2012

Paragonimus kellicotti Fluke infections in Missouri, USA

Michael A. Lane
Washington University School of Medicine in St. Louis

Mary C. Barsanti
Washington University School of Medicine in St. Louis

Carlos A. Santos
Washington University School of Medicine in St. Louis

Michael Yeung
Washington University School of Medicine in St. Louis

Sam J. Lubner
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
Please let us know how this document benefits you.

Recommended Citation

Lane, Michael A.; Barsanti, Mary C.; Santos, Carlos A.; Yeung, Michael; Lubner, Sam J.; and Weil, Gary J., "Paragonimus kellicotti Fluke infections in Missouri, USA." Emerging Infectious Diseases. 18, 8. 1676-9. (2012).
https://digitalcommons.wustl.edu/open_access_pubs/3600

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Michael A. Lane, Mary C. Barsanti, Carlos A. Santos, Michael Yeung, Sam J. Lubner, and Gary J. Weil
Human Paragonimiasis in North America following Ingestion of Raw Crayfish

Michael A. Lane,1 Mary C. Barsanti,1 Carlos A. Santos,1 Michael Yeung,2 Sam J. Lubner,2 and Gary J. Weil1

1Infectious Diseases Division and 2Department of Internal Medicine, Washington University, St. Louis, Missouri

Paragonimiasis (human infections with the lung fluke Paragonimus westermani) is an important public health problem in parts of Southeast Asia and China. Paragonimiasis has rarely been reported from North America as a zoonosis caused by Paragonimus kellicotti. Paragonimus species have complex life cycles that require 2 intermediate hosts, namely, snails and crustaceans (ie, crabs or crayfish). Humans acquire P. kellicotti when they consume infected raw crayfish. Humans with paragonimiasis usually present with fever and cough, which, together with the presentation of hemoptysis, can be misdiagnosed as tuberculosis. Only 7 autochthonous cases of paragonimiasis have been previously reported from North America. Our study describes 3 patients with proven or probable paragonimiasis with unusual clinical features who were seen at a single medical center during an 18-month period. These patients acquired their infections after consuming raw crayfish from rivers in Missouri. It is likely that other patients with paragonimiasis have been misdiagnosed and improperly treated. Physicians should consider the possibility that patients who present with cough, fever, hemoptysis, and eosinophilia may have paragonimiasis.

Paragonimiasis is an infection caused by trematode parasites of the genus Paragonimus. Patients with paragonimiasis usually present with signs and symptoms in the lower respiratory tract. At least 9 species have been identified that cause infections in humans [1]. Paragonimus westermani is an important pathogen in Southeast Asia and China [2]. Paragonimiasis is uncommon among North Americans who have not traveled or lived in endemic areas in the far east. Most North American cases of paragonimiasis are caused by Paragonimus kellicotti [3]. P. kellicotti infections in bobcats [4], raccoons [5], gray foxes [6], red foxes [7], skunks [7], mink [7, 8], coyotes [7], cats, and dogs have been reported. The purpose of our study is to describe 3 recent North American cases of paragonimiasis at a large teaching hospital and to review the clinical features of paragonimiasis in North America.

CLINICAL CASES

Patient 1

Patient 1 was a previously healthy 26-year-old female who presented to her local hospital with a 2-week history of fatigue, malaise, cough, fevers, night sweats, and vomiting. She was admitted to her local hospital and given a working diagnosis of community-acquired pneumonia. She was treated with levofloxacin and discharged from the hospital.

She returned to the hospital when her symptoms persisted. Laboratory studies at that time showed a peripheral eosinophil count of 2000 cells/mm³ (eosinophil percentage, 20%). She underwent bronchoscopy with transbronchial biopsy. The biopsy demonstrated an eosinophilic inflammatory infiltrate. Bronchoalveolar lavage (BAL) also demonstrated eosinophilia. Routine BAL culture, mycobacterial culture, and fungal culture results were negative. Methylprednisolone therapy was initiated for a presumed diagnosis of eosinophilic pneumonia.

The patient’s symptoms improved with the use of steroids. However, her fevers, chills, night sweats, and
malaise returned when use of steroids was tapered. She also
developed a 0.5-cm nodular lesion inferior to her left lower
lip. A needle biopsy demonstrated an inflammatory infiltrate
with conspicuous eosinophils. The lesion grew in size to 1.5
cm and migrated to her left cheek.

She was referred to our tertiary care hospital for further
evaluation. Physical examination was notable for detecting a 2-
cm firm, nontender mobile mass on the left cheek. Breath
sounds were diminished at the left base. The remainder of her
physical examination was normal. Her white blood cell count
was 6200 cells/mm³, with an absolute eosinophil count of 800
cells/mm³ (eosinophil percentage, 13.7%). A computed to-
mography (CT) scan (figure 1) revealed a left pleural effusion
and a focal opacity at the apex of the left lower lung lobe.
Serum samples tested negative for Rickettsia, Ehrlichia,
and Strongyloides species as well as for Epstein-Barr virus,
herpes simplex virus, cytomegalovirus, and human immunodeficien-
cy virus. Patient 1 was unable to provide a sputum specimen
deleted repeated attempts at sputum induction.

Upon further questioning, the patient revealed that she had
been on a “float trip” on a tributary of the Meramec River in
southeastern Missouri ∼4 weeks before the onset of her symp-
toms. She also stated that she had eaten 2 uncooked crawfish
from the river while intoxicated. Two weeks after returning
from the float trip, she developed a self-limited diarrheal illness.
She later experienced fatigue, malaise, cough, fevers, night
sweats, and vomiting. An enzyme-linked immunoabsorbent as-
say (ELISA; developed by Parasitic Disease Consultants) was
positive for Paragonimus species at 1:32. The patient received
a diagnosis of paragonimiasis and was treated with praziquantel
75 mg/kg in 3 divided doses for 2 days. Her systemic symptoms
resolved within 48 h of initiating therapy, and the left cheek
mass resolved within 7 days of treatment. Treatment with meth-
ylprednisolone was tapered and discontinued. One month after
elimination, the patient denied having symptoms of fever, night
sweats, cough, or malaise. A complete blood cell count at that
time revealed a total white blood cell count of 5700 cells/mm³
with a normal eosinophil count.

Patient 2
Patient 2 was a previously healthy 32-year-old male who pre-
sented with a 3-month history of recurrent fevers (with tem-
peratures as high as 39.5°C [103°F]), myalgias, arthralgias, gen-
eralized malaise, and cough producing minimal brownish
sputum. The patient also noticed an indurated tender nodule
on the dorsal surface of his left fourth distal interphalangeal
joint. His primary care physician ordered a chest radiograph
that showed hazy bilateral upper lobe infiltrates and small bi-
lateral pleural effusions. He was treated with levofloxacin for
7 days for presumed community-acquired pneumonia.

The patient’s symptoms persisted while on levofloxacin. In
addition, he developed diffuse headaches and blurred vision.
He described the headaches as “sharp” and “splitting.” In ad-
dition, he also reported abnormal vision with intermittent blind
spots and floaters. He was admitted to a community hospital
where cerebral spinal fluid analysis and CT scan of the head
were normal. A complete blood cell count revealed a white
blood cell count of 12,000 cells/mm³ with an absolute eosin-
ophil count of 3600 cells/mm³ (eosinophil percentage, 30%).
The findings of basic chemistry and liver function tests were
all normal. All blood and urine culture results were negative.
Bronchoscopy was performed, and BAL revealed eosinophilia.
He was given a diagnosis of eosinophilic pneumonia and treated
with prednisone 60 mg daily. Steroid therapy initially improved
his symptoms; however, his symptoms returned when his ste-
roid dose was decreased.

The patient was referred to our hospital for further evalu-
ation of his symptoms. His physical examination was significant
for the detection an indurated, tender nodule on the volar
aspect of his left fourth distal interphalangeal joint. The patient
reported that the nodule was migratory. The findings of a neu-
rologic examination were normal. A complete blood cell count
showed a white blood cell count of 10,100 cells/mm³ with an
absolute eosinophil count of 3000 cells/mm³ (eosinophil percentage,
30%). Serum samples tested negative for Rickettsia, Ehrlichia,
and Strongyloides species as well as for Epstein-Barr
virus, herpes simplex virus, cytomegalovirus, and human immu-
noodeficiency virus. A chest radiograph showed bilateral up-
per lobe infiltrates, and a magnetic resonance imaging of the

Figure 1. Computed tomography scan of the chest of patient 1 showing
a focal consolidation in the superior segment of the left lower lobe
(arrowhead) and a left pleural effusion.
brain (figure 2) showed an enhancing lesion in the right occipital lobe.

Upon further questioning, the patient reported eating raw crayfish while intoxicated during a float trip on the Current River in southern Missouri ~3 weeks before the onset of his symptoms. An ELISA performed at the Centers for Disease Control and Prevention was positive for Paragonimus species. The patient was treated with a 3-day course of praziquantel 75 mg/kg in 3 divided doses for pulmonary, cutaneous, and probable cerebral paragonimiasis. His symptoms resolved within 3 days of starting therapy. After 1 month of follow-up, the patient was free of symptoms. A complete blood cell count showed resolution of his leukocytosis and eosinophilia.

Patient 3

Patient 3 was a previously healthy 31-year-old male who presented with a 2-week history of fevers and pharyngitis. He was seen at an urgent care facility where a monospot test and a rapid streptococcal antigen test were performed, both of which were negative. After several days of continued symptoms, the patient was evaluated at his local emergency department. The findings of a lumbar puncture, a blood culture, and a chest radiograph were within normal limits. The patient was discharged from the emergency department with a 7-day course of doxycycline for a presumed tick-related infection.

The patient completed the course of doxycycline but continued to have fevers. In addition, he developed chills, rigors, night sweats, headaches, and shortness of breath. The patient was prescribed cefuroxime, which did not alter his symptoms. The patient had continued fevers and worsening shortness of breath. He also reported diffuse chest pain and weight loss. He denied having abdominal pain, nausea, vomiting, skin changes, arthritis or arthralgias.

The patient presented to our tertiary care hospital with continued fever, chills, shortness of breath, and cough. A physical examination revealed a temperature of 39.2°C and diminished breath sounds at the right lung base. The remainder of the findings of the examination were within normal limits. Laboratory studies revealed a white blood cell count of 11,300 cells/mm³ with an absolute eosinophil count of 2300 cells/mm³ (eosinophil percentage, 20%). A chest radiograph revealed a right-sided pleural effusion. A CT scan of the chest showed a right pleural effusion and an apical mass in the right lung (figure 3). A thoracentesis was performed. Pleural fluid analysis showed 5.6 g/dL of protein, 2074 IU/L of lactate dehydrogenase, and <30 mg/dL of glucose. The total cell count in the pleural fluid was 44,650 cells/μL, with a nucleated cell count of 14,650 cells/μL (18% neutrophils, 8% lymphocytes, 6% monocytes, and 68% eosinophils). Gram stain of pleural fluid specimen showed abundant neutrophils but no organisms. Pleural fluid culture...
results for bacteria, fungus, and acid-fast bacilli were negative. A pleural biopsy revealed abundant histiocytes with poorly formed granulomas. Patient 3 had a serum protein level of 7.2 g/dL and a lactate dehydrogenase level of 157 IU/L.

The patient reported that he had visited Cancun, Mexico, 6 weeks before the onset of his symptoms. He spent 5 days at a resort where he ate food prepared at the resort and drank only bottled water. The patient was initially treated with doxycycline and primaquine without improvement in his symptoms. Further questioning revealed that the patient had gone on a float trip on the Jacks Fork and Current Rivers in southeastern Missouri 1 week after his return from Cancun and that he had consumed 2 raw crayfish while intoxicated during this outing. His symptoms began ∼4 weeks after consuming the raw crayfish. Treatment with doxycycline and primaquine was discontinued, and the patient was treated with praziquantel 75 mg/kg in 3 divided doses for 2 days. The patient defervesced, and his symptoms resolved promptly after treatment with praziquantel.

Serum samples obtained during his hospitalization and 2 months after treatment tested negative for antibodies to *P. westermani* using an ELISA performed at the Centers for Disease Control and Prevention. Another chest radiograph 3 weeks after hospital discharge showed resolution of the right apical infiltrate. All symptoms and the eosinophilia had resolved by the time of his 2-month follow-up visit.

DISCUSSION

In 1894, Drs. Ward and Kellicott described *Paragonimus* parasites in lung tissue from a dog in Ohio and a cat in Michigan [3, 9, 10]. Ward distinguished North American *Paragonimus* worms from those found in Asia, on the basis of differences in morphology, and named the new species *P. kellicotti*. Subsequent investigators have confirmed these morphological differences [11, 12]. While molecular phylogenetic analyses have been performed on *Paragonimus* species endemic to Asia [13, 14], this has not been done yet for *Paragonimus* species from North America.

Paragonimus lung flukes have a complex life cycle that requires 2 intermediate hosts and 1 definitive host. Eggs excreted in stool hatch in water to become ciliated miracidia that invade the soft tissue of snails, the first intermediate host [15]. The parasite develops in snails to become cercariae, which leave the snail and invade the second intermediate host. The second intermediate host for *P. kellicotti* are crayfish of the genera *Cambarus* and *Orconectes*. The cercariae encyst in muscle and become metacercariae. When ingested by the appropriate definitive host, the metacercariae excyst in the duodenum and migrate to the lungs, where they mature into adult worms that produce eggs. *P. kellicotti* has a wide host range that includes carnivores (such as mink, muskrat, and opossum) and domestic animals (such as cats and dogs). Humans are accidental hosts.

Human infections with the *Paragonimus* species have been identified in many parts of the world, but they are most common in eastern Asia. It is estimated that 292.8 million people worldwide are at risk for infection with *Paragonimus* species, with 195 million people at risk in China [16]. Seroprevalence in China ranges from 1.9% in Anhui and Liaoning Provinces to 33.7% in Jilin Province [2]. Paragonimiasis in humans is uncommon in North America, with only 7 cases previously described in patients who acquired the infection without traveling abroad or eating imported food items (table 1). Our patients were infected by eating uncooked crayfish from rivers in Missouri.

Humans acquire *Paragonimus* infections when they consume metacercariae from uncooked shellfish, such as crabs and crayfish. People in parts of eastern Asia commonly eat raw or alcohol-cured crustaceans [24], and this explains the high incidence of paragonimiasis in that region. In contrast to Asia, consumption of raw crustaceans is uncommon in North America. It is very likely that alcohol played a role in our cases by relaxing normal dietary inhibitions. The distribution of *P. kellicotti* in North America has not been mapped in detail, but the parasite is known to be widely distributed in the midwest region of the United States. Most previously reported cases have been from this region.

P. westermani infections can cause a variety of clinical symptoms. Early infections are often asymptomatic, and it is likely that some infected persons never present with clinical disease. Pulmonary symptoms typically present months after infection (range, 1–27 months; mean, 6 months) [25]. Cough and hemoptysis are common (seen in 60%–90% of patients) [26–29]. Fever is also common (11%–67% of patients) [26–28]. Given this constellation of symptoms, it is not surprising that paragonimiasis is often confused with tuberculosis [26–28]. Cough, fever, and hemoptysis are also common in patients with *P. kellicotti* infection (table 1). *Paragonimus* flukes sometimes migrate to ectopic locations, including the central nervous system (CNS) [30]. Patients with CNS involvement often report headaches as the presenting symptom. Our patient 2 experienced headaches and had abnormal findings on magnetic resonance imaging consistent with paragonimiasis of the CNS. To our knowledge, this is the first described case of *P. kellicotti* infection with probable CNS involvement. Seizures occur in 40% of patients with CNS involvement, and many patients (55%) have impaired vision and/or visual field deficits. CNS symptoms may present months after the onset of pulmonary symptoms [30]. *Paragonimus* species can also migrate to subcutaneous tissue and cause subcutaneous nodules in up to 20% of patients with *P. westermani* infection [26, 28, 31]. Our patients 1 and 2 had migratory skin nodules; to our knowledge, this has not previously been reported for cases of *P. kellicotti* infection.

Many patients with *P. westermani* infections have normal
<table>
<thead>
<tr>
<th>Age and sex of patient</th>
<th>Geographic location</th>
<th>Risk factor</th>
<th>Presentation</th>
<th>Method of diagnosis</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-year-old male</td>
<td>Montreal, Canada</td>
<td>Snails and crustacean</td>
<td>Fatigue, dyspnea, and malaise</td>
<td>Lung surgical pathology; sputum cytology</td>
<td>Beland et al [17]</td>
</tr>
<tr>
<td>19-year-old male</td>
<td>Current River, Missouri</td>
<td>Crayfish</td>
<td>Fatigue, fever, dyspnea, eosinophilia, and pleural effusion</td>
<td>Sputum cytology; serology</td>
<td>Pachucki et al [18]; Mariano et al [19]</td>
</tr>
<tr>
<td>21-year-old male</td>
<td>Arkansas River, Oklahoma</td>
<td>Crayfish</td>
<td>Hemoptyis and cough</td>
<td>Sputum cytology</td>
<td>Defrain and Hooker [21]</td>
</tr>
<tr>
<td>18-year-old male</td>
<td>Michigan</td>
<td>Crayfish</td>
<td>Fatigue, dyspnea, pleural effusion, and eosinophilia</td>
<td>Pleural surgical pathology; serology</td>
<td>DeFrais and Hooker [21]</td>
</tr>
<tr>
<td>35-year-old male</td>
<td>Arkansas River, Oklahoma</td>
<td>Crayfish</td>
<td>Hemoptyis, cough, pneumothorax, and pleural effusion</td>
<td>Pleural surgical pathology</td>
<td>Castilla et al [1]</td>
</tr>
<tr>
<td>71-year-old male</td>
<td>Iowa</td>
<td>Crayfish</td>
<td>Dyspnea and pleural effusion</td>
<td>Pleural fluid cytology</td>
<td>Madariaga et al [22]</td>
</tr>
<tr>
<td>31-year-old male</td>
<td>Denver, Colorado</td>
<td>Unknown</td>
<td>Chronic cough, hemoptyis, dyspnea, and eosinophilia</td>
<td>Lung surgical pathology</td>
<td>Boe and Schwarz [23]</td>
</tr>
<tr>
<td>26-year-old female</td>
<td>Meramec River, Missouri</td>
<td>Crayfish</td>
<td>Fatigue, cough, fever, and eosinophilia</td>
<td>Serology</td>
<td>Our study</td>
</tr>
<tr>
<td>32-year-old male</td>
<td>Current River, Missouri</td>
<td>Crayfish</td>
<td>Fever, malaise, cough, headache, and eosinophilia</td>
<td>Serology</td>
<td>Our study</td>
</tr>
<tr>
<td>31-year-old male</td>
<td>Jacks Fork and Current Rivers, Missouri</td>
<td>Crayfish</td>
<td>Fever, pharyngitis, cough, dyspnea, and eosinophilia</td>
<td>Clinical history</td>
<td>Our study</td>
</tr>
</tbody>
</table>
physical examinations [31]. Others may have nonspecific findings such as rales or rhonchi in the chest (present in up to 28% of patients) [27]. Laboratory abnormalities include leukocytosis (24%–33% of patients) [26–28] and eosinophilia (62%–66% of patients) [27, 28]. A similar percentage of North Americans with paragonimiasis had eosinophilia (6 [75%] of 8 patients). Radiographic abnormalities are common among patients with paragonimiasis in Asia, with 52% of patients having air-space consolidation and 37% of patients having pleural effusions [32].

All 10 North American patients demonstrated abnormal chest radiographic findings, including “nonspecific linear streaking” [20], pneumothorax (1 patient) [18], pleural effusion (6 patients) [18, 19, 21, 22], and consolidation or an infiltrate (7 patients) [1, 18, 19, 21–23].

It is difficult to make a direct parasitological diagnosis of paragonimiasis by microscopy. Although the presence of ova in expectorated sputum is specific, the sensitivity of this test is low (28%–38%). Repeat sputum examinations may increase the sensitivity of this test [28]. Stool examination is also insensitive [31], and ova are not usually found in pleural fluid [28, 31]. Pleural fluids commonly have low glucose levels (<10 mg/dL) and high total protein levels (>3 g/dL) [28]. Pleural fluid white blood cell counts are often >1000 cells/mm³ [28, 33].

Serological testing is useful for establishing the diagnosis of paragonimiasis. The Centers for Disease Control and Prevention perform an ELISA that is highly sensitive (96%) and specific (99%) for P. westermani [34]. The sensitivity of this test for serum samples from patients with other species of Paragonimus infection, including P. kellicotti, is unknown. This may explain the negative test result from patient 3. Despite his negative test result, patient 3’s history, clinical presentation, and response to praziquantel therapy were consistent with the diagnosis of paragonimiasis. Patients 1 and 2 in our study both had an ELISA that was positive for P. westermani.

The current recommended treatment for paragonimiasis is praziquantel 25 mg/kg given orally 3 times daily for 2 days. Cure rates of >95% have been reported [35]. All 3 of our patients had excellent clinical responses to praziquantel, with improved symptoms and resolution of eosinophilia.

In summary, although paragonimiasis is considered to be rare among humans in North America, we cared for 3 patients with proven or probable paragonimiasis at a medical center during an 18-month period. All 3 patients had recently ingested raw crayfish from rivers in Missouri. It is likely that other cases of paragonimiasis have been recognized and treated in this region, but not reported. More troubling, it is also likely that some patients with paragonimiasis have been misdiagnosed and, therefore, were not properly treated. This infection is easily avoidable; public health education messages should warn people not to ingest uncooked crayfish. Our local cases show that alcohol use, boating, and the consumption of raw crayfish can be a dangerous mixture. Health warnings might have the greatest impact if they were posted or distributed at campgrounds and canoe rental businesses in the lower midwest. Physicians should consider the possibility of paragonimiasis among patients who present with cough, fever, hemoptysis, and eosinophilia.

Acknowledgments

Potential conflicts of interest. All authors: no conflicts.

References

19. Mariano EG, Borja SR, Vruno MJ. A human infection with Paragon-