Stratification of surgical site infection by operative factors and comparison of infection rates after hernia repair

Margaret A. Olsen
Washington University School of Medicine in St. Louis

Katelin B. Nickel
Washington University School of Medicine in St. Louis

Anna E. Wallace
HealthCore Inc

Daniel Mines
HealthCore Inc

Victoria J. Fraser
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/3801

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Margaret A. Olsen, Katelin B. Nickel, Anna E. Wallace, Daniel Mines, Victoria J. Fraser, and David K. Warren
Stratification of Surgical Site Infection by Operative Factors and Comparison of Infection Rates after Hernia Repair

Margaret A. Olsen, PhD, MPH,1,2 Katelin B. Nickel, MPH;1 Anna E. Wallace, MPH,3 Daniel Mines, MD, MSCE,3 Victoria J. Fraser, MD,1 David K. Warren MD, MPH1

Objective. To investigate whether operative factors are associated with risk of surgical site infection (SSI) after hernia repair.

Design. Retrospective cohort study.

Methods. SSIs within 90 days after hernia repair were identified by diagnosis codes. The χ^2 and Fisher exact tests were used to compare SSI incidence by operative factors.

Results. A total of 119,973 hernia repair procedures were analyzed. The incidence of SSI differed significantly by anatomic site, with rates of 0.45% (352/77,666) for inguinal/femoral, 1.16% (288/24,917) for umbilical, and 4.11% (715/17,390) for incisional/ventral hernia repair. Within anatomic sites, the incidence of SSI was significantly higher for open versus laparoscopic inguinal/femoral (0.48% [295/61,142] vs 0.34% [57/16,524], $P=.020$) and incisional/ventral (4.20% [701/16,699] vs 2.03% [14/691], $P=.005$) hernia repairs. The rate of SSI was higher following procedures with bowel obstruction/necrosis than procedures without obstruction/necrosis for open inguinal/femoral (0.89% [48/5,422] vs 0.44% [247/55,720], $P<.001$) and umbilical (1.57% [131/8,355] vs 0.95% [157/16,562], $P<.001$), but not incisional/ventral hernia repair (4.01% [224/5,585] vs 4.16% [491/11,805], $P=.645$).

Conclusions. The incidence of SSI was highest after open procedures, incisional/ventral repairs, and hernia repairs with bowel obstruction/necrosis. Stratification of hernia repair SSI rates by some operative factors may facilitate accurate comparison of SSI rates between facilities.

Infect Control Hosp Epidemiol 2015;36(3):329–335

The most commonly reported healthcare-associated infection in the United States is surgical site infection (SSI).1 Despite improvements in infection control practices, SSIs remain a significant cause of morbidity and mortality and result in increased hospital stay and excess healthcare costs.1,2 The Centers for Disease Control and Prevention National Healthcare Safety Network (NHSN) is the largest healthcare-associated infection reporting system in the United States.3 NHSN has a list of operative procedures for SSI surveillance based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) and Current Procedural Terminology, fourth edition (CPT-4) procedure codes.4

Although NHSN puts laparoscopic and open surgical approaches for incisional/ventral, umbilical, and inguinal/femoral hernia sites together, the literature suggests that there are differences in SSI rates by site and approach. Studies examining a single anatomic surgical site have reported higher SSI rates for open versus laparoscopic surgery.5–10 There is wide variation in SSI incidence depending on the anatomic location of the surgical incision.5–12 But it is difficult to directly compare SSI incidence by hernia site in the literature because most results are reported from only single anatomic sites and there are differences in the population studied, length of follow up, and surveillance methods. Another potentially important operative risk factor for hernia SSI is the presence of bowel obstruction or necrosis, because these operations are more likely to be performed emergently and are considered “contaminated” rather than “clean” surgeries. Increased risk of SSI has also been reported for incarcerated/strangulated versus reducible ventral/incisional hernia repair.13 The goal of our study was to determine the risk of SSI after hernia repair by anatomic site, surgical approach, and presence of bowel obstruction and necrosis in a large, geographically diverse population.
METHODS

Data Source
We conducted a retrospective cohort study using data from 13 WellPoint-affiliated plans in the HealthCore Integrated Research Database. WellPoint is an independent licensee of the Blue Cross and Blue Shield Association. Data in the HealthCore Integrated Research Database include all fully adjudicated claims submitted for reimbursement from providers, facilities, and outpatient pharmacies linked to health plan enrollment information. Our cohort included all fully insured members with enrollment in a fee-for-service health plan that included medical coverage of hospital and physician services. Members with an ICD-9-CM diagnosis code or prescription claim that indicated human immunodeficiency virus–positive status were excluded for privacy concerns. Medical claims were restricted to paid claims.

We used the American Hospital Association Annual Survey of Hospitals (Health Forum) and the Outpatient Surgery Center Profiling Solution data (IMS Health) to determine whether the hernia repair was performed at a hospital or freestanding ambulatory surgery center. The facility information from these 2 data sources was matched to the operative facility using National Provider Identifier codes, where available; otherwise matching was performed using facility name and address fields.

Hernia Repair Patient Population
We identified hernia operations in members aged 6 months to 64 years from January 1, 2004, through December 31, 2010, using ICD-9-CM and CPT-4 procedure codes from inpatient and outpatient facilities and providers (Table 1). The hernia repair population was further refined by excluding operations likely to have erroneous claims for hernia repair, operations in members whose enrollment ended on the day of surgery, complicated procedures (ie, procedures performed together with another operation or after another NHSN operation during the same hospitalization or hernia repairs performed >1 day after hospital admission) and operations in medically complicated patients (ie, current cancer or sepsis; end-stage renal disease; operations coded for motor vehicle accident, abdominal compartment syndrome, or gunshot wounds), and procedures in which the surgery date and/or classification of the hernia site could not be determined from the claims, as described previously.14 We limited our final population to procedures coded by both a facility and provider for the same hernia site and surgical approach to improve reliability.

Identification of SSI
SSIs first recorded 2 to 90 days after hernia procedures were identified using ICD-9-CM diagnosis codes from inpatient and outpatient facilities and provider claims. We excluded claims with locations that were not consistent with a provider diagnosis (eg, patient home) and claims with CPT-4 codes for laboratory services (88104-88399), since the coding may have indicated “rule-out” diagnoses.

The diagnosis codes used to identify SSI included postoperative wound infection (998.5, 998.51, 998.59, 996.69), peritonitis (567.2-567.29, 567.9), and retroperitoneal infection (567.3-567.39). To be consistent with the NHSN SSI definition,4 diagnosis of cellulitis of the trunk (682.2) or unspecified site (682.9) on the same claim as a CPT-4 code for incision and drainage was considered evidence of SSI. The diagnosis code 682.9 was used as an indicator of SSI only if it was on the same claim line as an abdomen-specific CPT-4 code (11005, 11008, 49020, 49021, 49040, 49041, 49060, 49061) or if it was coded on the same claim as incision and drainage (CPT-4 code 10060, 10061, 10180) by the provider who performed the hernia repair.

The date of onset of SSI was defined according to the timing and location of diagnosis. For SSI newly coded by an inpatient

<table>
<thead>
<tr>
<th>Hernia Site</th>
<th>Laparoscopic Repair</th>
<th>Open Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICD-9-CM</td>
<td>CPT-4</td>
</tr>
<tr>
<td>Inguinal/femoral</td>
<td>17.11–17.13,</td>
<td>49650, 49651</td>
</tr>
<tr>
<td></td>
<td>17.21–17.24,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.21a + (53.00–53.05,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.10–53.17, 53.21,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.29, 53.31, 53.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.31, 53.39</td>
<td></td>
</tr>
<tr>
<td>Umbilical</td>
<td>53.42, 53.43,</td>
<td>49652, 49653</td>
</tr>
<tr>
<td></td>
<td>54.21a + (53.41, 53.49)</td>
<td></td>
</tr>
<tr>
<td>Incisional/ventral</td>
<td>53.62, 53.63,</td>
<td>49654–49657</td>
</tr>
<tr>
<td></td>
<td>54.21a + (53.51, 53.61,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.39, 53.69</td>
<td></td>
</tr>
</tbody>
</table>

*aRequired that 54.21 be on the same claim as the open hernia repair ICD-9-CM procedure code.
facility during the original operative admission, we assigned the
date of SSI to the discharge date if the difference between the
admission and discharge date was 2 days or greater. For SSI
diagnosed during an inpatient readmission, the date of SSI onset
was assumed to be the date of hospital readmission. For SSI
diagnosed initially in an outpatient setting, the onset date was
defined as the first service date with an ICD-9-CM code for SSI.
Procedures with ICD-9-CM diagnosis codes for SSI, peritonitis,
retroperitoneal infection, or sepsis from 30 days before to 1 day
after surgery were excluded owing to preexisting infection.

The observation period for development of SSI was through 90
days after surgery, with earlier censoring for end of insurance
enrollment, subsequent hernia repair, or another abdominal surgery. When censoring for subsequent surgeries, we censored 1 day after the subsequent surgery since SSI coded
the day of or the day after a surgical procedure likely represents
preexisting infection attributable to a previous surgery. Infections
coded with non-abdomen-specific ICD-9-CM diagnosis codes (eg, 998.59) were not classified as SSI if they were first coded
after a subsequent nonabdominal NHSN surgery.

Identification of Hernia Repair with Bowel Obstruction or
Necrosis
We used ICD-9-CM diagnosis codes on the claims coded for
the hernia procedure to identify bowel obstruction (550.1-
550.13, 552-552.29, 552.8, 552.9) and necrosis (550.0-550.03,
551-551.29, 551.8, 551.9). We identified emergency room
utilization associated with bowel obstruction or necrosis by
using place of service codes and Uniform Billing-04 revenue
codes 0450-0459 and 0981 during the surgical admission or
within 7 days of the operation.

Statistical Analysis
Comparisons were performed using the χ² or Fisher exact test
for categorical variables, as appropriate, and the Kruskal-
Wallis for continuous data. All data management and
statistical analyses were performed using SAS, version 9.3
(SAS Institute). This study was approved by the Washington
University Human Research Protection Office.

RESULTS
The final hernia repair population for analysis included
119,973 single-site operations in 116,572 patients with
matching hernia site and surgical approach coded by both
provider and facility. Overall, 80% of the operations were
performed in males; males accounted for 91% of inguinal/femoral
procedures, 72% of umbilical procedures, and 43% of
incisional/ventral procedures. The median age of patients was
46 years (interquartile range, 35–55 years). Nine percent of all
procedures were performed in children 6 months to 17 years
of age with a range from 1.2% for incisional/ventral to 11.4%
for inguinal/femoral hernia repairs. Most procedures were
performed as same-day surgery at a hospital (66%). The per-
centage of laparoscopic hernia repairs increased each year; this
was primarily influenced by inguinal/femoral hernia repair
(Table 2).

Of the 119,973 operations, 64.7% were inguinal/femoral,
20.8% were umbilical, and 14.5% were incisional/ventral
hernia repairs. Among children, 8,864 (79.9%) procedures
were inguinal/femoral, 2,021 (18.2%) were umbilical, and
212 (1.9%) were incisional/ventral hernia repairs. Among
adults, 68,802 (63.2%) procedures were inguinal/femoral,
22,896 (21.0%) were umbilical, and 17,178 (15.8%) were
incisional/ventral hernia repairs. Overall, 15.1% of hernia
procedures were performed laparoscopically, including 21.3%
of inguinal/femoral, 3.6% of umbilical, and 4.0% of incisional/
ventral hernia repairs (Table 3). Ninety-seven percent of
procedures among children were open hernia repairs, com-
pared with 84% of procedures among adults.

Bowel obstruction was present at the time of 16.4% of
procedures (n = 19,633), while necrosis was present in 0.8% of
procedures (n = 900). Among hernia repairs with bowel
obstruction or necrosis, the majority were open (92.6%) rather
than laparoscopic (7.4%) operations. Bowel obstruction was
present in 7.5% of inguinal/femoral, 33.4% of umbilical, and
31.7% of incisional/ventral hernia repairs, while necrosis was
present in 0.8% of inguinal/femoral, 0.5% of umbilical, and
0.9% of incisional/ventral hernia repairs. Twelve percent of
patients with hernia repairs with bowel obstruction or necrosis
were admitted to the hospital through the emergency depart-
ment compared with 3% of those with hernia repairs without
obstruction or necrosis.

SSIs were identified after 1,355 procedures (1.13%). The
rate of SSI was significantly higher among adults compared
with children (1.21% vs 0.30%; P < .001) and significantly
higher among females than males (2.47% vs 0.79%; P < .001).
SSI was first identified from 2 to 30 days after operation in
71.5% of those with infection, while 20.7% of SSIs were
identified from 31 to 60 days, and 7.8% were identified from
61 to 90 days following the hernia repair.

The incidence of SSI differed significantly by anatomic site,
with rates of 0.45% for inguinal/femoral, 1.16% for umbilical,
and 4.11% after incisional/ventral hernia repair (P < .001; Table 3). Compared with inguinal/femoral hernia repairs, the
relative risk of SSI was 2.55 (95% CI, 2.18–2.98) for umbilical
hernia repairs and 9.07 (95% CI, 7.99–10.30) for incisional/
ventral hernia repairs. This trend remained after stratifying by
open versus laparoscopic approach (Table 3).

Overall, the incidence of SSI was 3-fold higher after open
procedures (1.26% [95% CI, 1.280/101.874]) versus laparoscopic
procedures (0.41% [75/18,099]; relative risk, 3.03 [95% CI,
2.40–3.83]). The incidence of SSI was significantly higher for
open versus laparoscopic inguinal/femoral (0.48% vs 0.34%,
P = .020) and incisional/ventral hernia repair (4.20% vs 2.03%,
P = .005). The incidence of SSI after umbilical hernia repair was
not significantly different on the basis of surgical approach
(1.18% after open vs 0.45% after laparoscopic repair, P = .052).
The rate of SSI was significantly higher among hernia repairs with bowel obstruction or necrosis than those without bowel obstruction or necrosis for open inguinal/femoral repair (0.89% vs 0.44%; \(P < .001 \)) and umbilical hernia repair (1.57% vs 0.95%; \(P < .001 \)) (Table 4).

Discussion

To our knowledge, this is the first study to show variation in the incidence of hernia repair SSI by site, surgical approach, and bowel obstruction/necrosis in a large, multicenter, geographically diverse population. Our findings suggest that surveillance for hernia repair SSI rates should be stratified or weighted by operative factors in order to more accurately compare SSI rates among facilities with different patient populations and surgical case mix.

We confirmed previous reports of higher rates of SSI after open versus laparoscopic hernia repair.\(^5-10\) We demonstrated that incisional/ventral and umbilical hernia repair had significantly higher SSI incidence compared with inguinal/femoral hernia repair. We also found higher rates of SSI among open inguinal/femoral and umbilical procedures with bowel obstruction/necrosis.
obstruction or necrosis, but not with open incisional/ventral hernia repairs. It is possible that open incisional/ventral procedures have inherently higher risk of infection owing to the proximity or potential involvement with the umbilicus so that incarceration or necrosis may not confer additional risk. Kaoutzanis et al13 reported overall SSI rates of 5.1% after incarcerated/strangulated ventral/incisional hernia and 4.2% after reducible ventral/incisional hernia repair using the American College of Surgeons National Surgical Quality Improvement Program data. Other studies have reported infection rates over 10% following incarcerated and/or strangulated inguinal/femoral,15 umbilical,16 incisional,16,17 and ventral18 hernia repairs; however, all studies included only acute/emergency procedures and rates of infection in non-incarcerated/nonstrangulated operations were not available for comparison.

Recently new procedure-specific risk indices were incorporated into NHSN surveillance, as described by Mu et al19 in 2011. The herniorrhaphy risk index includes age, American Society of Anesthesiologists score, duration of procedure, sex, and outpatient versus inpatient surgery. The NHSN hernia risk index does not include the operative factors we found to be associated with SSI, namely, anatomic site of hernia, approach, or presence of bowel obstruction/necrosis. We were unable to compare the impact of adding these operative factors to the NSHN index since we could not capture American Society of Anesthesiologists score or duration of surgery with claims data. It is likely that anatomic location of hernia is highly correlated with duration of surgery, since incisional or ventral hernia repair is usually performed at the site of previous surgery and involves a larger incision. In addition, mesh is often used for incisional hernia repair, which would be expected to increase the SSI rate owing to the presence of a foreign body.20 This suggests that incisional/ventral hernia location may be used as a proxy for a more complex operation. Bowel obstruction or necrosis would also be expected to be a proxy for a more complex operation, particularly in inguinal/femoral and umbilical hernia repair, and expected to be associated with higher wound class (clean-contaminated or contaminated).

The inclusion of surgical approach in a risk adjustment index is problematic, since unlike anatomic location, surgical complexity, or obstruction/necrosis, the choice of open versus laparoscopic approach is under the control of the surgeon. Likewise, in some respects duration of procedure is also under the control of the surgeon, since it represents a combination of time spent due to operative complexity and skill of the surgeon. Similarly, the choice to perform surgery in an outpatient facility versus during an inpatient hospitalization is also under the control of the surgeon. Although factors under the control of the surgeon (ie, processes of care) should not be included in risk indices,21 duration of surgery and operating facility (outpatient vs inpatient) are included in the NHSN risk index for hernia repair. If the intent is to risk adjust for fixed patient- and operative-factors, operative approach should not be included in a risk adjustment index. Incisional/ventral hernia location and bowel obstruction/necrosis would be preferable to duration of surgery to adjust for operative complexity, since they are patient-level operative variables that are independent of surgeon skill.

Although the National Surgical Quality Improvement Program and NHSN mandated surveillance for 30 days during the period of our study,4,22 we found that almost 30% of SSIs were first identified more than 30 days after the hernia repair procedure. This suggests that extending the period of surveillance improves detection of SSIs. Beginning in 2013, NHSN expanded the time frame for surveillance after hernia repair to 90 days for deep incisional and organ/space but not superficial incisional SSIs.

By definition, use of claims data for SSI surveillance involves secondary analysis of data collected for billing purposes. Our comparison of SSI rates in open versus laparoscopic umbilical and incisional/ventral operations was hampered by lack of specific codes to identify laparoscopic procedures prior to 2009. Although we excluded complex patients from analysis, underlying differences in patients likely remain that may account for some of the differences in infection rates by site and approach. There is also the potential for misclassification of SSIs, particularly minor infections treated only with antibiotics in an outpatient setting during the 90-day global surgical reimbursement period for providers.23 Thus our calculations for the incidence of SSI are likely underestimates of the true infection rate after these procedures. Our findings may not be generalizable to all hernia procedures since we limited our population to less complex procedures.

Table 4. Comparison of Surgical Site Infection (SSI) Rates after Hernia Repair by Bowel Obstruction/Necrosis

<table>
<thead>
<tr>
<th>Hernia site and surgical approach</th>
<th>No bowel obstruction/necrosis</th>
<th>Bowel obstruction/necrosis</th>
<th>(P^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSI no. (%)</td>
<td>Total procedures</td>
<td>SSI no. (%)</td>
</tr>
<tr>
<td>Inguinal/femoral, laparoscopic</td>
<td>52 (0.33)</td>
<td>15,635</td>
<td>5 (0.56)</td>
</tr>
<tr>
<td>Inguinal/femoral, open</td>
<td>247 (0.44)</td>
<td>55,720</td>
<td>48 (0.89)</td>
</tr>
<tr>
<td>Umbilical</td>
<td>157 (0.95)</td>
<td>16,562</td>
<td>131 (1.57)</td>
</tr>
<tr>
<td>Incisional/ventral</td>
<td>491 (4.16)</td>
<td>11,805</td>
<td>224 (4.01)</td>
</tr>
</tbody>
</table>

\(\chi^{2} \) test comparing SSI rates by presence of bowel obstruction/necrosis within anatomic site.

\(\text{a} \)Fisher exact test.
Strengths of this study include the very large number of procedures from a diverse group of providers and facilities and the rigorous method we used to categorize site and surgical approach by requiring concordant coding from both facility and provider. In contrast to most studies in the literature that reported SSI rates after only single anatomic site procedures, or after procedures that included a mixture of anatomic sites, we applied a uniform method to identify SSIs after categorizing the site and surgical approach in order to compare infection rates across different anatomical sites and surgical approaches. In addition, the use of claims data allowed identification of SSIs after discharge across the spectrum of healthcare providers. This is particularly important for procedures performed in ambulatory settings, since patients may be diagnosed and treated for SSI at a facility other than where the surgery was performed.

We found higher rates of SSI following open compared with laparoscopic hernia repair, incisional/ventral repair, and umbilical repair compared with inguinal/femoral procedures, and higher rates after open inguinal/femoral and umbilical hernia repairs with bowel obstruction/necrosis. Additional studies to determine the impact of adding the anatomic hernia location and bowel obstruction/necrosis to the NHSN risk adjustment index are needed to determine whether adding operative factors will allow for more accurate comparison of SSI rates across facilities. Risk adjustment indices that incorporate operative characteristics will help surgeons better communicate postoperative infection risk to patients undergoing hernia repair.

ACKNOWLEDGMENTS

We thank Cherie Hill for database and computer management support.

Financial support. Agency for Healthcare Research and Quality (grant SR01HS019713 to M.A.O.) Centers for Disease Control and Prevention Episodics Program (grant U54CK00162 to V.J.F.). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the official view of the Agency for Healthcare Research and Quality or the Centers for Disease Control and Prevention.

Potential conflicts of interest. D.K.W. reports consultant work with Centene, Sagentia, and Novaeurus for work outside the submitted manuscript. V.J.F. reports personal fees from Battelle outside the submitted manuscript; her spouse is employed by Express Scripts. M.A.O. reports consultant work with Pfizer, Merck, and Sanofi Pasteur and grant funding through Cubist Pharmaceuticals and Sanofi Pasteur for work outside the submitted manuscript. All other authors report no conflicts of interest relevant to this article.

Address correspondence to Margaret A. Olsen, PhD, MPH, Washington University School of Medicine, Division of Infectious Diseases, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110 (molsen@dom.wustl.edu).

REFERENCES

