Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds
Streptococcus pyogenes skin and soft tissue infection

Zongsen Zou
Washington University School of Medicine in St. Louis

Pardeep Singh
Umeå University

Jerome S Pinkner
Washington University School of Medicine in St. Louis

Chloe L P Obernuefemann
Washington University School of Medicine in St. Louis

Wei Xu
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4

Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation

Zou, Zongsen; Singh, Pardeep; Pinkner, Jerome S; Obernuefemann, Chloe L P; Xu, Wei; Nye, Taylor M; Dodson, Karen W; Almqvist, Fredrik; Hultgren, Scott J; and Caparon, Michael G, "Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds Streptococcus pyogenes skin and soft tissue infection." *Science Advances*. 10, 31. eadn7979 (2024).

https://digitalcommons.wustl.edu/oa_4/3950

This Open Access Publication is brought to you for free and open access by the Open Access Publications at Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Zongsen Zou, Pardeep Singh, Jerome S Pinkner, Chloe L P Obernuefemann, Wei Xu, Taylor M Nye, Karen W Dodson, Fredrik Almqvist, Scott J Hultgren, and Michael G Caparon

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/3950
Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat *Streptococcus pyogenes* skin and soft tissue infection

Zongsen Zou1, Pardeep Singh2, Jerome S. Pinkner1, Chloe L. P. Obernuefemann1, Wei Xu1, Taylor M. Nye1, Karen W. Dodson1, Fredrik Almqvist2*, Scott J. Hultgren1*, Michael G. Caparon1*

We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by *Streptococcus pyogenes*. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against *S. pyogenes*. Treatment of *S. pyogenes* biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of *S. pyogenes* SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating *S. pyogenes* infections.

INTRODUCTION

The emergence of antibiotic resistance threatens health care and agriculture systems worldwide and raises the prospect of a post-antibiotic era. Several factors, including the overuse and misuse of antibiotics, and exposure to environmental reservoirs of antibiotic-resistant bacteria have contributed to rising rates of antibiotic resistance (1, 2). A slowdown in antimicrobial drug development has resulted in reliance on existing antimicrobials, which, when combined with poor antibiotic stewardship, has further exacerbated the development of resistance (3, 4). Thus, there is an urgent need to develop antibiotics that are recalcitrant to resistance development to combat multidrug-resistant pathogens.

Toward this goal, we have developed GmPcides, a new class of synthetic compounds based on a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold. Rational alteration at positions C-2, C-7, and C-8 of the central fragment via various synthetic methodologies has resulted in the development of GmPcides with enhanced antibiotic and drug-like activities (5). Among these is GmPcide PS757 with robust bacteriostatic and bactericidal activities against a broad range of multidrug-resistant Gram-positive pathogens (5), including vancomycin-resistant *Enterococcus faecalis*, methicillin-resistant *Staphylococcus aureus*, multidrug-resistant *Streptococcus pneumoniae*, clindamycin-resistant *Streptococcus agalactiae*, and erythromycin-resistant *S. pyogenes*, all of which are classified as serious or concerning threats by the Centers for Disease Control and Prevention (6). Given the broad-spectrum antibacterial activities of GmPcides against Gram-positive pathogens, the next phase of development is to assess their efficacy for treatment using well-characterized models of Gram-positive infection and biofilm formation.

For this study, we have focused on *S. pyogenes*, a Gram-positive pathogen responsible for more than 500,000 deaths per year, a global burden that approaches that of rotavirus and measles (7). In humans, *S. pyogenes* can cause a wide range of diseases, ranging from mild to severe, including pharyngitis (strep throat), scarlet fever, toxic shock syndrome, acute glomerulonephritis, and rheumatic fever (8–11). Of particular concern are skin and soft tissue infections (SSTIs) that range from superficial infection of the epidermis such as impetigo to severe invasive infections of the dermis and deeper tissues including cellulitis and necrotizing fasciitis (the “flesh-eating disease”) (12). Despite its sensitivity to many different antibiotics, including β-lactams, the treatment of *S. pyogenes* invasive infection is complicated by factors that include its ability to form biofilm and its ability to secrete a myriad number of toxins. Biofilm is an adherent and structured community of bacteria growing within an extracellular polymeric substance that enhances the community’s ability to resist killing by antibiotics (13–15). Toxins produced by *S. pyogenes* play a major role in damaging host tissue and include several membrane-disruptive hemolysins, immuno-modulating superantigens, plasminogen activators, host cell adhesins, complement-modulating proteins, specific and nonspecific proteases, and multiple other degradative enzymes. Because tissue damage affects the efficiency of antibiotics to kill *S. pyogenes*, treatment strategies for necrotizing disease often include an antibiotic that inhibits expression of tissue-damaging toxins in combination with an antibiotic that targets bacterial growth. The latter typically includes a β-lactam (e.g., piperacillin/tazobactam), while the former includes clindamycin (12, 16, 17), which at sublethal concentrations in vitro inhibits the expression of several tissue-damaging toxins. However, the use of clindamycin is now threatened by increasing rates of resistance in health care settings (16–18).

In the present study, we extensively characterized the therapeutic properties of GmPcide PS757 using well-characterized biofilm and murine SSTI models of *S. pyogenes* infection. Our results demonstrate that PS757 was effective against all stages of bacterial growth and biofilm formation in vitro and improved treatment outcomes in a murine SSTI model by decreasing bacterial burdens, reducing levels of tissue damage, attenuating inflammation, and accelerating the rate of wound healing. The sublethal exposure to GmPcides reduced...
virulence factor expression, including the expression of two major virulence factors, the surface associated M protein and the secreted SpeB cysteine protease. Together, these results suggest that GmPcides have considerable promise for preventing and treating S. pyogenes infections.

RESULTS
GmPcide PS757 is active against both nondividing and dividing streptococcal cells
In our previous study, we have identified a GmPcide PS757 with robust antimicrobial activity against a wide range of multidrug-resistant Gram-positive pathogens, including the S. pyogenes that was investigated in the present study (5). The minimum inhibitory concentration (MIC) of 0.78 μM PS757 against S. pyogenes HSC5 strain as determined in the previous study (5) demonstrates its robust bacteriostatic activity. In the present work, we further determined its minimum bactericidal concentration (MBC) against streptococcal cells as 1.56 μM, revealing its effective bactericidal activity as well (Table 1). MIC and MBC concentrations of four types of standard-of-care antibiotics—including penicillin, cefotaxime, vancomycin, and azithromycin against S. pyogenes HSC5—were also measured (Table S1) and compared with PS757, with the results indicating comparable bacteriostatic and bactericidal activities for PS757 and approved antibiotics. Antimicrobial synergy of PS757 with these four antibiotics was examined using checkerboard method and E test. Despite indifferenties were observed for these four pairs of combined antimicrobial treatments, three compounds—including PS757, penicillin, and cefotaxime—were found with two- to fourfold MIC reduction in the combination (Table S2), suggesting the prospect of antimicrobial synergy that future investigations should be directed at in the continuing process of GmPcides development. Moreover, in our previous study of GmPcide activity against E. faecalis, we find that GmPcides could effectively kill stationary phase nondividing cells and have bacteriostatic activity for cells undergoing division in exponential phase (5). In contrast, here, we found that GmPcides were bactericidal against both exponential and stationary phases S. pyogenes, with reductions in colony-forming units (CFU) of >6 logs and >5 logs, respectively (Table 1 and fig. S1). Together, these results demonstrate the robust antimicrobial activities of GmPcide PS757 against S. pyogenes.

GmPcide PS757 induces nucleoid and cell wall abnormalities
A sublethal concentration of PS757 was determined on the basis of both growth curves [optical density at 600 (OD600)] and growth yields (CFU) as 0.4 μM (Fig. S2). The examination of PS757-treated cells by transmission electron microscopy (TEM) revealed that when compared to vehicle-treated [dimethyl sulfoxide (DMSO)] cells, challenge with a sublethal concentration (0.4 μM) and with a bactericidal concentration (20 μM), both induced extensive nucleoid abnormalities characterized by a condensed and filamentous nucleoid structure (Fig. 1A). Consistently, previous studies found

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC</th>
<th>MBC</th>
<th>Exponential</th>
<th>Stationary</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pyogenes HSC5</td>
<td>0.78*</td>
<td>1.56</td>
<td>>6 logCFU reduction</td>
<td>>5 logCFU reduction</td>
</tr>
</tbody>
</table>

*[(5)].

Fig. 1. GmPcide PS757 treatment caused nucleoid and cell wall abnormalities in S. pyogenes cells. (A) S. pyogenes HSC5 cells treated under both sublethal (0.4 μM) and bactericidal (20 μM) concentrations of PS757 exhibited nucleoid abnormality with altered nucleoid structure that was less dense and very filamentous (white arrows). S. pyogenes HSC5 cells treated under bactericidal (20 μM) concentration of PS757 were observed with small dense globular structures at periphery of bacterial cell wall (red arrows), suggesting that PS757 produced cell wall abnormalities. (B) S. pyogenes HSC5 cells treated under bactericidal (20 μM) concentration of PS757 were observed with irregular and heterogeneous cell wall structures, indicating that PS757 induced cell wall damages. DMSO, dimethyl sulfoxide.
that *Staphylococcus aureus* cells under the treatment of different antimicrobial compounds, e.g., nisin (19) and gramicidin S (20), were observed with similar DNA damage featuring condensed, fragmented, and inhomogeneous structures, which may result in impeded chromosome replication and segregation (19, 20). In addition, streptococcal cells treated at the bactericidal concentration (20 μM) displayed numerous small dense globular structures formed at the periphery of the cell wall (Fig. 1A), similar to the observation of blisters and bubbles appearing in the cell envelopes of *Escherichia coli* cells under the treatment antimicrobial peptide gramicidin S in previous publication (20). Moreover, Nile Red–stained streptococcal cells were observed with irregular and heterogeneous cell membrane structures in comparison with the vehicle-treated (DMSO) group (Fig. 1B), suggesting PS757-induced membrane disruption. In summary, our results together with previous findings demonstrate that PS757 may be able to induce nucleoid and cell envelope abnormalities to streptococcal cells, which potentially contribute to its antimicrobial efficacy. Future studies can be directed at investigating the molecular mechanism of PS757, leading to these cell integrity disruptions.

GmpCide PS757 prevents *S. pyogenes* biofilm formation

We used an established model for *S. pyogenes* biofilm formation with brain heart infusion medium (BHI) medium in a 96-well plate format to analyze the efficacy of GmpCides against biofilm. Planktonic growth was measured by OD_{600} (Fig. 2A) and biofilm formation determined using a standard crystal violet (CV) staining assay (Fig. 2B) for cultures in 96-well microplates. In the absence of GmpCide treatment, detectable biofilm began to accumulate at 4 hours after inoculation and continued to develop until reaching maturity at approximately 12 hours (Fig. 2B). *S. pyogenes* biofilm formation was also examined in a culture dish assay characterized by fluorescent confocal microscopy, which showed that a dense biofilm of approximately 9.5 μm in thickness developed at 24 hours after inoculation (Fig. S3). To examine the antibiofilm activity of PS757, cultures were then treated at 4, 7, and 24 hours after inoculation (fig. S4, A to C) with a series of different concentrations of PS757 to examine its activity against different phases of biofilm formation. During the initiation phase (4 hours), PS757 at 0.7 and 1.0 μM was able to prevent both planktonic growth and biofilm formation (Fig. 2C). When added to developing biofilm at 7 hours, 2.0 μM PS757 prevented further planktonic growth and at 5.0 μM arrested further maturation of biofilm (Fig. 2D). Last, when used to treat a fully mature biofilm at 24 hours, a concentration of 20 μM produced >90% decrease in cell viability when measured using a fluorescent vital stain and confocal microscopy after 5 hours of treatment (Fig. 2E). In summary, PS757 was efficacious against all phases of *S. pyogenes* biofilm development including initiation and maturation and had the ability to kill cells in a fully mature biofilm.

GmpCide PS757 ameliorates tissue damage in a murine model of SSTI

The well-characterized murine subcutaneous ulcer model of *S. pyogenes* SSTI was used to evaluate the ability of GmpCide PS757 to treat an active infection. In the acute phase of this model, subcutaneous injection of 10^7 CFU of *S. pyogenes* HSC5 into the flanks of 7-week-old SKH1 hairless mice results in a draining ulcer apparent by 24-hour post-infection (PI) with peak bacterial burdens, measured as recovered CFU, obtained at around day 3 PI. To assess the efficacy of GmpCide treatment, infected mice received a subcutaneous injection of PS757 (1.2 mg/kg) or vehicle (DMSO) adjacent to the site of infection at 2, 24, 48, and 70 hours PI (Fig. 3A). When examined over 3 days, GmpCide-treated mice experienced less infection-related weight loss on day 1 and gained more weight over the period of observation (Fig. 3B). By day 3, treated mice also had considerably reduced tissue damage, as shown by a significant decrease in ulcer area as compared to vehicle-treated controls (Fig. 3, C and D), a significant reduction in bacterial burden of approximately 1 log (Fig. 3E), and a reduction in serum levels of pro-inflammatory cytokines tumor necrosis factor–α (TNFα) (Fig. 3F) and interleukin-6 (IL-6) (Fig. 3G), but not IL-1β (Fig. 3H). Immunofluorescence microscopy characterizations of thigh tissue samples from both untreated and treated mice revealed the accumulation of streptococcal and neutrophil cells at the infection site, with elevated amounts observed in the vehicle-treated mice compared with the PS757-treated group (Fig. 3I).
and fig. S5). A prior study evaluates subcutaneous injection of several different antibiotics for treatment of *S. pyogenes* SSTI using the murine subcutaneous infection model, with azithromycin showing the most robust efficacy (21). Comparison to the current study indicated that GmPcide PS757 was as effective in reducing tissue damage as these standard-of-care antibiotics. Moreover, further investigations can be directed at examining the ability of GmPcides for increasing inflammation early, and recruiting more neutrophils to the infection site could help to examine whether the drug also have prophylactic potency in treating *S. pyogenes* SSTI, which could be an interesting topic for follow-up. Together, these data show that treatment with GmPcide PS757 has efficacy for improving outcomes over the acute phase of SSTI.
GmPcide PS757 treatment accelerates healing kinetics

To test the effect of GmPcides following the acute phase, mice were treated with PS757 or vehicle alone as described above but were then monitored over a period of 12 days (Fig. 4A). When tissue damage was examined, ulcers in vehicle-treated mice obtained a maximum area at approximately 6 days PI, characterized by the formation of a hard eschar consisting of dry necrotic tissue on the lesion surface (Fig. 4, B and C). In contrast, ulcer area in PS757-treated mice reached maximum area at day 3 and starting from day 2 was significantly smaller than those in vehicle-treated mice (Fig. 4, B and C). Furthermore, while the ulcers in the vehicle control group maintained a relatively constant size, those in the PS757 group diminished in size over the course of 12 days (Fig. 4, B and C). Evidence of accelerated healing in PS757-treated mice came from examination of eschars, where in the vehicle control group, only 21% of eschars (4 of 19 mice) had sloughed off the ulcer surface with new and healthy skin underneath by day 12 (Fig. 4D). In contrast, eschars began sloughing off from PS757-treated mice starting at day 6, and by day 12, 75% of mice had lost their eschars (15 of 20), which were replaced with new and healthy skin (Fig. 4D). While the major effect of GmPcide treatment was on the amelioration of tissue damage, multiple injections of GmPcides over the course of infection did decrease bacterial burdens by an average of 1.3 logs (Fig. 4E).

Since optimization of pharmacokinetics was not the goal of this study, this suggests that GmPcides can be further refined to be even more effective in bacterial clearance. Together, these results demonstrated that PS757 can both limit the degree of tissue damage, as well as accelerate bacterial clearance and wound healing in *S. pyogenes* murine SSTI.

GmPcide PS757 has antivirulence properties

As described above, reduced tissue damage and accelerated wound healing in GmPcide-treated mice did not directly correlate with a reduction in bacterial burdens. This suggests that PS757 has a potent “antivirulence activity” that functions to inhibit the expression of key virulence factors that contribute to tissue damage. This was tested by performing a comparative transcriptomic analysis of bacteria during in vitro culture with a concentration of PS757 that does not inhibit growth. Comparisons were made between cultures in the stationary phase of growth, since prior studies have shown that this condition most closely represents the bulk transcriptome from bacteria in lesions at 3 days PI (22, 23). Following 24 hours of culture in media supplemented with 0.4 μM PS757 or vehicle only (DMSO), RNA was extracted and processed for RNA sequencing (RNA-seq). A principal components analysis (PCA) (24) of triplicate samples for each of the PS757 and vehicle only treatment groups showed distinct...
separation (Fig. 5A), demonstrating that PS757 induced distinct transcriptome differences. Analysis of differentially expressed genes (DEGs; \(|\log_2(FC)\) > 0.5; \(P < 0.05\)) (data S1) identified 75 down-regulated genes (50 genes with an annotated protein function and 25 genes annotated as encoding a “hypothetical protein”) and 277 up-regulated genes (237 genes with an annotated protein function and 40 genes annotated as encoding a hypothetical protein) (Fig. 5B). Of the most significantly regulated genes (\(|\log_2(FC)\)| and \(-\log(P) > 99\%\) confidence intervals upper limits), nine genes were down-regulated (seven genes with annotated protein function and two genes annotated as encoding a hypothetical protein), and 33 genes were up-regulated (32 genes with annotated protein function and 1 gene annotated as encoding a hypothetical protein) (Fig. 5B and table S3). The group of highly up-regulated genes (fig. S6) featured two ribosomal protein-associated pathways, \(rps\) and \(rpl\), which encode the 30S and the 50S subunits of the bacterial ribosome (70S) that contribute to protein synthesis (25). Others include \(isaA\), similar to an antigenic, cell wall–associated autolysin \(S. aureus\) (26, 27), and \(brpA\), a regulator of biofilm function in \(Streptococcus mutans\) (15, 28). Other up-regulated genes were found to be related to cellular biosynthetic and metabolic processes in general. No key virulence or antibiotic resistance associated determinants of \(S. pyogenes\) were identified from the highly up-regulated group of genes (fig. S6). The significantly down-regulated gene group identified \(emm5\) (genomic locus: GPBJDOFB_01691) as the most down-regulated gene (Fig. 5, C and D), which encodes the M protein, a cell wall–associated surface protein that plays multiple roles in \(S. pyogenes\) infection (29, 30). Another prominently down-regulated gene was \(speB\) (genomic locus: GPBJDOFB_01704) (Fig. 5B), which encodes a secreted cysteine protease and multifunctional toxin (31–34). Analysis by quantitative reverse transcription polymerase chain reaction (RT-qPCR) confirmed that PS757 significantly inhibited expression of \(emm5\) and \(speB\) (Fig. 5, E and F) and significantly reduced protease activity in culture supernatants (Fig. 5F).

Statistics were performed with Mann-Whitney U test. \(P \leq 0.05\) is considered as statistically significant. **\(P < 0.01\) and ***\(P < 0.001\).
that may have contributed to its effective treatment of *S. pyogenes* SSTI in mice.

DISCUSSION

In this study, we found that GmPcide PS757, a member of a novel family of antimicrobial compounds synthesized around a peptidomimetic ring-fused 2-pyridone scaffold, could prevent *S. pyogenes* biofilm formation and effectively treat *S. pyogenes* SSTI in a murine model. Analyses of *S. pyogenes* treated with PS757 revealed antivirulence properties that involved inhibiting the expression of key virulence factors including M protein and the SpeB protease, as well as the induction of nucleoid and cell wall damage. PS757’s antivirulence and anti-biofilm activities likely contributed to its efficacy for treatment of *S. pyogenes* SSTI.

In addition to their antivirulence activity, GmPcides are bacteriostatic and/or bactericidal against a broad range of Gram-positive species (5); however, their mechanism of action is unknown. Characterization of activity against *E. faecalis* has shown that GmPcides are bacteriostatic against exponentially growing cells but bactericidal against stationary phase cells (5). This latter mechanism resembles the process of fratricide, where activation of the GeE protease and the ATN autolysin, also known as autolysis A (AtlA), leads to the lysis of a subpopulation of cells to release DNA for the promotion of biofilm formation (35). In the present study, we found that GmPcides were bactericidal against both exponential and stationary phases *S. pyogenes*, revealing its robust bactericidal activity against all phases of streptococcal cells. Moreover, when treated with either sublethal or bactericidal concentrations of PS757, *S. pyogenes* cells were observed with nucleoid abnormalities featuring a condensed and filamentous structure, similar to what has been reported for the fluoroquinolone antibiotic nalidixic acid and the lantibiotic nisin, which can cause DNA condensation and fragmentation by targeting the DNA gyrase in *S. aureus* (19, 36). Exposure of *S. pyogenes* to a bactericidal concentration of PS757 induced cell wall abnormalities with numerous dense globular structures formed at the periphery of the cell wall, which resembles the blisters and bubbles that appear in the cell envelopes of *E. coli* cells that have been treated with the antimicrobial peptide gramicidin S (20). Notably, the mechanism of action and molecule structure of PS757 demonstrated similarities to another antibiotic, daptomycin, which is highly active against *S. pyogenes* and acts by irreversibly binding to the bacterial cell membrane that causes depolarization and thus results in cell death. Daptomycin has been approved in the United States for treating *S. pyogenes* SSTI and no daptomycin-resistant group A streptococcus (GAS) isolate has been reported to date (37–39). In summary, the antimicrobial activity of GmPcide PS757 may be associated with targeting multiple pathways in *S. pyogenes*, including adverse membrane stress caused by inhibition of an essential pathway, including DNA replication (40), cell wall biosynthesis (20, 41), or production of specific proteins (42).

Consistent with other reports that have identified efflux systems as determinants of intrinsic multidrug resistance against both Gram-negative and Gram-positive pathogens, with major facilitator superfamily and resistance nodulation cell division family transporters having the ability to expel a broad range of antimicrobial drugs (43–45), we have also identified efflux systems that contribute to resistance against GmPcides. Examples include ImrB and Imo2589, where mutations that presumably alter their efflux activities contribute to the development of GmPcide resistance in *E. faecalis* and *Listeria monocytogenes*, respectively. GmPcides with reduced rates of resistance are under active development.

GmPcides are one of only a few classes of antibiotics that can kill nondividing bacterial cells (5). Here, we show that they also are one of the few antibiotics that are effective at killing cells in biofilm. It has been shown that up to 90% of *S. pyogenes* strains collected from both invasive and noninvasive infections were able to form biofilm (46). *S. pyogenes* can form biofilm on a variety of host surfaces and tissues following a complex process involving four development stages, including the cell attachment, microcolony formation, maturation, and biofilm dispersal, and that cells residing within the biofilm matrix exhibit higher antibiotic resistance (47). Biofilm-associated *S. pyogenes* infections often result in persistent host carriage and recurrent infections and are a major reason leading to treatment failure following therapy with available standard-of-care antibiotics (14, 46, 48). Moreover, numerous virulence factors, including the SpeB cysteine protease, are up-regulated in biofilm, suggesting biofilm potentially enhances pathogenesis (13, 22). Thus, the capability of PS757 to effectively inhibit biofilm formation at all developmental stages, together with its robust antimicrobial potency against both exponentially dividing and stationarily nondividing cells, may have played a role in its ability to treat *S. pyogenes* SSTI.

The ability of PS757 to inhibit expression of the SpeB toxin and expression of other virulence factors may also have contributed to its efficacy in treatment of SSTI. Toxins are thought to play an important role in the tissue damage that accompanies SSTI, and this is the basis for therapies that combine a bactericidal β-lactam antibiotic with clindamycin or the newly discovered 2S-alkyne, which have been shown to inhibit toxin expression in vitro (31, 49–53). The mechanism of clindamycin inhibition of toxin expression may involve its ability to alter the expression of several regulators of toxin transcription (54). While the mechanism through which GmPcides inhibit *S. pyogenes* virulence factor expression is unknown, it has been shown that a GmPcide-related compound can alter the activity of PrFA, a transcriptional regulator of virulence factor expression in *L. monocytogenes* (55, 56). It is known that regulation of virulence in *S. pyogenes* is multifactorial, involving transcriptional factors that respond to nutrient availability, chemical stressors, temperature, oxygen host immune components, and stress-related responses (57–60). Whether GmPcides directly target transcription regulators, induce a stress-related response, or both to regulate virulence in *S. pyogenes* remains to be determined. Notably, the therapeutic approach by combining β-lactam antibiotics with clindamycin is being rendered less effective by rising rates of clindamycin resistance. Another approach has been to use passive immunotherapy with intravenous pooled human immunoglobulin (53), which may both neutralize toxins and promote neutralization of antiphagocytic and biofilm-promoting virulence factors such as M protein. Thus, the ability of GmPcides to inhibit expression of SpeB, M protein, and other virulence factors may have contributed to PS757’s ability to treat SSTI by reducing tissue damage, accelerating bacterial clearance, stimulating ulcer healing, and alleviating host inflammation to promote a quicker recovery. Overall, these results demonstrate that GmPcides hold great promise in preventing and treating *S. pyogenes* SSTI. Our findings will help direct the continuing development and optimization of GmPcide compounds toward a novel class of antibiotics.
MATERIALS AND METHODS

Ethics statement

All animal experimentation in this study was conducted following the National Institutes of Health guidelines for housing and care of laboratory animals and performed in accordance with institutional regulations after pertinent review and approval by the Animal Studies Committee at Washington University School of Medicine (protocol #22-0307).

Bacterial strains, culture, and GmPcide

All experiments described used S. pyogenes HSC5 (originally obtained from H.S. Courtney, University of Tennessee, Memphis), a M14 serotype strain with no known antibiotic resistance, whose genome has been determined (22, 61–63). This strain is robustly expresses the SpeB cysteine, and its virulence has been extensively characterized in several different experimental models, including the murine SSTI model (8, 9). Unless otherwise specified, liquid cultures used C medium (22) and were inoculated from several colonies picked from a C medium plate that had been incubated overnight at 37°C under the anaerobic conditions produced by a commercial anaerobic generator (Becton Dickinson, 260683). Routine liquid culture was performed using 15-ml conical tubes containing 10 ml of media that were incubated under static conditions at 37°C. GmPcide PS757 was synthesized from a 2-pyridone scaffold with as previously reported (5) and was chosen for further studies in the current work.

Determination of MIC and MBC

The MIC and MBC represent the lowest concentrations of GmPcide and antibiotics that inhibited growth and viability, respectively. The MIC and MBC concentrations for GmPcide PS757 and four types of standard-of-care antibiotics (21, 64)—including penicillin (GOLDBIO, P-304-50), cefotaxime (GOLDBIO, C-104-1), vancomycin (GOLDBIO, V-200-25), and azithromycin (MilliporeSigma, PHR1088)—were examined by broth microdilution MIC and MBC assays using BHI medium following the methods established by the Clinical and Laboratory Standards Institute (5, 65).

Determination of antimicrobial synergy

The antimicrobial synergy of GmPcide PS757 with four antibiotics—e.g., penicillin (GOLDBIO, P-304-50), cefotaxime (GOLDBIO, C-104-1), vancomycin (GOLDBIO, V-200-25), and azithromycin (MilliporeSigma, PHR1088)—was examined by the broth microdilution MIC and MBC assays using BHI medium following the methods established by the Clinical and Laboratory Standards Institute (5, 65).

Determination of sublethal GmPcide concentrations

Cells from an overnight culture grown described above were harvested by centrifugation, washed with an equal volume of sterile saline (MilliporeSigma, S8776), and resuspended to equal volume of fresh sterile saline. This suspension was used to inoculate fresh C-medium at a dilution of 1:1000 that was then dispensed at 200-μl aliquots into the wells of a 96-well plate (22). At 7 and 14 hours after inoculation, exponential and stationary S. pyogenes cells were treated with vehicle alone (DMSO) (Sigma-Aldrich, D2650) or with PS757 (20 μM) for an additional 12 hours of incubation, and CFUs were enumerated by quantitative plating.

Determination of sublethal GmPcide concentrations

Cells from an overnight culture grown described above were harvested by centrifugation, washed with an equal volume of sterile saline (MilliporeSigma, S8776), and resuspended to equal volume of fresh sterile saline. This suspension was used to inoculate fresh C-medium at a dilution of 1:1000 that was then dispensed at 200-μl aliquots into the wells of a 96-well plate to which GmPcide PS757 was added at concentrations ranging from 0 to 5.0 μM. The OD600 of the culture was measured using a spectrophotometer (Beckman Coulter, DU-800) over the course of 24 hours, and CFUs were enumerated by quantitative plating. The highest functional sublethal GmPcide concentration was determined as the highest concentration of one antimicrobial agent that does not inhibit the streptococcal cells growth.

Electron microscopy

Using the microplate assay described above, streptococci were cultured with a sublethal (0.4 μM) concentration of PS757 for 24 hours or were exposed to a bacitracinal concentration by first culturing cells in the absence of GmPcide overnight, followed by the addition of PS757 (20 μM) and continuing the incubation for an additional 5 hours. Cells were prepared and examined using TEM as described in detail (68–71). Briefly, cells were harvested by centrifugation and fixed by the addition 2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc.) in 100 mM sodium cacodylate buffer (pH 7.2) to the bacterial pellet for 1 hour at room temperature. Samples were washed in sodium cacodylate buffer and postfixed in 1% osmium tetroxide (Polysciences Inc.) for 1 hour and then rinsed in deionized water before en bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc.) for 1 hour. Following several deionized water rinses, samples were dehydrated in a graded series of ethanol and embedded in Eponate 12 resin (Ted Pella Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc.), stained with uranyl acetate and lead citrate, and visualized on a JEOL 1200 EX transmission electron microscope (JEOL USA Inc.) equipped with an AMT 8 megapixel digital camera and AMT Image Capture Engine V602 software (Advanced Microscopy Techniques).

Confocal microscopy

Using the microplate assay described above, streptococci were first cultured in the absence of GmPcide overnight, followed by the addition of PS757 (20 μM) or vehicle (DMSO) and additional incubation for 5 hours. Cells were prepared and examined using fluorescence confocal microscopy (72). Briefly, cells were harvested by centrifugation, washed with and resuspended in saline (MilliporeSigma, S8776), stained with Nile Red (5 μg/ml; Invitrogen, N1142) for 1 hour, washed with and resuspended in saline, mounted on microscopy slide (VWR) using Prolong Gold (Invitrogen, P36935), and visualized using a Zeiss LSM 880 Confocal Laser Scanning Microscope, as previously described (73–75).
Biofilm culture and quantitation
Culture in 96-well plates in BHI medium (Thermo Fisher BD, DF0037-07-0) at 37°C were monitored for planktonic growth and biofilm formation by OD600 and staining with CV (68, 69, 76), respectively. For the latter, planktonic culture was removed by aspiration, and the wells were stained with a 0.5% CV solution for 10 min, washed with deionized water, air-dried on absorbent paper overnight, and extracted with 33% acetic acid (Sigma-Aldrich, 695092) for 10 min. Extracts were then diluted 20-fold (in 33% acetic acid), and their absorbance at 595 nm was determined using a spectrophotometer (Beckman Coulter, DU-800).

GmPcide treatment of biofilm
Characterization of biofilm cultures indicated that S. pyogenes HSC5 biofilm in BHI medium had three distinct phases, initiation, development, and maturation, which occurred at 4, 7, and 24 hours after inoculation, respectively (Fig. 2B). GmPcide antibiofilm activity was then determined by the addition of PS757 as follows (fig. S3, A to C): At 4 and 7 hours, PS757 was added to 96-well plate cultures at concentrations ranging from 0 to 20 μM. At 12 hours after inoculation, planktonic and biofilm growth was measured, as described above. For mature biofilms, cultures were prepared using 5 ml of medium in a 35-mm-diameter culture dish (MatTek, P35G-0-14-C). At 24 hours after inoculation, planktonic and biofilm growth was measured, as described above.

Subcutaneous mouse infection and GmPcide treatment
Subcutaneous murine infection was conducted as previously described (8–11) with the following modifications: For 3-day infections, seven-week-old female SKH1 hairless mice (Charles River Laboratories) were injected subcutaneously with 10^7 CFU into both the left and right rear thighs, followed by four treatments by subcutaneous injection of vehicle (DMSO) or PS757 (20 μM) for an additional 5 hours of incubation. Bacterial viability was then assessed by confocal microscopy using a LIVE/DEAD fluorescent probe (Thermo Fisher Scientific, L7012).

Histopathology and immunofluorescence
Histopathological characterization of infected tissue was conducted as previously described (79–82). Briefly, ulcers and surrounding tissue were excised and stored in 10% neutral-buffered formalin solution (Sigma-Aldrich, HT5012) for no more than 3 days. Tissue samples were washed in phosphate-buffered saline, fixed in methacarn (60% methanol, 30% chloroform, and 10% glacial acetic acid), embedded in paraffin, and then sectioned. The resulting tissue sections were dewaxed in xylene and ethanol (100, 95, and 70%), followed by an antigen retrieval step using 10 mM sodium citrate solution with 0.05% Tween 20 at pH 6.0 and blocked in 5% bovine serum albumin solution (Sigma-Aldrich, 05470). Sections were stained with 4′,6-diamidino-2-phenylindole (Invitrogen, P36935) to reveal nuclei and fluorescent antibody conjugates to stain: (i) neutrophils with Ly-6G (BioLegend, 127610) and (ii) bacteria with an anti-Streptococcus group A polyclonal antibody (Invitrogen, PA1-73056). Staining was visualized using a Zeiss Axio Imager M2 immunofluorescence microscope.

RNA sequencing
Microplate (96-well) culture in C medium was conducted as described above with the addition of 0.4 μM PS757 or vehicle (DMSO). At 24 hours, multiple wells were harvested and pooled for further processing, with the experiment repeated in triplicate. Extraction of RNA used the Direct-zol RNA Miniprep Plus Kit (Zymo Research, R2072) with the quality of the purified RNA determined by spectrophotometry (NanoDrop 2000, Thermo Fisher Scientific). Libraries for Illumina sequencing were prepared using the FastSelect RNA Kit (QIAGEN, 334222), according to the manufacturer’s protocol, and sequences were determined using an Illumina NovaSeq 6000. Basecalls and demultiplexing were performed with Illumina’s bcl2fastq software and a custom python demultiplexing program with a maximum of one mismatch in the indexing read. RNA-seq reads were then aligned to the Ensembl release 101 primary assembly with STAR version 2.7.9a (83). Gene counts were derived from the number of uniquely aligned unambiguous reads by Subread:featureCount version 2.0.3 (84). The isoform expression of known Ensembl transcripts were quantified with Salmon version 1.5.2 (85) and assessed for the total number of aligned reads, total number of uniquely aligned reads, and features detected. The ribosomal fraction, known junction saturation, and read distribution over known gene models were quantified with RSeQC version 4.0 (86).
genes, the Limma voomWithQualityWeights transformed log2 counts per million expression data were then analyzed via weighted gene correlation network analysis (WGCNA) with the R/Bioconductor package WGCNA (90). Briefly, all genes were correlated across each other by Pearson correlations and clustered by expression similarity into unsigned modules using a power threshold empirically determined from the data. An eigengene was then created for each de novo cluster, and its expression profile was then correlated across all coefficients of the model matrix. Because these clusters of genes were created by expression profile rather than known functional similarity, the clustered modules were given the names of random colors where gray is the only module that has any pre-existing definition of containing genes that do not cluster well with others. The information for all clustered genes for each module was then combined with their respective statistical significance results from Limma to determine whether or not those features were also found to be significantly differentially expressed.

Quantitative reverse transcription polymerase chain reaction

RNA was prepared as described above, with five replicates collected for each treatment condition. Reverse transcription used iScript Reverse Transcription Supermix (Bio-Rad, 1708840) with the thermocycler (Applied Biosystems, A24812) programmed as follows: (i) priming for 5 min at 25°C, (ii) RT for 20 min at 25°C, and (iii) RT inactivation for 1 min at 95°C to acquire cDNA. After reverse transcription, 12.5 ng of cDNA was mixed with primers specific to each gene (Table 2), and PCR was conducted using the iTaq Universal SYBR Green Supermix as recommended by the manufacturer (Bio-Rad, 1725121). All qPCR assays were performed on a CFX96 Real-Time System (Bio-Rad) using the following protocol: a 5-min polymerase activation and DNA denaturation at 95°C, another 10-s DNA denaturation at 95°C, 30 cycles of a 30-s annealing at 60°C, and ending with a melt curve with 5 s at 65°C first and 5 s each at a 0.5°C increase between 65°C and 95°C, with threshold cycles (Ct) obtained at the end of the reactions. Each sample was run in triplicate with average Ct values calculated. Relative expression compared to control was determined by the ΔΔCt method (91).

Protease assay

SpeB is secreted by *S. pyogenes* as an inactive 40-kDa zymogen that is converted into a 28-kDa active protease by autocatalytic cleavage or other host and streptococcal proteases (58). The activity of active SpeB in the extracellular space of *S. pyogenes* was measured by digestion of casein using a microplate method as previously described (23, 92, 93). Microplate culture was performed as described above in C medium with the addition of 0.4 μM PS757 or vehicle (DMSO). After 24 hours, extracellular protease activity was determined in bacterial culture supernatant by a method that measures the increase in relative fluorescence generated by the proteolytic cleavage of fluorescein isothiocyanate–casein (Sigma-Aldrich, C0528). Un inoculated C medium was used to determine background values.

Statistics

Unless otherwise stated, conclusions were based on the comparison of means generated from at least three technical and three biological replicates that were tested for significance using Mann Whitney U test and conducted using GraphPad Prism 9.0 (GraphPad software). $P ≤ 0.05$ was considered significant.

Supplementary Materials

This PDF file includes:

- Figs. S1 to S6
- Tables S1 to S3

Other Supplementary Material for this manuscript includes the following:

- Data S1

REFERENCES AND NOTES

Acknowledgments: We thank W. Beatty for assistance with TEM. Funding: This work was supported by the NIH RO1DK51406 (to S.J.H. and M.G.C.), RO1AI34847-01A1 (to F.A.), 1U19AI157797-01 (to S.J.H., F.A., and M.G.C.), and R21AI163825 (to M.G.C.). It was also supported by the Swedish Research Council 2018-04589 and 2021-05040 (to F.A.), the Kempe Foundation SMK-1755 (to F.A.), and the Erling-Persson Foundation (to F.A. and P.S.). Parts of this study were supported under the framework of the JIPAMR-Joint Programming Initiative on Anti-microbial Resistance 2018-00969 (to F.A.). Authors contributions: Conceptualization: Z.Z., P.S., J.P.H., K.W.d., S.J.H., and M.G.C. Methodology: Z.Z., P.S., J.P.H., K.W.d., F.A., S.J.H., and M.G.C. Investigation: Z.Z., P.S., J.P.H., K.W.d., S.J.H., and M.G.C. Visualization: Z.Z., P.S., J.P.H., K.W.d., S.J.H., and M.G.C. Writing—original draft: Z.Z., S.J.H., and M.G.C. Writing—review and editing: Z.Z., P.S., T.M.N., K.W.d., F.A., S.J.H., and M.G.C. Competing interests: S.J.H., M.G.C., and F.A. have ownership interest in QureTech Bio AB, which licenses PS757, and may benefit if the company is successful in marketing GmPcides. S.J.H. and F.A. serve on the Board of Directors for QureTech Bio AB. The remaining authors declare that they have no competing interests.

Submitted 2 January 2024
Accepted 27 June 2024
Published 2 August 2024
10.1126/sciadv.9797

Downloaded from https://www.science.org at Washington University on August 05, 2024.