS studies (Sestieri,
Capotosto, Tosoni, Romani, & Corbetta, 2013; Capotosto,
Babiloni, et al., 2012; Capotosto, Corbetta, Romani, &
Babiloni, 2012; Candidi, Stienen, Aglioti, & de Gelder,
2011; Capotosto et al., 2009; Harris, Benito, Ruzzoli, &
Miniussi, 2008; Urgesi, Calvo-Merino, Haggard, & Aglioti,
2007; Babiloni, Vecchio, Miriello, Romani, & Rossini, 2006;
Urgesi, Berlucchi, & Aglioti, 2004). Of note, whereas in our
pilot studies we observed that rTMS over a ventral region
(i.e., right TPJ, mean coordinates x = 52, z = −49, and
y = 17) caused scalp and face muscular twitches and par-
ticipantsʼ discomfort, in this study none of the participants
declared any kind of discomfort (i.e., pain) during each
experimental conditions.

Electroencephalography Recordings

EEG data were recorded (BrainAmp, Gilching, Germany;
bandpass, 0.05–100Hz; sampling rate, 256Hz) from27 EEG
electrodes placed according to an augmented 10–20 system
and mounted on an elastic cap resistant to magnetic
pulses. Electrode impedance was below 5 K. The artifact
of rTMS on the EEG activity lasted about 10 msec and did
not generate any alteration in the power spectrum. Two
electrooculographic channels were used to monitor eye
movement and blinking. The acquisition time for all con-
ditions was set from −1.5 to +0 min before rTMS train
onset and from +1 to +3 min after the rTMS train onset.
EEG data were segmented off-line in windows of 2 sec.
The intensive experimental design (six active TMS condi-
tion and one sham) imposed this limitation in the time
extension of the rTMS and of the poststimulation peri-
ods to minimize fatigue and drops of vigilance. The
EEG single trials contaminated by eye movement, blink-
ing, or involuntary motor acts (e.g., mouth, head, trunk,
or arm movements) were rejected off-line. To remove the
effects of the electric reference, EEG single trials were
rereferenced by the common average reference. The
common average procedure includes the averaging of
amplitude values at all electrodes and the subtraction of
the mean value from the amplitude values at each single
electrode.
The EEG data analysis was performed in the fol-

lowing periods of interest: (i) pre-TMS (1.5 min before
rTMS train and off-line segmented in windows of 2 sec),
(ii) post-TMS 1 (the first minute after rTMS train

and off-line segmented in windows of 2 sec), and (iii)
post-TMS 2 (the second minute after rTMS train and
off-line segmented in windows of 2 sec). The mean
number of trials per EEG segments of 2 sec was 42 (±3)
for the pre-TMS period and 86 (±4) for the post-TMS
period. Of note, EEG data sets of one participant were
excluded because the profile of EEG power density
spectra was clearly abnormal/artifactual in several TMS
conditions.

Analysis of EEG Power

We measured the effect of rTMS at different cortical
loci on the power of alpha and beta rhythms in parieto-
occipital cortex. The EEG power, in a matrix of scalp elec-
trodes, reflects the spatial and temporal summation of
synchronous activity of cortical neurons whose synaptic
currents are associated to changes of the voltage at those
electrodes. For the EEG spectral analysis, two subbands of
alpha rhythms were used, namely low- and high-frequency
alpha. These subbands were determined in accordance
to a standard procedure based on the peak of individual
alpha frequency (IAF; Klimesch, Doppelmayr, Russegger,
Pachinger, & Schwaiger, 1998). With respect to the IAF,
these frequency bands were defined as follows: (i) low-
alpha, IAF − 2 Hz to IAF, and (ii) high-alpha, IAF to IAF +
2 Hz. Moreover, with respect to the individual beta fre-
quency (IBF) peak, for the EEG spectral analysis, we also
used two subbands of beta rhythms, namely, low- and
high-frequency beta, defined as follows: (i) low-beta,
IBF − 2 Hz to IBF, and (ii) high-beta, IBF to IBF +
2 Hz. Of note, mean IAF peak across participants was
10.1 Hz (±0.2 SE), and mean IBF peak across participants
was 18.9 Hz (±0.5 SE). No statistically significant differ-
ence was observed across the rTMS conditions ( p > .05)
for both alpha and beta peaks.

Estimation of the Functional Connectivity:
Between-electrode Coherence Analysis

The effect of rTMS at different cortical loci was also tested
on the coherence of alpha and beta rhythms at electrode
pairs as an estimation of the functional coupling of EEG
rhythms at different cortical sites. Spectral coherence
is a normalized measure of the coupling between two
(EEG) signals at any given frequency (Pfurtscheller &
Andrew, 1999; Rappelsberger & Petsche, 1988). The co-
herence values were calculated for each frequency bin by
the following equation:

Cohxyð€eÞ ¼ Rxyð€eÞj j2 ¼ fxyð€eÞj j2= fxxð€eÞfyyð€eÞ½ �

This equation is the extension of the Pearsonʼs correla-
tion coefficient to complex number pairs. In this equation,
f denotes the spectral estimate of two EEG signals x and
y for a given frequency bin (ë). The numerator contains
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the cross-spectrum for x and y (fxy), whereas the denomina-
tor contains the respective autospectra for x (fxx) and y (fyy).
For each frequency bin (ë), the coherence value (Cohxy) is
obtained by squaring the magnitude of the complex cor-
relation coefficient R. This procedure returns a real number
between 0 (no coherence) and 1 (max coherence).

For the evaluation of the interhemispheric spectral
coherence, the electrode pairs were F3–F4 (frontal
areas), C3–C4 (central areas), P7–P8 (parietal areas), O1–
O2 (occipital areas), and T7–T8 (temporal areas). For the
evaluation of the intrahemispheric spectral coherence,
the electrode pairs were F3–P3 (frontoparietal), F3–
O1 (fronto-occipital), and F3–T3 (frontotemporal) for
the left hemisphere and F4–P4 (frontoparietal), F4–
O2 (fronto-occipital), and F4–T4 (frontotemporal) for
the right hemisphere. The coherence of the EEG data
was computed in the baseline pre-TMS period and in
the poststimulus period (namely, Post-TMS 1 and Post-
TMS 2) for the mentioned seven conditions (i.e., Sham,
Left-AG, Right-AG, Left-IPS, Right-IPS, Left-FEF, and
Right-FEF).

Of note, EEG coherence is not mathematically inde-
pendent of power of the EEG signal at electrode sites, as
they result from the computation of fast Fourier trans-
form. However, the two indexes do not provide redundant
information. For example, the alpha power in a matrix
of scalp electrodes reflects the spatial and temporal sum-
mation of synchronous activity of cortical neurons at
about 10 Hz whose synaptic currents are associated to
changes of the voltage at those electrodes. Alpha coher-
ence among pairs of those electrodes is related to the
linear interdependence of the alpha rhythms among spe-
cific pairs of electrodes. More analytically, consider the
case in which the electrodes A, B, and C of the matrix
have the same amount of alpha power. The coherence in
alpha band between the electrode A and the two elec-
trodes B and C can be markedly different as a function of
relative distance and underlying structural brain connec-
tivity. Keeping in mind these considerations, one cannot
predict the amplitude of the EEG coherence between
electrode pairs only on the basis of EEG power at the
corresponding electrodes.

Statistical Analysis

Statistical comparisons were performed by repeated-
measures ANOVAs. We used Mauchleyʼs test to evaluate
the sphericity assumption of the ANOVA, a Greenhouse–
Geisser procedure for the correction of the degrees
of freedom, and Duncan tests for post hoc comparisons
( p < .05).

The ANOVAs aimed at unveiling the most effective sites
of rTMS stimulation and the topographical localization of
the most important effects on alpha rhythms. Because
of the relatively small population size, separate simple
ANOVA designs were used for alpha subbands (low and
high frequency) and TMS sites. For the ANOVAs using

EEG Power Density as a dependent variable, Time (Pre-
TMS, Post-TMS 1, Post-TMS 2) and Electrode (F3, F4, C3,
C4, T7, T8, P7, P8, O1, O2) served as within-subject
factors. For the ANOVAs using spectral coherence as a
dependent variable, Topology (Interhemispheric, Right
Intrahemispheric, and Left Intrahemispheric) and Time
(Pre-TMS, Post-TMS 1, Post-TMS 2) served as within-
subject factors. The interhemispheric coherence was de-
fined as the mean of the coherence values across frontal
(F3–F4), central (C3–C4), parietal (P7–P8), temporal (T7–
T8), and occipital (O1–O2) electrode pairs. For the left
intrahemispheric coherence, the coherence values were
averaged across frontoparietal (F3–P3), fronto-occipital
(F3–O1), and frontotemporal (F3–T3). For the right intra-
hemispheric coherence, the coherence values were
averaged across frontoparietal (F4–P4), fronto-occipital
(F4–O2), and frontotemporal (F4–T4).
Considering the amount of factors (i.e., Time and Elec-

trode), relative levels and population size, an ANOVA
design including all TMS sites would have been inappro-
priate as a main statistical analysis. Nevertheless, we per-
formed an exploratory analysis to directly compare the
effects of the rTMS over DMN and DAN networks on pos-
terior resting-state EEG rhythms. Specifically, we com-
puted two exploratory ANOVAs, one using EEG power
density as a dependent variable and the other using spec-
tral coherence. In the first exploratory ANOVA, we averaged
the alpha power values across selected parieto-occipital
electrodes (i.e., P7, P8, O1, O2) and the rTMS conditions
relative to a single cortical network (i.e., DMN, DAN). For
the DMN, the alpha power density for the left and right
AG was averaged. For the DAN, the alpha power density
for bilateral IPS and FEF was averaged. On the whole, the
first exploratory ANOVA included Network (DMN and
DAN; independent variable) and Time (Pre-TMS, Post-
TMS 1, Post-TMS 2) as within-subject factors. In the second
exploratory ANOVA, we averaged the alpha coherence
across all electrode pairs and the rTMS conditions relative
to a single cortical network as well. For the DMN, the alpha
coherence for the left and right AG was averaged. For the
DAN, the alpha coherence for bilateral IPS and FEF was
averaged. On the whole, the second exploratory ANOVA
included Network (DMN and DAN; independent variable),
Hemisphere (ipsilateral or contralateral to the stimulation),
and Time (Pre-TMS, Post-TMS 1, Post-TMS 2) as within-
subject factors.
To test the frequency-specific effect of rTMS on the

alpha rhythms, we performed an analogue analysis on
beta power and coherence. Separate ANOVAs were de-
signed for beta subbands (low- and high-frequency)
and TMS sites. For the ANOVAs using EEG Beta Band
Power Density as a dependent variable, Time (Pre-TMS,
Post-TMS 1, Post-TMS 2) and Electrode (F3, F4, C3, C4,
T7, T8, P7, P8, O1, O2) served as within-subject factors.
For the ANOVAs using spectral beta coherence as a
dependent variable, Topology (Interhemispheric, Right
Intrahemispheric, and Left Intrahemispheric) and Time
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(Pre-TMS, Post-TMS 1, Post-TMS 2) served as within-subject
factors. Furthermore, to directly compare the effect of
the rTMS over DMN and DAN, we used ANOVAs for the
beta band (averaging low and high beta) in line with those
used for the analysis of the alpha band.
To rule out effects of rTMS on baseline alpha power

(pre-TMS period), two ANOVAs used Condition (Sham,
Right-AG, Left-AG, Right-IPS, Left-IPS, Right-FEF, Left-FEF)
and Electrode (F3, F4, C3, C4, T7, T8, P7, P8, O1, O2) as
within-subject factors. The two ANOVAs were focused on
low- and high-frequency alpha subbands, respectively.

RESULTS

Alpha Power Density

Figure 1A shows the topographic maps of low- and high-
frequency alpha power density in the Sham condition dur-

ing the three periods of interest (Pre-TMS, Post-TMS 1,
Post-TMS 2). Figure 1B shows the mean alpha power
density, separately for low and high alpha, in different elec-
trodes and periods of interest. Resting-state alpha power
density was higher in amplitude over the parieto-occipital
regions in all periods of interest, and Sham stimulation
did not produce any significant modulation ( p > .05).
This analysis rules out any consistent effect of Sham or
other experimental procedures on the resting-state alpha
rhythms.

Figure 2 shows the low-frequency alpha power density
for Right-AG, Left-AG, Right-IPS, Left-IPS, Right-FEF, and
Left-FEF conditions during the three periods of interest
(Pre-TMS, Post-TMS 1, Post-TMS 2), respectively. In all
conditions, the resting-state alpha power density was
higher in amplitude at bilateral parietal and occipital
electrodes. At these electrodes, right AG stimulation
induced a progressive increase of alpha power in the

Figure 1. Topography of
low- and high-frequency
alpha power density in
the Sham condition. (Top)
Topographic maps of low- and
high-frequency alpha power
density during the three periods
of interest (Pre-TMS, Post-TMS 1,
Post-TMS 2). (Bottom) Group
means (±SE ) of the low- and
high-frequency alpha power
density in the Sham condition.
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Figure 2. Alpha power density: Group means (±SE ) of the low-frequency alpha power density for all active magnetic stimulation sites (i.e., Right-AG,
Left-AG, Right-IPS, Left-IPS, Right-FEF, Left-FEF) and periods of interest (pre-TMS, post-TMS 1, post-TMS 2). Duncan post hoc test: Statistically
significant differences between pre- and post-TMS periods are indicated by one ( p < .01) or two ( p < .0001) asterisks.
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first (Post-TMS 1) and second minute (Post-TMS 2) after
stimulation. This impression was confirmed by a statistical
analysis showing a significant interaction between Time
and Electrode factors for right AG, F(18, 234) = 1.85,
p < .02. Post hoc tests indicated an increment of low-
frequency alpha power density at occipital-parietal elec-
trodes during the post-TMS 1 (P7 p < .05; O1 p < .03)
and post-TMS 2 periods (P7 p < .0001; P8 p < .05; O1
p < .0001; O2 p < .01; Figure 2). A similar effect was also
observed for left AG, F(18, 234) = 1.64, p < .05, stimula-
tion condition. Post hoc tests indicated an increment of
low-frequency alpha power density at occipital-parietal
electrodes during the post-TMS 1 (P7 p < .01; P8 p <
.0001; O1 p < .01; O2 p < .02) and post-TMS 2 periods
(P7 p < .02; O1 p < .04; O2 p < .01; Figure 2). These
increments were not observed at the high-frequency
alpha subband. These findings were found to be specific
for the stimulation of DMN. Statistical analysis showed
no significant effect of rTMS over Right-IPS, Left-IPS,
Right-FEF, and Left-FEF (i.e., DAN) on alpha power density
( p > .05).
Finally, a control analysis for each condition was per-

formed to test the main effect Time on the low-frequency
alpha power density. With respect to the ANOVAs of the
main analysis, the same within-subject factors were used.
As a difference, only the parieto-occipital electrodes of
interest (i.e., P7, P8, O1, O2) were used. We observed that
only the inhibitory rTMS over right AG produced a main
effect Time, F(2, 26) = 3.62, p < .04, whereas the rTMS
over left AG produced a marginal statistical effect, F(2,
26) = 3.10, p = .06, thus globally confirming the results
of the main analysis.

Alpha Spectral Coherence

In line with the results of alpha power density, Sham
stimulation produced no statistically significant effect
on alpha coherence ( p > .05).
Figure 3 shows the low-frequency mean alpha coher-

ence for Right-AG, Left-AG, Right-IPS, Left-IPS, Right-FEF,
and Left-FEF conditions during the three periods of inter-
est (Pre-TMS, Post-TMS 1, Post-TMS 2), respectively. The
alpha coherence values were averaged across electrode
pairs to index interhemispheric, left intrahemispheric,
and right intrahemispheric coherence (see Methods). In
all conditions mean coherence was higher in inter- than
intrahemispherical indexes regardless of rTMS conditions
( p < .001). For these indexes, right AG stimulation in-
duced a progressive increase of alpha coherence along
Post-TMS 1 and Post-TMS 2 periods. Again, statistical analy-
sis showed that the only remarkable effect of the rTMS on
alpha coherence was observed for the magnetic stimula-
tion of DMN but not DAN. Only for the stimulation of
right AG, there were statistically significant effects. Spe-
cifically, there was an interaction between Topology and
Time factors, F(4, 52) = 3.05, p < .03, indicating the
increase of the right intrahemispheric low-frequency

alpha coherence during post-TMS 1 and post-TMS 2
( p < .0001). A mirror effect of left AG stimulation on
the left intrahemispheric low-frequency alpha coherence
did not reach the statistical significance ( p > .05). These
increments were not observed in the high-frequency
alpha subband.

Finally, control ANOVAs considering separately each
Topology of the coherence (i.e., right hemisphere, left
hemisphere) were computed to the main effect Time.
The results of the main analysis were confirmed. In par-
ticular, an ANOVA using right intrahemispheric coherence
(i.e., ipsilateral to the stimulation) as a dependent variable
and Time (Pre-TMS, Post-TMS 1, Post-TMS 2) as within-
subject factor showed a main effect of Time for the rTMS
over right AG, F(2, 26) = 3.57, p = .04. Post hoc test in-
dicated an increase of the right intrahemispheric low-
frequency alpha coherence during post-TMS ( p < .02).
The counterpart using left intrahemispheric coherence
(i.e., ipsilateral to the stimulation) as a dependent variable
only provided statistically marginal results, F(2, 26) = 2.69,
p = .08.

DMN versus DAN

To compare the effect of rTMS over the two networks on
the low-frequency alpha power density, we performed
an ANOVA with Network (DMN, DAN; after averaging over
nodes), Hemisphere (Left, Right), and Time (Pre-TMS,
Post-TMS 1, Post-TMS 2). Figure 4A shows the low-
frequency mean alpha power density for DMN (after aver-
aging Right-AG and Left-AG) and DAN (after averaging
Right-IPS, Left-IPS, Right-FEF, and Left-FEF) during the
three periods of interest (Pre-TMS, Post-TMS 1, Post-
TMS 2), respectively. Although the interaction between
Networks and Time did not reach the statistical signifi-
cance ( p = .085), rTMS over DMN induced a progressive
increase of the alpha power in the first (Post-TMS 1) and
in the second minute (Post-TMS 2) after magnetic stimula-
tion. This effect was not observed for rTMS over DAN.

Figure 4B shows the low-frequency mean alpha coher-
ence for DMN (after averaging Right-AG and Left-AG) and
DAN (after averaging Right-IPS, Left-IPS, Right-FEF, and
Left-FEF) during the three periods of interest (Pre-TMS,
Post-TMS 1, Post-TMS 2), respectively, separated by Hemi-
sphere (ipsilateral or contralateral to the stimulation).
Statistical analysis showed that the only significant effect
of the rTMS on alpha coherence was observed for the
magnetic stimulation of DMN (AG) but not DAN. Specifi-
cally, there was an interaction between Network and
Time, F(2, 26) = 3.21, p = .05, and an interaction be-
tween Network, Hemisphere, and Time factors, F(2,
26) = 4.58, p = .02, indicating that DMN (AG) magnetic
stimulation induced a progressive increase of the ipsi-
lateral intrahemispheric low-frequency alpha coherence
during post-TMS 1 and post-TMS 2 ( p < .0001). A similar
trend was also observed stimulating DMN for the contra-
lateral intrahemispheric low-frequency alpha coherence.
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Of note, no statistically significant results were observed for
both power and coherence in the high frequency
alpha subband.

Beta Power Density and Spectral Coherence

For both low- and high-beta power and coherence, no
statistically significant interaction was observed for the
interference of rTMS ( p > .05). The same lack of statis-
tical effects ( p > .05) was observed when DMN and DAN
were compared in the beta band (Figure 5). There was
only a trend similar to that observed in the alpha band,
especially for the EEG coherence ipsilateral to the stimu-
lation site (e.g., right AG). These results suggest a more

strict causal relationship between AG and the modulation
of alpha compared with beta rhythms in the resting-state
condition.

Control Analyses

Control statistical analysis showed no significant difference
of the alpha power density in the pre-TMS period (base-
line) among Sham, Right-AG, Left-AG, Right-IPS, Left-IPS,
Right-FEF, and Left-FEF conditions ( p > .05). This was
true for both low- and high-frequency alpha subbands.
These finding confirmed that the main results were not
because of different baseline alpha power density among
the conditions of magnetic stimulation.

Figure 3. Alpha coherence: Group means (±SE ) of the low-frequency alpha inter- and intrahemispheric coherence for all active magnetic
stimulation sites (i.e., Right-AG, Left-AG, Right-IPS, Left-IPS, Right-FEF, Left-FEF) and periods of interest (pre-TMS, post-TMS 1, post-TMS 2).
Duncan post hoc test: Statistically significant differences between pre- and post-TMS periods are indicated by one asterisk ( p < .0001).
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DISCUSSION

There exists a classic relationship between a state of rest-
ing wakefulness and the presence of a dominant alpha
rhythm on the EEG (Berger, 1929). More recently, the
resting state has been associated with tonic metabolic
and neural activity in the DMN, a distributed fronto-
temporal-parietal cortical network active at rest (Vaishnavi
et al., 2010; Raichle et al., 2001). We tested the hypothesis
that AG plays a causal role in the modulation of resting-
state alpha rhythms in the posterior cortical regions under
the assumption that DMN regions are active in the resting
state possibly in support of internally directed cognition
(Sestieri et al., 2010). In agreement with this hypothesis,
we found that inhibitory (1 Hz) rTMS stimulation of the

AG for 1 min enhanced alpha power in both hemispheres
in the poststimulus period (i.e., first and second minute
poststimulation). This modulation was stronger for right
AG stimulation, which also produced increased alpha
spectral coherence ipsilaterally in the right hemisphere.
Critically these effects were specific for AG. Sham stimula-
tion and magnetic stimulation of two nodes of the DAN
(i.e., FEF and IPS on either hemisphere) did not produce
any significant modulation of alpha power or coherence.
In addition, the modulation was also not only location
specific but also frequency specific to the low frequency
alpha rhythms (8–10 Hz) and did not extend to the high-
frequency alpha rhythms (10–12 Hz). This is consistent
with a model in which different frequencies of alpha
rhythms reflect different functional modes of thalamo-
cortical and cortico-cortical loops that facilitate/inhibit the
transmission and retrieval of sensorimotor and cogni-
tive information (Pfurtscheller & Lopes da Silva, 1999).

Figure 4. DMN versus DAN in the alpha band: (A) Group means
(±SE ) of the low-frequency alpha power density for the two networks
(DMN and DAN) and periods of interest (pre-TMS, post-TMS 1,
post-TMS 2). (B) Group means (±SE ) of the low-frequency alpha
intrahemispheric coherence for the two networks (DMN and DAN)
and periods of interest (pre-TMS, post-TMS 1, post-TMS 2), separated
by Hemisphere (ipsilateral and contralateral to the stimulation).
Duncan post hoc test: Statistically significant differences between
pre- and post-TMS periods are indicated by one asterisk ( p < .0001).

Figure 5. DMN versus DAN in the beta band: (A) Group means
(±SE ) of the beta power density for the two networks (DMN and
DAN) and periods of interest (pre-TMS, post-TMS 1, post-TMS 2).
(B) Group means (±SE ) of the beta intrahemispheric coherence for
the two networks (DMN and DAN) and periods of interest (pre-TMS,
post-TMS 1, post-TMS 2), separated by Hemisphere (ipsilateral and
contralateral to the stimulation).
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Specifically, it has been proposed that low-frequency alpha
rhythms would diffusely regulate global brain arousal and
alertness, whereas high-frequency alpha rhythms would
reflect task-related oscillations of selective neural systems
involved in the elaboration of task-specific information
(Klimesch et al., 1998). The frequency-specific effect of
rTMS over DMN was further supported by a lack of modu-
lation in the beta band.

Overall these findings albeit exploratory strongly sug-
gest a direct “causal” link between activity in the AG at
rest and modulation/generation of alpha rhythms. Several
open question remains.

One question concerns the physiological mechanisms
underlying this modulation. Repeated 1-Hz stimulation
of neocortex by rTMS is thought to cause a (partial) sup-
pression of excitatory synaptic transmission (Ridding &
Ziemann, 2010; Thickbroom, 2007) and induces long-
term specific changes in the expression of c-Fos (Funke
& Benali, 2010; Aydin-Abidin, Trippe, Funke, Eysel, &
Benali, 2008) and GABA-synthesizing enzymes (Funke
& Benali, 2010; Trippe, Mix, Aydin-Abidin, Funke, &
Benali, 2009). A reduction in calcium-binding protein
calbindin in inhibitory interneurons modulating the activ-
ity of pyramidal cells has been also reported. Therefore,
1-Hz TMS stimulation is expected to tonically suppress
neuronal activity. On the basis of our study, the effect
extended for 2 min following 1-min stimulation in AG.
We selected our stimulation and poststimulation pe-
riods based on an important study that showed that low-
frequency (i.e., 1 Hz) rTMS over motor cortex induces
an inhibitory enhancement of the alpha rhythms for a
period corresponding to that of the magnetic stimulation
(Brignani, Manganotti, Rossini, & Miniussi, 2008). Interest-
ingly, in our study modulation of alpha power extended
significantly into the second minute poststimulation sug-
gesting that AG suppression is more prolonged than
motor cortex. This may be because of the more central
position of AG in the neuroanatomical matrix of con-
nections and networks (see below; Buckner et al., 2009;
Hagmann et al., 2008). Follow-up studies will need to trace
the time course of this tonic inhibition, thus also allowing a
full recovery of the effects to baseline and the reconstruc-
tion of the timing of the effect peak and plateau. Further-
more, they may include an active control TMS condition
targeting scalp vertex (a region here used as Sham) as a
site where TMS elicits no muscle activation (Mutanen,
Mäki, & Ilmoniemi, 2013). The relative results would refine
the understanding of the neural basis of the present re-
sults, although we did not observe any remarkable dis-
comfort or muscle interference stimulating over regions
of DAN and DMN.

Because cortical alpha rhythms are presumed to be gen-
erated by the oscillatory activity of granular and pyramidal
neurons, mainly based on the input signals delivered by
relay mode and high-threshold bursting thalamo-cortical
neurons (Bollimunta et al., 2011; Lorincz, Kékesi, Juhász,
Crunelli, & Hughes, 2009), our results suggest that sup-

pression of AG activity modulated either cortical parieto-
occipital regions where alpha rhythms localize or their
thalamo-cortical inputs.
The modulation of alpha rhythms did not remain local

but spread, especially for right AG stimulation, ipsilaterally
across other cortical sites as demonstrated by a diffuse
increased intrahemispheric coherence as compared with
other cortical sites (e.g., IPS and FEF). One possible ex-
planation for the increase in intrahemispheric coherence is
the previously noted central position of AG in the structural/
functional neuroanatomical matrix of the brain (Buckner
et al., 2009; Hagmann et al., 2008). It is also consistent
with recent magnetoencephalographic (MEG) evidence
from our group showing that the DMN is a hub of inter-
network cortical interactions in the resting state especially
in the alpha and beta frequency bands (de Pasquale et al.,
2012).
Another important question is the relationship of our

results to the extant fMRI-EEG literature. The enhance-
ment of alpha power after AG suppression is apparently
in contradiction with some studies that find a positive
relationship between alpha power and BOLD signal fluc-
tuations in the DMN at rest (e.g., Mantini et al., 2007;
but see Knyazev et al., 2011; Wu et al., 2010; Gonçalves
et al., 2006; Laufs et al., 2003). Similarly, lack of modula-
tion after suppression of DAN nodes (IPS, FEF) appar-
ently contradicts the negative relationship between alpha
power and BOLD signal fluctuations in the DAN at rest
(Sadaghiani et al., 2010; Mantini et al., 2007; Laufs et al.,
2003). However, one should consider the different time-
scale over which these effects are measured with different
methods. In our study, effects were transient lasting for
only a couple of minutes after stimulation. In contrast
EEG/fMRI correlations are recorded and maintain sig-
nificance over tens of minutes. Another major difference
is the spatial resolution that is more precise with fMRI
than EEG. For instance, it would be important to separate
the direct effect of rTMS suppression on AG activity versus
the indirect modulation on other regions. To this effect,
it is important to underscore that scalp alpha rhythms
reflect the summation of neural currents generated by
different processes and cortical regions, including regions
that are active hence desynchronized and regions that
are relatively suppressed hence more synchronized. This
summation at the scalp level might confound the inter-
pretation of the “correlation” in EEG-fMRI studies.
A third issue concerns the functional significance of

the alpha power/coherence enhancement after AG stimu-
lation. Our interpretation assumes that posterior parieto-
occipital alpha rhythm underlies a state of “idling” or
partial inactivity of cortical information processing in
relation to external stimuli. Task-related recruitment of
cortex desynchronizes low/intermediate EEG frequencies
including alpha and beta but synchronizes higher EEG
frequencies including gamma (Friese, Supp, Hipp, Engel,
& Gruber, 2012; Miller, Weaver, & Ojemann, 2009;
Siegel, Donner, Oostenveld, Fries, & Engel, 2008; Canolty
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et al., 2007; Freunberger et al., 2007; Crone, Sinai, &
Korzeniewska, 2006). The degree of alpha synchroniza-
tion in occipital-parietal sensory regions is putatively
controlled during perceptual tasks by higher-order cor-
tical regions involved in top–down control (Fries, 2005;
Corbetta & Shulman, 2002). As a result, occipitoparietal
alpha power is high in a state of idleness (rest), decreases
during visual (attention) tasks (e.g., Thut, Nietzel, Brandt,
& Pascual-Leone, 2006; Worden, Foxe, Wang, & Simpson,
2000), and paradoxically increases when regions of the
DAN presumably controlling the allocation of attention
are (partially) inactivated by inhibitory rTMS (Capotosto,
Babiloni, et al., 2012; Capotosto et al., 2009).
By analogy, if the AG is involved in internally directed

cognition such as memory retrieval (Sestieri et al., 2010)
or simulation of the future, and these processes are spon-
taneously active at rest as suggested by metabolic studies
(Raichle et al., 2001), then inactivation of AG is expected
to cause a local inhibitory increase in alpha power as well
as a propagation of such perturbation across the cerebral
cortex, especially in the occipitoparietal regions where
alpha rhythms show maximum power. This view assumes
that AG plays a role of neural “hub” and propagates
the synchronization/desynchronization of low-frequency
alpha rhythms across the cerebral cortex. In this framework,
alpha power would index the magnitude of cortical
inhibition in task-relevant representations, both related
to external cognition (e.g., DAN) or internal cognition
(e.g., DMN).
A final point of discussion is the right lateralization of

the modulation of intrahemispheric coherence, which was
stronger for right over left AG. Alpha rhythms are tradi-
tionally associated with attention and arousal (Haegens,
Luther, & Jensen, 2012; Babiloni et al., 2003). Arousal de-
ficits are classically associated with right hemisphere
lesions (Corbetta & Shulman, 2011) including regions of
the inferior parietal lobule (supramarginal [SMG] and AG).
Although AG is part of the DMN, the SMG along with the
TPJ is part of the so-called ventral attention network that
is right hemisphere lateralized (Corbetta & Shulman, 2011;
Shulman et al., 2010; Liu, Stufflebeam, Sepulcre, Hedden,
& Buckner, 2009). These regions have also been implicated
in arousal and vigilance (Corbetta & Shulman, 2011). In
this study, the right lateralization on alpha coherence
may partly reflect a certain suppression of adjacent cortex
in SMG.

Conclusions

Inhibitory magnetic stimulation over bilateral AG, one of
the core DMN nodes, but not FEF or IPS, core DAN nodes,
enhanced resting state, low-frequency alpha power in bilat-
eral occipitoparietal cortex, as well as intrahemispheric
alpha coherence (right AG). These results suggest that
AG plays a causal role in the modulation and propaga-
tion of the resting-state dominant alpha rhythms to the
posterior parietal regions.
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