Two susceptibility loci identified for prostate cancer aggressiveness

Gerald Andriole
Washington University School of Medicine in St. Louis
et al.

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/4111
Two susceptibility loci identified for prostate cancer aggressiveness

Sonja I. Berndt1,*, Zhaoming Wang1,2,*, Meredith Yeager1,2, Michael C. Alavanja1, Demetrius Albanes1, Laufey Amundadottir1, Gerald Andriole3, Laura Beane Freeman1, Daniele Campa4, Geraldine Cancel-Tassin5, Federico Canzian6, Jean-Nicolas Corun1, Olivier Cussenot5, W. Ryan Diver7, Susan M. Gapstur7, Henrik Grönberg8, Christopher A. Haiman9, Brian Henderson9, Amy Hutchinson9, David J. Hunter10, Timothy J. Key11, Suzanne Kolb12, Stella Koutros1, Peter Kraft10, Loïc Le Marchand13, Sara Lindström10, Mitchell J. Machiela1, Elaine A. Ostrander14, Elio Riboli15, Fred Schumacher9, Afshan Siddiq16, Janet L. Stanford12,17, Victoria L. Stevens7, Ruth C. Travis11, Konstantinos K. Tsilidis18, Jarmo Virtamo19, Stephanie Weinstein1, Fredrik Wilkund8, Jianfeng Xu20, S. Lilly Zheng20, Kai Yu1, William Wheeler21, Han Zhang1, African Ancestry Prostate Cancer GWAS Consortium*, Joshua Sampson1, Amanda Black1, Kevin Jacobs1, Robert N. Hoover1, Margaret Tucker1 & Stephen J. Chanock1

Most men diagnosed with prostate cancer will experience indolent disease; hence, discovering genetic variants that distinguish aggressive from nonaggressive prostate cancer is of critical clinical importance for disease prevention and treatment. In a multistage, case-only genome-wide association study of 12,518 prostate cancer cases, we identify two loci associated with Gleason score, a pathological measure of disease aggressiveness: rs35148638 at 5q14.3 (RASA1, \(P = 6.49 \times 10^{-9} \)) and rs78943174 at 3q26.31 (NAALADL2, \(P = 4.18 \times 10^{-8} \)). In a stratified case–control analysis, the SNP at 5q14.3 appears specific for aggressive prostate cancer (\(P = 8.85 \times 10^{-5} \)) with no association for nonaggressive prostate cancer compared with controls (\(P = 0.57 \)). The proximity of these loci to genes involved in vascular disease suggests potential biological mechanisms worthy of further investigation.
Prostate cancer is the most common cancer diagnosed in men and second leading cause of cancer death among men in the United States; however, little is known about why the disease progresses in some men but not in others. Determining which cancers are likely to progress and cause death is of critical clinical importance. Prostate cancer aggressiveness is thought to be partially determined by genetic factors, as studies have shown an increased risk of death from prostate cancer among offspring with a family history of fatal disease. The definitions of aggressive prostate cancer differ between studies; however, one important and widely used descriptor is tumour grade at diagnosis, as measured by the Gleason score, which ranks pathological changes, namely, tumour differentiation, and has been associated with disease progression and survival. Linkage studies using the Gleason score as a measure of aggressiveness have implicated several chromosomal regions, including 1p, 5q, 6q, 7q and 19q; however, no specific genetic mutations have been conclusively identified. Although previous genetic association studies have identified or suggested markers for aggressive prostate cancer, these single-nucleotide polymorphisms (SNPs) have either also been associated with nonaggressive disease, making them nonspecific, or have not been convincingly replicated.

Genome-wide association studies (GWAS) have successfully identified roughly 100 loci associated with prostate cancer risk; however, most loci have minor allele frequencies (MAFs) >10% and, so far, none conclusively differentiate aggressive from nonaggressive disease. To discover additional loci associated with risk and to identify loci specific for aggressive prostate cancer, here we conduct a multistage GWAS for prostate cancer among men of European ancestry using the Illumina HumanOmni2.5 Beadchip, which provides greater coverage of uncommon SNPs for individuals of European ancestry than microarrays used in previous GWAS of prostate cancer. We identify two novel loci associated with the Gleason score, a pathological measure of prostate cancer aggressiveness, that are located near genes involved in vascular development and maintenance.

Results
Case-control association results for prostate cancer. A total of 4,600 cases and 2,941 controls of European ancestry from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial were genotyped using the Illumina HumanOmni2.5 Beadchip and passed rigorous quality-control criteria (see Methods). Baseline characteristics of the cases and controls are shown in Supplementary Table 1. On the basis of a linear regression model, men with higher Gleason scores were more likely to be diagnosed at an older age (P<0.001). Of the SNPs genotyped, 1,531,807 passed quality-control filters with a minimum call rate of 94%. Genotypes were analysed using regression models, assuming a log-additive genetic model and adjusting for age and significant eigenvectors. A quantile-quantile (Q–Q) plot of the P values for prostate cancer risk on the basis of logistic regression models showed enrichment of small P values compared with the null distribution, even after removing SNPs within 500 kb of the previously published loci (Supplementary Fig. 1, λ=1.007). Fifty-six of the previously published loci were nominally associated with risk (P<0.05) in stage 1 (Supplementary Table 2), and two previously published loci at chromosomes 8q24 and 17q12 reached genome-wide significance in stage 1 (P<5×10⁻⁸, Supplementary Fig. 2). Rare variant analysis using SKAT⁴⁷ for SNPs with MAF<2% revealed five gene regions with P<5×10⁻⁸; however, all appeared to be artefacts driven by poorly clustered SNPs.

Sixteen promising SNPs with P<2×10⁻⁵ on the basis of the logistic regression models were taken forward for Taqman replication in 5,139 cases and 5,591 controls from seven studies (see Methods); however, none replicated for prostate cancer overall (Supplementary Table 3). A more extensive replication was undertaken using a custom Illumina iSelect microarray comprising 51,207 SNPs selected for prostate cancer, 10,458 SNPs for other phenotypes (for example, obesity) and 1,435 candidate SNPs (see Methods). In stage 2, a total of 6,575 cases and 6,392 controls from five studies were genotyped with the custom iSelect and passed quality-control criteria (Supplementary Table 1). In silico data were also available for stage 3 for 1,204 nonoverlapping cases and 1,231 controls from a previous GWAS of advanced (defined as Gleason score ≥8 or stage C/D) prostate cancer, giving a total of 12,379 cases and 10,564 controls. As not all SNPs included on the iSelect were directly genotyped in stage 1 or stage 3, both scans were imputed using the 1000 Genomes Project release version 3 (ref. 28) and IMPUTE2 (ref. 29).

In a combined meta-analysis of the primary scan together with the custom SNP microarray replication and in silico look-up in a previous GWAS, 13 loci reached genome-wide significance (P<5×10⁻⁸); however, each of them confirmed a previously reported locus (Supplementary Table 4). Although not reaching genome-wide significance, two new suggestive loci at chromosome 16q22.2 (PKD1L3, rs12597458, P=9.67×10⁻⁸) and 6p22.3 (CDKL1, rs12198220, P=2.13×10⁻⁷) were also identified (Supplementary Table 5, Supplementary Fig. 3). Further studies are needed to confirm these findings.

Case-only results of disease aggressiveness. To evaluate disease aggressiveness, we modelled the Gleason score as a quantitative trait among the prostate cancer cases (n=4,545) included in stage 1 in a case-only analysis using linear regression. We chose to model the Gleason score as a quantitative trait as opposed to a dichotomous outcome in order to maximize our statistical power to detect variants that differentiate aggressive from nonaggressive disease. In stage 1, the Q–Q plot of the association P values revealed a small number of SNPs with P values less than expected under the null distribution (Supplementary Fig. 4, λ=0.998). We evaluated the SNPs previously reported to be associated with the risk of aggressive disease; however, none were significantly associated with the Gleason score among cases (Supplementary Table 6). As part of the custom SNP microarray replication, SNPs with a P value <0.001 from the linear regression model of the Gleason score as a quantitative trait, filtered using r²>0.8, were taken forward for the custom SNP microarray replication in 5,355 cases with the Gleason score from five studies (stage 2). One novel locus at chromosome 5q14.3 (rs35148638) reached genome-wide significance in the meta-analysis of stages 1 and 2. Five SNPs, including two moderately correlated SNPs at chromosome 5q14.3, with P values <2×10⁻⁶, were taken forward for replication in 2,618 cases from the Cancer of the Prostate in Sweden study. In the meta-analysis of the Gleason score results for all three stages including a total of 12,518 cases, three SNPs reached genome-wide significance: rs35148638 at 5q14.3 (P=6.49×10⁻⁹), rs62113212 at 19q13.33 (P=5.85×10⁻⁹) and rs79843174 at 3q26.31 (P=4.18×10⁻⁸; Table 1). The SNPs at chromosome 5q14.3 and 3q26.31 represent novel loci (Fig. 1), whereas the chromosome 19q13.33 locus has been previously identified to be associated with prostate cancer risk overall.

Stratified case-control association results for novel loci. To evaluate the extent to which these three loci (identified from our case-only study of the Gleason score) could be associated with aggressive prostate cancer risk, we conducted a case-control...
analysis stratified by the overall Gleason score (that is, scores of 2–10), recognizing that our power to detect an association at genome-wide significance would be reduced. We did not have data on the individual components of Gleason 7 from most studies in order to subclassify them as 3 + 4 or 4 + 3, and so in order to clearly differentiate between aggressive and non-aggressive disease, we stratified our cases by those with Gleason scores ≤ 6 (nonaggressive) and those with Gleason ≥ 8 (aggressive). Although it did not reach genome-wide significance, rs35148638 at 5q14.3 showed an increased risk with aggressive prostate cancer \(P = 8.85 \times 10^{-5} \); Supplementary Table 7). There was no association for nonaggressive disease \(P = 0.57 \) and the \(P \) value for heterogeneity between the two outcomes was modestly significant \(P = 2.89 \times 10^{-5} \). As rs78943174 at 3q26.31 was not common among controls with a MAF of 1–2%, we had limited power to detect an association with aggressive disease; however, we did observe a marginal positive association between rs78943174 and aggressive prostate cancer risk \(P = 0.07 \) and the \(P \) value for heterogeneity between aggressive and nonaggressive prostate cancer risk was nominally significant \(P = 0.006 \). Consistent with previous studies\(^{30} \), the SNP at 19q13.33 was strongly associated with nonaggressive prostate cancer \(P = 3.51 \times 10^{-13} \) with a weak association in the opposite direction for aggressive prostate cancer \(P = 0.01 \) and highly significant \(P \) value for heterogeneity \(P = 1.44 \times 10^{-10} \).

As African Americans have an elevated risk of prostate cancer, we evaluated the extent to which these three SNPs were associated with aggressive prostate cancer risk in African Americans using data from the African American Prostate Cancer GWAS Consortium (see Methods). In this smaller study, none of the SNPs were significantly associated with the risk of aggressive disease (Supplementary Table 8), and only rs62113212 at chromosome 19q13.33 was nominally associated with nonaggressive disease \(P = 0.04 \). However, the direction of the effects for African Americans for the SNPs at 3q26.31 and 19q13.33 were consistent with what we observed among Europeans.

Further examination of novel loci. Examination of the three identified loci for the Gleason score using data from ENCODE revealed significant DNase enrichment in lymphoblastoid and embryonic myoblast cells and evidence for altered motifs (Supplementary Table 9). Rs62113212 at 19q13.33 is in strong linkage disequilibrium with a missense SNP (rs17632542, \(r^2 = 1 \)).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Nearest gene(s)</th>
<th>Chr</th>
<th>Position</th>
<th>Risk allele(^1)</th>
<th>Other allele</th>
<th>Stage</th>
<th>RAF(^2)</th>
<th>No. of subjects</th>
<th>Beta</th>
<th>SE</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel loci</td>
<td></td>
</tr>
<tr>
<td>rs35148638</td>
<td>RASA1, CCNH</td>
<td>5q14.3</td>
<td>86610989</td>
<td>C</td>
<td>A</td>
<td>Stage 1</td>
<td>0.25</td>
<td>4,545</td>
<td>0.085</td>
<td>0.024</td>
<td>3.09 \times 10^{-4}</td>
</tr>
<tr>
<td>&</td>
<td></td>
</tr>
<tr>
<td>rs78943174</td>
<td>NAALADL2</td>
<td>3q26.31</td>
<td>175257236</td>
<td>C</td>
<td>T</td>
<td>Stage 1</td>
<td>0.985</td>
<td>4,545</td>
<td>0.361</td>
<td>0.085</td>
<td>2.44 \times 10^{-5}</td>
</tr>
<tr>
<td>&</td>
<td></td>
</tr>
<tr>
<td>rs62113212</td>
<td>KLK3</td>
<td>19q13.33</td>
<td>51360840</td>
<td>T</td>
<td>C</td>
<td>Stage 1</td>
<td>0.063</td>
<td>4,544</td>
<td>0.177</td>
<td>0.043</td>
<td>4.00 \times 10^{-5}</td>
</tr>
</tbody>
</table>

*Results from case-only analysis of the Gleason score as a quantitative trait using linear regression.
†Risk allele is the allele associated with an increased risk of aggressive disease (that is, higher Gleason score).
\(\text{RAF}\) frequency of the risk allele.

No significant expression quantitative trait locus (eQTL) associations were observed using data from the Genotype-Tissue Expression (GTEx) Project\(^31\); however, for a proxy of rs35148638 at 5q14.3 (rs4421140, \(r^2 = 0.82 \)), we did find nominally significant eQTL associations with RASA1 and CCNH expression and meqTL associations with CpG sites in RASA1 and CCNH in adipose tissue\(^32,33\).

Discussion Linkage studies of prostate cancer aggressiveness have reported suggestive evidence of linkage to chromosome 5q (refs 5–8) and specifically 5q14 in TMPRSS2-ERG fusion-positive families\(^34\). The 5q14.3 SNP identified in this study (rs35148638), associated with disease aggressiveness, is intronic to the RAS p21 protein activator 1 (RASA1) gene, which suppresses RAS function, helps regulate cellular proliferation and differentiation\(^35\), and controls blood vessel growth\(^36\). Rare mutations in RASA1 lead to capillary malformation-arteriovenous malformation and Parkes–Weber syndrome\(^37\) as well as lymphatic abnormalities\(^38\), providing an intriguing plausibility for the gene in aggressive prostate cancer. The SNP is also \(~79 \text{kb downstream of the cyclin H (CCNH) gene, which encodes a regulatory component of a cyclin-dependent (CDK)-activating kinase necessary for RNA polymerase II transcription, nucleotide excision repair and p53 phosphorylation}\(^39\). CCNH has been shown to be differentially expressed between androgen-sensitive and androgen-resistant prostate cancer cell lines\(^40,41\), suggesting a role in prostate cancer progression.

The 3q26.31 SNP (rs78943174) is intrinsic to the N-acetylated alpha-linked dipeptide-like2 (NAALADL2) gene, which is part of the glutamate carboxypeptidase II family. This gene is also related to prostate-specific membrane antigen, a well-characterized diagnostic indicator and potential drug target of prostate cancer\(^42\). NAALADL2 has been shown to promote a pro-migratory and pro-metastatic microenvironment, and higher tumour expression of NAALAD2 is associated with higher Gleason score and poor survival following radical prostatectomy\(^43\). Variants in NAALADL2 have also been identified to be associated with Kawasaki disease\(^44\), a paediatric, autoimmune vascular disease. The SNP is also \(~117 \text{kb telomeric of the microRNA, MIR4789, which is predicted to target several genes involved in the insulin resistance (for example, IRS1, PK3RI)}\) among others\(^45,46\). A previous GWAS of prostate cancer

Table 1 | Loci associated with prostate cancer aggressiveness as measured by the Gleason score among cases only.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Nearest gene(s)</th>
<th>Chr</th>
<th>Position</th>
<th>Risk allele(^1)</th>
<th>Other allele</th>
<th>Stage</th>
<th>RAF(^2)</th>
<th>No. of subjects</th>
<th>Beta</th>
<th>SE</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel loci</td>
<td></td>
</tr>
<tr>
<td>rs35148638</td>
<td>RASA1, CCNH</td>
<td>5q14.3</td>
<td>86610989</td>
<td>C</td>
<td>A</td>
<td>Stage 1</td>
<td>0.25</td>
<td>4,545</td>
<td>0.085</td>
<td>0.024</td>
<td>3.09 \times 10^{-4}</td>
</tr>
<tr>
<td>&</td>
<td></td>
</tr>
<tr>
<td>rs78943174</td>
<td>NAALADL2</td>
<td>3q26.31</td>
<td>175257236</td>
<td>C</td>
<td>T</td>
<td>Stage 1</td>
<td>0.985</td>
<td>4,545</td>
<td>0.361</td>
<td>0.085</td>
<td>2.44 \times 10^{-5}</td>
</tr>
<tr>
<td>&</td>
<td></td>
</tr>
<tr>
<td>rs62113212</td>
<td>KLK3</td>
<td>19q13.33</td>
<td>51360840</td>
<td>T</td>
<td>C</td>
<td>Stage 1</td>
<td>0.063</td>
<td>4,544</td>
<td>0.177</td>
<td>0.043</td>
<td>4.00 \times 10^{-5}</td>
</tr>
</tbody>
</table>

*Results from case-only analysis of the Gleason score as a quantitative trait using linear regression.
†Risk allele is the allele associated with an increased risk of aggressive disease (that is, higher Gleason score).
\(\text{RAF}\) frequency of the risk allele.
reported a suggestive association with a SNP at 3q26.31 (ref. 47); however, this SNP is not in linkage disequilibrium with the SNP identified in our study ($r^2 = 0.003$).

The chromosome 19q13.33 (KLK3) locus has been previously associated with prostate cancer risk overall18. Although several studies have suggested that the risk may differ by disease aggressiveness30,48–50, this study shows for the first time a genome-wide significant difference between aggressive and nonaggressive disease as measured by the Gleason score. KLK3 encodes the prostate-specific antigen (PSA) protein. The C allele of rs62113212 has been shown to be associated with higher PSA levels48, suggesting that the association observed with the SNP is related to early prostate cancer detection.

Although one of our goals was to identify uncommon variants for prostate cancer, we did not identify any new independent SNPs with a MAF <10%. We did, however, identify a suggestive locus at chromosome 6p22.3 (rs12198220), which is 98 kb downstream of CDKAL1. A pooled linkage study of prostate cancer previously reported suggestive evidence of linkage to this region51. Interestingly, SNPs at this locus have been associated with the risk of type 2 diabetes, adding to the list of susceptibility regions shared between prostate cancer and type 2 diabetes52. We also discovered a new suggestive locus at 16q22.2, which is in strong linkage disequilibrium with a missense variant (rs3213422, $r^2 = 0.74$) in dihydro-orotate dehydrogenase (quinone) gene (DHODH), which encodes an enzyme necessary for the biosynthesis of pyrimidines and cell proliferation. Further studies are needed to confirm these suggestive loci.

In this study, we used the Gleason score to differentiate between nonaggressive and aggressive prostate cancer. Gleason score is a powerful prognostic factor and predictor of disease behaviour; however, substantial changes in Gleason scoring have

![Figure 1](https://example.com/figure1.png)

Figure 1 | Regional association plots of the two novel loci associated with the Gleason score as a quantitative trait among cases. (a) Chromosome 5q14.3 (rs35148638) and (b) chromosome 3q26.31 (rs78943174). Shown are the $-\log_{10}$ association P values from the linear regression model for the 4,545 cases in stage 1 (dots and lower purple diamond) and $-\log_{10}$ P values from the linear regression model for the 12,518 cases in the combined stage 1–3 analysis (upper diamond).
changed since it was first proposed over 40 years ago, resulting in shifts towards higher scores. In addition, differences in scoring between pathologists remain. Whether these changes in Gleason scoring ultimately result in better outcome prediction and classification of disease from an aetiological standpoint remains to be seen. Unlike for breast cancer where classification by receptor status has resulted in significant advances in the aetiological understanding of the disease, clearly defining aggressive prostate cancer remains difficult. Regardless, the Gleason score is an important component of prostate cancer risk assessment and is the most commonly used tool for assessing prostate cancer aggressiveness.

In conclusion, we identified two new loci associated with prostate cancer aggressiveness as measured by the Gleason score in a case-only study of prostate cancer. Although additional studies are needed to confirm these findings and reveal the underlying biological mechanism, the proximity of these SNPs to genes involved in vascular disease, cell migration and metastasis makes them intriguing loci for further study.

Methods

Stage 1: discovery population and genotyping. A new GWAS was conducted in prostate cancer cases and controls of European ancestry from the PLCO Cancer Screening Trial. Details of the randomization trial for early detection of lung, colorectal and ovarian cancers. In brief, 76,693 men were enrolled in the trial from 10 centres in the United States from 1993 to 2001 and randomized to receive annual screening with PSA for 6 years and digital rectal examination for 4 years or referred to their physician for routine care. Men with positive screening results were referred to their primary physician for further evaluation. All prostate cancer cases detected during screening or reported during the trial were pathologically confirmed, and information on stage and grade was abstracted from medical records. Blood or buccal cells were collected from participants in the trial. The study was approved by the institutional review board at each centre and National Cancer Institute (NCI); all study participants provided informed written consent.

A total of 4,838 prostate cancer cases and 3,053 controls of European ancestry, matched on age and year of randomization, were selected for stage 1. The sample size was chosen on the basis of statistical power estimates for detecting a modest association in a multistage GWAS. Including quality-control duplicates, 4,222 samples were genotyped on the Illumina HumanOmni2.5 Beadchip. Extensive quality-control metrics were employed to ensure that only high-quality genotype data were analysed using the GLU software package. Samples with a missing rate >6% (n = 323) or heterozygosity <16% or >21% (n = 7) were excluded, and 221 samples were removed because of technical issues. Gender discordance on the basis of chromosome X heterozygosity was evaluated; however, no subjects were removed. One unexpected duplicate (>99.9% concordance) and 28 full sibling pairs on the basis of an identity-by-descent threshold of 0.70 were detected and one subject from each pair was removed (n = 29). Ancestry was estimated using a set of population informative markers and the GLU struct.admix module, which is similar to the method proposed in (ref. 58). Five subjects (three cases and two controls) were determined to have <80% European ancestry and were removed from analysis (Supplementary Fig. 5). Principal components analysis was performed to evaluate population substructure in greater detail (Supplementary Fig. 6). Two significant eigenvectors (P < 0.05) were included in the analytic model. Expected duplicates yielded 99.9% concordance. SNPs without genotype calls, a completion rate <94%, Hardy–Weinberg proportion test P value <1 x 10^-8 or MAF <1% were excluded, leaving 1,531,807 SNPs for analysis. After quality-control exclusions, 4,600 cases and 2,840 controls remained. An additional 101 male controls from PLCO Cancer Screening Trial, genotyped previously on the HumanOmni2.5 (ref. 59) were also included, resulting in 4,600 cases and 2,941 controls for the primary prostate cancer analysis (Supplementary Table 1 and Supplementary Fig. 7). Of those cases, 4,545 men had information on the Gleason score available. Regression models were fit adjusting for age, principal components and significant principal components. Only SNPs with an information score >0.3 were included in the meta-analysis.

Stage 2a: in silico replication of prostate cancer findings. For replication of the overall prostate cancer results, nonoverlapping in silico GWAS data were available from 1,204 cases and 1,231 controls of European ancestry from four studies from a previous GWAS of advanced prostate cancer, European Prospective Investigation into Cancer and Nutrition (EPIC; 431 cases/426 controls) and Multiethnic Cohort (244 cases/259 controls), Physicians Health Study (PHS; 198 cases/255 controls) and American Cancer Society Cancer Prevention Study II (CPSII; 231 cases/291 controls not included in stage 1) (Supplementary Fig. 7). Subjects were genotyped using the Illumina HumanHap610K and extensive quality-control filters applied as described previously. All data were imputed using IMPUTE2 (ref. 29) and 1000 Genomes Project release 3 (ref. 28) as the reference panel, and data analysed using SNPTEST assuming a log-additive genetic model and adjusting for age and principal components. Only SNPs with an information score >0.3 were included in the meta-analysis.

Stage 2b: additional replication for Gleason score findings. For further replication of the results for the Gleason score, we genotyped five of the most significant SNPs in the Cancer of the Prostate Cancer GWAS Consortium22. Although it was not feasible to evaluate the Gleason score as a quantitative trait among cases in this consortium, we were able to obtain stratified association results for cases with Gleason ≤ 6 versus controls and cases with Gleason ≥ 8 versus controls.

Using 1000 Genomes Project data, we identified SNPs with r2 > 0.8 with the lead SNP identified in the GWAS and evaluated whether they were nonsynonymous coding variants. We utilized HaploReg to assess noncoding functional markers in the regions containing our lead SNPs and related proxy SNPs (r2 > 0.8; Supplementary Table 9). We explored possible cis-eQTL associations with our lead SNPs and related proxy SNPs (r2 > 0.8) in adipose tissue, using expression data from the Genotype-Tissue Expression (GTEx) Project and all available tissues, including whole blood, in the GTEx. We also examined possible methylation eQTL associations in adipose tissue using the MuTHER resource33.

Acknowledgements

This work was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH (Z01-CP010119, ZIA-CP010152-11) and in part by the National Institute of Environmental Health Sciences (Z01-ES049030). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services nor does mention of trade names, commercial products or organization indicate endorsement by the US Government. We thank Drs Christine Berg and Philip Prorok, Division of Cancer Prevention, NCI, the screening center investigators and staff of the PLCO screening trial, Mr Thomas Riley and staff at Information Management Services Inc. and Ms Barbara O'Brien and staff at Westat Inc. for their contributions to the PLCO. Finally, we are grateful to the study participants for donating their time and making this study possible.

Author contributions

Additional information

Accession number: The GWAS data from stage 1 is available on dbGaP under accession number phs000882.v1.p1.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Berndt, S. I. et al. Two Susceptibility Loci Identified for Prostate Cancer Aggressiveness. Nat. Commun. 6:6889 doi: 10.1038/ncomms7889 (2015).

22University of Arizona College of Medicine and University of Arizona Cancer Center, Tucson, AZ, USA. 23Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. 24Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA. 25Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, USA. 26James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD, USA. 27Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA. 28Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. 29Korle Bu Teaching Hospital, Accra, Ghana. 30University of Ghana Medical School, Accra, Ghana. 31Westat, Rockville, MD, USA. 32School of Public Health, University of California, Berkeley, CA, USA. 33Cancer Prevention Institute of California, Fremont, CA, USA. 34Stanford University School of Medicine and Stanford Cancer Institute, Palo Alto, CA, USA. 35Department of Urology, Northwestern University, Chicago, IL, USA. 36International Epidemiology Institute, Rockville, MD, USA. 37The Translational Genomics Research Institute, Phoenix, AZ, USA. 38Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados. 39SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 40Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA. 41Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. 42Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. 43Department of Surgery, Makerere University College of Health Sciences, Kampala, Uganda.