Novel SGCE mutation in a patient with myoclonus-dystonia: A case report

Eva Klinman
Washington University School of Medicine in St. Louis

Catherine Gooch
Washington University School of Medicine in St. Louis

Joel S. Perlmutter
Washington University School of Medicine in St. Louis

Albert A. Davis
Washington University School of Medicine in St. Louis

Baijayanta Maiti
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation
Klinman, Eva; Gooch, Catherine; Perlmutter, Joel S.; Davis, Albert A.; and Maiti, Baijayanta, "Novel SGCE mutation in a patient with myoclonus-dystonia: A case report." Neurology Genetics. 10, 2. e200128 (2024).
https://digitalcommons.wustl.edu/oa_4/3697

This Open Access Publication is brought to you for free and open access by the Open Access Publications at Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Novel SGCE Mutation in a Patient With Myoclonus-Dystonia
A Case Report

Eva Klinman, MD, PhD, Catherine Gooch, MD, Joel S. Perlmutter, MD, Albert A. Davis, MD, PhD,* and Baijayanta Maiti, MD, PhD*

Neurol Genet 2024;10:e200128. doi:10.1212/NXG.0000000000200128

Abstract

Objectives
Characterize the presentation, workup, and management of SGCE myoclonus-dystonia, a rare genetic condition, in a patient with atypical presenting symptoms and no family history of movement abnormalities.

Methods
A woman with myoclonus and dystonia was identified based on clinical history and physical examination. Workup was conducted to determine the cause of her symptoms, including whole-exome sequencing. Myoclonus-dystonia is associated with more than 100 distinct mutations in MYC/DYT-SGCE that account for only half of the total myoclonus-dystonia patients. As such, this case required intensive genetic analyses rather than screening only for a small subset of well-characterized mutations.

Results
Childhood onset myoclonus and worsening dystonia with age were identified in a young woman. She underwent screening for common causes of twitching movements, followed by whole-exome sequencing which identified a de novo novel variant in the SGCE gene, resulting in a diagnosis of SGCE myoclonus-dystonia.

Discussion
Myoclonus-dystonia should be considered in patients with symptoms of head and upper extremity myoclonus early in life, especially with co-occurring dystonia, even in the absence of a family history of similar symptoms. Diagnosis of this condition should take place using sequencing, as new mutations continue to be discovered.

Introduction
SGCE myoclonus-dystonia, also known as DYT11, is classically caused by autosomal dominant pathologic variants in the epsilon-sarcoglycan (SGCE) gene, which was recently recategorized MYC/DYT-SGCE (OMIM: 159900).1-3 The condition tends to present in late childhood with predominantly upper extremity dystonia characterized by “writer’s cramp” and cervical dystonia.4 Myoclonus of the upper body follows the onset of dystonia,4 and stress or exercise exacerbate the symptoms. Myoclonus and dystonia less commonly affect the lower body in patients with SGCE myoclonus-dystonia.5 Psychiatric comorbidities, particularly obsessive-compulsive disorder (OCD), anxiety, and alcohol use disorder, frequently accompany SGCE myoclonus-dystonia.4 Symptomatic relief related to alcohol ingestion may contribute to habitual increase in consumption and alcohol use disorder.1

*These authors are co-senior authors.

From the Department of Neurology (E.K., J.S.P., A.A.D., B.M.); and Division of Genetics and Genomic Medicine (C.G.), Department of Pediatrics, Washington University School of Medicine, St Louis, MO.

Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

The Article Processing charge was funded by NIH.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
More than 100 pathogenic variants in the MYC/DYT-SGCE gene on chromosome 7q21 have been identified in patients with myoclonus-dystonia. The majority of affected individuals display paternal inheritance because MYC/DYT-SGCE undergoes maternal allele silencing due to genomic imprinting. As a result, less than 5% of patients with myoclonus-dystonia express a maternally inherited mutation in MYC/DYT-SGCE. The remaining individuals may have de novo mutations. We present the case of a 23-year-old woman with 13 years of symptoms consistent with myoclonus-dystonia who was found to have a de novo T173C mutation causing an F58S substitution.

Clinical Report

A 23-year-old otherwise healthy woman presented with a 13-year history of difficulties with balance, subtle startle myoclonus, and writer’s cramp. Her symptoms began around age 10 years with rapid head “tics” that primarily occurred when she was touched by others while distracted, for example, while she was playing piano, although she did not have a prominent startle response. Home videos from this time demonstrated sustained small amplitude tilting and extension of the neck during periods of focus, without evidence of tremor. She developed obsessive thoughts, was diagnosed with OCD, and was treated with venlafaxine.

During her late teens, she noticed difficulty tapping her feet, running on a treadmill, and stepping on an escalator. She denied falls but had occasional near-falls due to difficulty coordinating her legs. Her walking speed did not change. At the same time, she noted that prolonged writing caused cramping in her dominant hand and that her handwriting worsened the longer she wrote. She would occasionally drop objects from her hand. She presented to a pediatric neurologist who suspected a tic disorder and prescribed clonidine which did not improve her symptoms.

Her condition progressed in her early 20s when she developed full-body myoclonic jerks that occurred approximately weekly and worsened in the cold. She also identified bothersome persistent cramping and tightness of her neck. She denied improvement of her cramping or jerks with alcohol, and symptoms did not vary with the time of day. She additionally endorsed talking in her sleep. She saw multiple neurologists in her early 20s and was treated with propranolol, clonazepam, guanfacine, benztropine, and tizanidine, all without improvement. She was subsequently treated with botulinum toxin injections with some improvement of neck movements.

At age 23 years, she presented to our center, at which time she was noted to have generalized dystonia affecting her neck, trunk, and bilateral hands that was particularly worse with action, as well as generalized myoclonus involving her trunk and bilateral upper extremities at rest that increased with action (2 and 3 on the Unified Myoclonus Rating Scale, respectively). In addition, she had brisk deep tendon reflexes throughout the upper and lower extremities (3+). She started carbidopa-levodopa without improvement in her symptoms and continued to receive botulinum toxin injections for cervical dystonia with moderate benefit.

Family history demonstrated no relatives with similar symptoms. She is of German ancestry. She had a maternal grandmother with epilepsy. Her father was adopted and had sarcoidosis. Her mother and 2 brothers were healthy. Neither the patient nor her brothers have children (Figure).

Evaluation

Her childhood workup included unremarkable blood chemistries and an EEG that showed no epileptiform discharges.

Figure Pedigree of Patient With SGCE Myoclonus-Dystonia

The proband (III-3) developed startle myoclonus and dystonia of the legs and hands at approximately age 10 years, which worsened over time. No other individuals in the family were known to have similar symptoms, and neither parent was a carrier of the identified mutation. The proband’s father (II-1) has an unknown family history due to adoption. Unrelated conditions in the family include epilepsy in the maternal grandmother (I-2) and sarcoid in the father (II-1).
The serum ceruloplasmin level was normal at 20 mg/dL, prior Huntington gene testing was reportedly unremarkable, and brain and cervical spine MRI were normal.

She underwent whole-exome sequencing using the XomeDx-Plus Trio clinical exome sequence analysis through GeneDx. The results were notable for a heterozygous T to C variant at residue 273 of the MYC/DYT-SGCE gene, a rare or de novo genetic mutation for patients with undiagnosed neurologic syndromes. Furthermore, patients with multiple or unclear patterns of phenomenology, in this case “tics” which likely represented myoclonus, and dystonia, especially involving multiple body parts, merit consideration of less common disorders including rare genetic etiologies. In particular, SGCE myoclonus-dystonia should be considered in patients with fast hyperkinetic movements of the limbs associated with dystonia of the neck or other body parts, especially if these symptoms started in childhood. Because MYC/DYT-SGCE is typically expressed from the paternally inherited allele, carrier fathers of affected individuals could be clinically asymptomatic if they inherited the mutation from their mother. This highlights the need for comparative familial genetics and the strength of whole-exome sequencing in these conditions. Although much work remains to facilitate the evaluation and care of patients with suspected or confirmed inherited movement disorders, recent advances in whole-exome sequencing and genetic counsel offer great promise for syndrome identification and appropriate selection of available therapies, which may improve quality of life for patients and families.

Taken together, this relatively uncommon presentation of an already rare disorder underscores the need to consider rare or de novo genetic mutations for patients with undiagnosed neurologic syndromes. Furthermore, patients with multiple or unclear patterns of phenomenology, in this case “tics” which likely represented myoclonus, and dystonia, especially involving multiple body parts, merit consideration of less common disorders including rare genetic etiologies. In particular, SGCE myoclonus-dystonia should be considered in patients with fast hyperkinetic movements of the limbs associated with dystonia of the neck or other body parts, especially if these symptoms started in childhood. Because MYC/DYT-SGCE is typically expressed from the paternally inherited allele, carrier fathers of affected individuals could be clinically asymptomatic if they inherited the mutation from their mother. This highlights the need for comparative familial genetics and the strength of whole-exome sequencing in these conditions. Although much work remains to facilitate the evaluation and care of patients with suspected or confirmed inherited movement disorders, recent advances in whole-exome sequencing and genetic counsel offer great promise for syndrome identification and appropriate selection of available therapies, which may improve quality of life for patients and families.

Study Funding
Baijayanta Maiti is funded by a grant: NIH/NINDS K23NS125107.

Disclosure
The authors report no relevant disclosures. Go to Neurology.org/NG for full disclosures.

Publication History
Received by Neurology: Genetics September 7, 2023. Accepted in final form December 12, 2023. Submitted and externally peer reviewed. The handling editor was Raymond P. Roos, MD, FAAN.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva Klinman, MD, PhD</td>
<td>Department of Neurology, Washington University School of Medicine, St. Louis, MO</td>
</tr>
<tr>
<td>Catherine Gooch, MD</td>
<td>Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO</td>
</tr>
<tr>
<td>Joel S. Perlmutter, MD</td>
<td>Department of Neurology, Washington University School of Medicine, St. Louis, MO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva Klinman, MD, PhD</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; analysis or interpretation of data</td>
</tr>
<tr>
<td>Catherine Gooch, MD</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data</td>
</tr>
<tr>
<td>Joel S. Perlmutter, MD</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; analysis or interpretation of data</td>
</tr>
</tbody>
</table>

Continued
Appendix (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert A. Davis, MD, PhD</td>
<td>Department of Neurology, Washington University School of Medicine, St. Louis, MO</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
<tr>
<td>Baijayanta Maiti, MD, PhD</td>
<td>Department of Neurology, Washington University School of Medicine, St. Louis, MO</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
</tbody>
</table>

References