BioPen: direct writing of functional materials at the point of care

Yu Long Han
Xi'an Jiaotong University

Jie Hu
Xi'an Jiaotong University

Guy M. Genin
Washington University School of Medicine in St. Louis

Tian Jian Lu
Xi'an Jiaotong University

Feng Xu
Xi'an Jiaotong University

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Han, Yu Long; Hu, Jie; Genin, Guy M.; Lu, Tian Jian; and Xu, Feng, "BioPen: direct writing of functional materials at the point of care." Scientific Reports. 4, 4872. (2014).
https://digitalcommons.wustl.edu/open_access_pubs/4289

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
BioPen: direct writing of functional materials at the point of care

Yu Long Han1,2,* Jie Hu1,2,* Guy M. Genin3,4, Tian Jian Lu2 & Feng Xu1,2

1The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, 2Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China, 3Department of Neurological Surgery, School of Medicine, Washington University in St. Louis, St. Louis 63130, MO, USA, 4Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis 63130, MO, USA.

Rapid and precise patterning of functional biomaterials is desirable for point-of-care (POC) tissue engineering and diagnostics. However, existing technologies such as dip-pen nanolithography and inkjet printing are currently unsuitable for POC applications due to issues of cost and portability. Here, we report the development of ‘BioPen’, a portable tool for continuous, defined and scalable deposition of functional materials with micrometer spatial resolution and nanolitre volumetric resolution. BioPen is based upon the ballpoint pen but with multiple “ink sources” (functional material solutions) and with an apparatus that can be optimized for writing living cells, proteins, nucleic acids, etc. We demonstrate POC detection of human immunodeficiency virus type 1 (HIV-1) nucleic acid by writing on paper with BioPen using “ink” consisting of nucleic acid probes and nucleic acid-modified gold nanoparticles. We also demonstrate POC tissue engineering by writing a continuous pattern of living, functional, interconnected cells with a defined extracellular environment. Because it is simple, accurate, inexpensive and portable, BioPen has broad potential for POC detection of diagnostic biomarkers, and for POC engineering of tissues for a range of healing applications.

Laboratory-based regenerative medicine1–3 and diagnostics4–9 have progressed significantly over the past decade, in part due to advances in fine control of the deposition of functional materials. The emerging fields of POC tissue engineering and diagnostics, however, are limited by the challenge of precisely controlling the spatial pattern and concentration of nucleic acids10, nanoparticles11, proteins12, and cells13 outside of a laboratory environment. Standard laboratory techniques for patterning (e.g., lithography) have limitations both because functional materials are generally sensitive to environmental conditions, and because these techniques are too cumbersome for POC applications. For instance, conventional lithography techniques such as microcontact printing, capillary micromolding, and microtransfer molding require conditions including hard vacuum, high temperature, ultraviolet irradiation, and strong solvents that are not suitable for POC applications. Maintaining functionality of materials, especially biomaterials, is challenging under these conditions14. Soft lithography techniques are compatible with a broader range of functional materials, but are similarly inadequate for POC applications due to the need for cumbersome laboratory equipment15.

A second class of technologies for patterning functional materials in the laboratory involves writing and printing. The dip-pen uses an “ink”-coated atomic force microscope (AFM) tip to “write” molecules such as nucleic acid with tens of nanometer resolution, and has been used for single biomolecular detection16–18. However, efforts to scale up to the micrometer scale needed for tissue engineering have not succeeded, and AFM is not yet suitable for POC applications19,20. Technologies to adapt a conventional writing implement to writing of functional materials include a microscale “pencil” for writing of single-walled carbon nanotubes to detect airborne particulates21, but technology to usefully embed biomolecules and living cells into solid “pencil lead” has not yet been developed. A ballpoint pen has been developed to write electrodes for flexible electronics22–24, but writing of a functional biomaterial has not yet been achieved.

BioPen was developed to enable versatile, portable and precise patterning of functional materials using functional, liquid “ink”. The precursors of several such inks were stored in the four tubular, mechanically-selected cartridge reservoirs of a commercial ballpoint pen. These cartridge reservoirs were emptied, cleaned, and sterilized, filled with functional inks and covered with a layer such as oil to prevent evaporation (Fig. 1a–c).

With Biopen, functional materials could be patterned controllably and quantitatively. Line width and mean volume per unit length varied depending upon the ink, the substrate, the diameter of the steel ball that regulated
ink flow in a cartridge, and the writing speed, but did not vary with writing pressure. On standard cellulose-fiber printer paper, the width and volume of a written line of rhodamine in phosphate buffered saline (PBS) could be controlled by modulating writing speed and ball size. For a 380 μm ballpoint pen at a writing speed of 4 cm/s, the accuracy of a 329 μm width line was ± 3 μm (95% CI) with 103 ± 7 nL/cm (95% CI). Line width increased with ball diameter and decreased with writing speed (Fig. S1). BioPen was also effective and accurate in writing materials over nitrocellulose membranes and glass (Fig. S2a). Accuracy over the entire range of writing speeds tested (2–10 cm/s for 500 μm ball size, providing 88–253 nL/cm, Fig. S2b) was well within the range needed for applications such as POC detection. Surprisingly, accuracy was not affected by writing pressure over the normal physiologic range of writing force. The range of writing forces we measured amongst 10 subjects was 0.6–1.6 N, but spatial and volumetric resolution did not vary significantly over the range of 0.1–3.5 N (Fig. S2c); forces above 3.5 N damaged the paper. A 500 μm ballpoint pen with a writing speed of 6 cm/s produced repeatable lines of width 354 ± 37 μm and volume 112 ± 20 nL/cm (95% CI). BioPen retained all features of a normal ballpoint pen, with user-dependent microscale writing accuracy (Fig. S3).

We next evaluated the degree to which BioPen could deposit specified concentrations of living cells, proteins, and nanoparticles of interest for POC applications. As baseline experiments for comparison to useful functional materials, we studied writing of glass beads and robust cancer cells. Glass beads with diameters of 9–13 μm could be written on a glass substrate with final density directly proportional to the bead concentration within the ink (Fig. S4, initial concentrations of 0.05–5 mg/mL in PBS). Living malignant MCF-7 cells could be written on a Petri dish with cell density proportional to the cell concentration within the cartridge (Fig. S5). Viability of these cells varied slightly with the ball diameter but was always greater than 80% and remained nearly constant after 5 days of culture (Fig. S5).

A central challenge with POC tissue engineering applications, and indeed with all bottom-up tissue engineering approaches, is synthesis of tissue elements with long, interconnected networks of active and living cells. Cell noodles with artificial ECM represent a major success in this area, but must be synthesized in a laboratory environment and are thus not suitable for POC applications. To
demonstrate writing of engineered tissue suitable for POC wound healing applications, lines of fibroblasts embedded in a collagen hydrogel were written on a Petri dish, followed by culture at body temperature (37°C) for 10 min for polymerization. Over the course of several hours, fibroblasts formed remodeled, scar-like scaffolds (Fig. 2) with mature E-cadherin connections, demonstrating POC synthesis of long, interconnected networks of active and living cells. Viability was similar to that seen with cancer cells, demonstrating a continuous tissue element suitable for potential wound healing applications.

To demonstrate the feasibility and functionality of BioPen for POC diagnostics, we designed ink for detection of nucleic acid associated with the human immunodeficiency virus type 1 (HIV-1) (Fig. 3). Three cartridges were developed: two filled with capture and control probe solutions, respectively, and a third with a gold nanoparticle probe solution. Capture and control probe solutions were nucleic acid-protein complexes in PBS, prepared using biotinylated single strand nucleic acid (24-mer) and streptavidin. Gold nanoparticle probes were a gold nanoparticle-nucleic acid conjugate solution, prepared using gold nanoparticles and thiolated single-strand nucleic acid.

Figure 2 | Point-of-care tissue engineering. (a) Writing scar patch assays (3T3 fibroblasts and collagen hydrogel) on a Petri dish. Phase contrast images of cells in one scar patch immediately after writing (b) and after 24 hours of culture (c and d). Fluorescent immunostaining for F-actin (e), E-cadherin (f) and DAPI (g). The merged image (h) shows a mature cellular network with E-cadherin connections.

Figure 3 | Application of BioPen to point-of-care diagnostics. (a) Fabrication of a lateral flow test strip using BioPen. (b) Rapid detection of HIV-1 nucleic acid at different concentrations: 200 nM, 100 nM, 50 nM, 25 nM, 10 nM of target nucleic acid, and 200 nM of control nucleic acid (from left to right). Au-NP-DNA probe: gold nanoparticle-thiolated oligonucleotide conjugate.
acid (24-mer), re-dispersed in an eluent buffer (20 mM Na3PO4, 5% BSA, 0.25% Tween 20, 10% sucrose). Capture and control probe solutions were written on the nitrocellulose membrane of a blank lateral flow test strip as test and control lines. Gold nanoparticle probe solution was written on the conjugate pad. The lateral flow test strip was immersed in 80 μL of SSC buffer (4×) containing a prescribed amount of target or control nucleic acid. As buffer migrated along the lateral flow test strip, clear red band(s) were formed within about 15 min (Fig. 3b). The detection limit was approximately 10 nM. This is comparable to existing disposable nucleic acid biosensors29, but with the advantages associated with a compact, portable pen whose cartridges can be preserved at low temperature for years before use.

BioPen provides a flexible, precise, quantitative, and inexpensive platform for patterning functional materials at the POC. The technology is sufficiently versatile to allow layers of cells and proteins to be written on various substrates, and is thus useful for POC tissue engineering applications. BioPen further overcomes three challenges encountered when using state-of-the-art inkjet type printing of cells and extracellular matrix proteins. First, BioPen enables a continuous stream of cells and extracellular matrix proteins by directly writing, overcoming the complex synchronization between the movement of nozzle and the flow of liquid (Fig. 1a and Fig. 2). Second, BioPen involves direct contact with the substrate, enabling precise patterning in cases when the substrate deforms or displaces appreciably due to the deposited biomaterial. Third, BioPen can write on curved surfaces, which is challenging for current printing technology.

BioPen is especially promising for inexpensive, POC diagnostics, which we consider to be a critical need. For example, technologies of faces, which is challenging for current printing technology.

Writing particles. We prepared different concentrations (0.05, 0.5, 5 mg/mL) of glass beads in PBS solution and filled them into three different 700 μm-stall bar cartridges. Then we directly wrote on the surface of Petri dish and imaged using invert phase contrast microscopy (Olympus X81).

Writing tissues. Cells were harvested and cultured using standard procedures described elsewhere30. Briefly, MCF-7 cells were cultured in RPMI-1640 culture medium supplemented with FBS (10%, vol/vol) and penicillin/streptomycin (1%, vol/vol) in humid conditions with 5% CO2. Cells were harvested using trypsin (0.25%) and re-suspended in 10X PBS to reach final concentrations of 0.5, 1, and 2 million cells/mL. We filled these three cell suspensions with different concentrations into three different 700 μm-stall bar cartridges, wrote directly onto the surface of a Petri dish, and imaged using invert phase contrast microscopy (Olympus X81). Cell numbers were quantified from images using IPP. Cell viability was tested directly after writing using a live/dead staining kit, following the manufacturer’s instructions (Invitrogen Corporation, Carlsbad, US). Briefly, 4 μL ethidium homodimer (2 mM) and 1 μL calcine AM (4 μM) were added into 2 mL PBS to form a working solution. 30 μL of this working solution was added to cells written by BioPen and incubated at 37°C for 30 min. Finally the cells were imaged using fluorescent microscopy (Olympus X81) and cell viability was analyzed using IPP. All assays were undertaken in a humid environment.

For long term culture, cells were placed directly into incubator after writing. Four hours later, culture medium was added to the Petri dishes. Cell viability was tested again on day 5 using the aforementioned live/dead staining assay. NIH/3T3 fibroblasts were cultured in DMEM high glucose culture medium and harvested as above. Collagen type I solution (from mouse tails, Shengyou Biotechnological Co., Hangzhou, China) was prepared according to the product instruction. All the reagents and utensils were precooled on ice. Briefly, 40 μL collagen (5 mg/mL in acetic acid) was added to a 1.5 mL tube, followed by adding 2.4 μL NaOH (0.1 M) to the collagen solution with a quick mixing. 4.6 μL PBS (10X) and 60 μL collagen suspension (10 million cells per mL) were added to the solution respectively. The cell suspension (with collagen at final concentration of 0.5 mg/mL) was injected into 700 μm-stall bar cartridges. Cells encapsulated in collagen were then written onto the surface of a Petri dish (could be assisted by a pressure controller if necessary) and cultured at 37°C for 10 min before culture medium was added to the Petri dish.

To check the development of a continuous network of cells, we visualized E-cadherin, F-actin and cell nuclei with immunofluorescence according to the manufacturer instructions. Briefly, the cells encapsulated in collagen were fixed with 4% formalin at room temperature for 10 min, then permeabilized with 0.3% Triton X-100 at 4°C for 5 min. 5% BSA (PM Biomedicals, Auckland, New Zealand) was applied at 37°C for 1 hr to block nonspecific recognition. The E-cadherin polyclonal antibody (diluted ration 1:100) was added to the cells and incubated at 4°C overnight. The secondary antibody (diluted ratio 1:100) was added to the cells and incubated at room temperature for 1 hour. Thereafter, F-actin was stained with 100 nM phalloidin (Cytoskeleton, Denver, USA) at room temperature for another 30 min. Finally, DAPI was added to the cells and incubated at room temperature for 10 min. Cells were gently washed with PBS between each step to avoid cross-contamination and to reduce fluorescent background. The cells were observed using a confocal microscope (LSM 700, ZEISS).
containing 165 μL of 2 mg/mL streptavidin PBS solution, 29 μL of PBS and 22 μL of ethanol. The control probe (dry powder, 22.7 nmol) was dissolved in 227 μL of mixing solution containing 173 μL of 2 mg/mL streptavidin PBS solution, 31 μL of PBS and 23 μL of ethanol. The final concentration of capture and control probe solutions were both 100 μM.

Acknowledgments
This work was financially supported by the National 111 Project of China (B06024), the Major International Joint Research Program of China (11120101002), the National Natural Science Foundation of China (11372243), the International Science & Technology Cooperation Program of China (2013DFG02930), the Key Project of Chinese Ministry of Education (113045), South Wisdom Valley Innovative Research Team Program, International Science & Technology Cooperation Program of China (2013DFG02930), and Fundamental Research Funds for the Central Universities. GMG was also partially supported by the National Institutes of Health (R01HL110950). FX was also partially supported by the China Young 1000 Talent Program and Program for New Century Excellent Talents in University (NCET-12-0457).

Author contributions
Y.L.H., J.H. carried out the experiments. All authors reviewed the manuscript. Y.L.H. and J.H. contributed equally to this work.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Han, Y.-L., Hu, J., Genin, G.M., Lu, T.J. & Xu, F. BioPen: direct writing of functional materials at the point of care. Sci. Rep. 4, 4872; DOI:10.1038/srep04872 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/