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Abstract

Cognitive measures that are sensitive to biological markers of Alzheimer disease (AD) pathology are needed to
(a) facilitate preclinical staging, (b) identify individuals who are at the highest risk for developing clinical symptoms, and
(c) serve as endpoints for evaluating the efficacy of interventions. The present study assesses the utility of two cognitive
composite scores of attentional control and episodic memory as markers for preclinical AD pathology in a group of
cognitively normal older adults (N = 238), as part of the Adult Children Study. All participants were given a baseline
cognitive assessment and follow-up assessments every 3 years over an 8-year period, as well as a lumbar puncture within
2 years of the initial assessment to collect cerebrospinal fluid (CSF) and amyloid tracer Pittsburgh compound-B scan for
amyloid imaging. Results indicated that attentional control was correlated with levels of Aβ42 at the initial assessment
whereas episodic memory was not. Longitudinally, individuals with high CSF tau exhibited a decline in both attention
and episodic memory over the course of the study. These results indicate that measures of attentional control and episodic
memory can be used to evaluate cognitive decline in preclinical AD and provide support that CSF tau may be a key
mechanism driving longitudinal cognitive change. (JINS, 2015, 21, 573–583)
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INTRODUCTION

There is substantial evidence indicating that Alzheimer
disease (AD) pathology (amyloid plaques and neurofibrillary
tangles) can accumulate for decades before the onset of
clinically detectable symptoms (Bateman et al., 2012; Price
et al., 2009). This pattern suggests the presence of a lengthy
preclinical stage of the disease during which pathology
accrues without detectable influence on standard clinical
measures. Thus, considerable research effort has been
devoted to identifying cognitive and biological markers that
are indicative of preclinical AD to best predict who will

eventually develop clinical symptoms. Many biomarkers of
the preclinical disease process have been identified. For
example, a decrease in levels of amyloid-beta 42 (Aβ42) in
the cerebrospinal fluid (CSF), which serves as a marker of
amyloid deposition in the brain, and an increase in CSF levels
of tau and p-tau181, which serve as a marker of neurodegen-
eration, have been observed in the earliest stages of AD
(Fagan et al., 2007). In addition to CSF markers, it is also
possible to image amyloid plaques directly using positron
emission tomography (PET) and the amyloid tracer
Pittsburgh compound-B (PIB).
Despite the predictive power of these biomarkers, there

remain a substantial number of individuals who do not
develop clinical symptoms even though they exhibit sub-
stantial AD pathology at autopsy (Price et al., 2009). This
heterogeneity in clinical progression could be due to
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variations in where a specific individual falls on the
continuous spectrum of preclinical AD. Thus, there has been
considerable emphasis on detecting subtle cognitive changes
that are related to preclinical AD pathology to provide a more
specific characterization of AD risk. Specifically, recent
recommendations from the NIA suggest that slight cognitive
deficits, in conjunction with evidence of amyloidosis and
neurodegeneration define stage 3 (highest risk) of preclinical
AD (Sperling et al., 2011). To this end, numerous recent
studies have been reported that aim to elucidate the relation-
ships between AD biomarkers and outcomes on concurrent
cognitive tests. Indeed, a meta-analysis by Hedden, Oh,
Younger, and Patel (2013) indicated that subtle effects of
amyloid burden can be detected on measures of episodic
memory and executive functioning. These results suggest
that such constructs can serve as sensitive cognitive markers
of preclinical AD.
It is important to note that although recent reports have

found evidence for a relationship between levels of AD
biomarkers and concurrent cognitive performance (Aschen-
brenner et al., 2015; Duchek et al., 2013; Hedden et al., 2013;
Rodrigue et al., 2012; Sperling et al., 2013), a substantial
number of other studies have reported null effects (Aizenstein
et al., 2008; Fagan et al., 2009; Nebes et al., 2013; Storandt,
Head, Fagan, Holtzman, & Morris, 2012; Storandt, Mintun,
Head, & Morris, 2009; Vemuri et al., 2009). At present, it is
unclear whether the differing patterns of results are due to the
relative sensitivity of the various cognitive tasks that are used
or due to subject specific variations across samples in pro-
tective factors such as cognitive reserve (Stern, 2009).
Regardless, it is clear that developing cognitive measures that
are consistently related to early AD biomarkers is critical.
In addition to episodic memory, accumulating evidence

suggests that measures of attentional control are sensitive
cognitive markers of very mild AD (Balota & Faust, 2001;
Perry & Hodges, 1999; Twamley, Ropacki, & Bondi, 2006).
Attentional control refers to the ability to direct attention
toward relevant information and control irrelevant informa-
tion in the environment and is particularly stressed when
there are multiple competing dimensions that need to be
controlled. For example, the Stroop color naming task
(Stroop, 1935) is a classic paradigm used to measure atten-
tional control. In this task, individuals are presented with a
series of color words (e.g., “red”) written in colored font and
are asked to name the color of the word while ignoring the
word itself. Differences in performance between congruent
trials (where the color and the word overlap) and incongruent
trials (where the color and the word are different) can serve as
a measure of attentional control.
Recently, attentional control tasks have also been shown to

be sensitive to preclinical AD processes in asymptomatic
individuals (Aschenbrenner et al., 2015; Balota et al., 2010;
Duchek et al., 2009, 2013; Gordon et al., 2015). Although
attention seems to be less consistently measured in studies on
AD, there is evidence to suggest it is more consistently rela-
ted to preclinical AD processes, compared to other cognitive
processes. Specifically, in a review by Twamley et al. (2006),

the authors note that 71% of studies that measured attention
found relationships with preclinical AD compared to 57%
for verbal learning and 50% for memory. Similarly, in the
meta-analysis conducted by Hedden et al. (2013) only 60%
(47 datasets) included a general measure of executive function,
only some of which measured attentional control directly.
Furthermore, only 15 datasets were reported that included
longitudinal changes in cognition, many of which analyzed
PIB and episodic memory. Taken together, it is clear that
both episodic memory and attentional control merit further
evaluation as sensitive cognitive markers of preclinical AD.
Although most studies of cognitive-biomarker relation-

ships have been cross-sectional in nature, a few studies have
examined longitudinal cognitive changes as a function of
amyloid burden primarily measured with imaging techniques
(e.g., Doraiswamy et al., 2012; Ellis et al., 2013; Ewers et al.,
2012; Landau et al., 2012; Lim et al., 2013; Resnick et al.,
2010; Storandt et al., 2009; Villemagne et al., 2011). In
contrast, while several studies have been reported regarding
CSF markers and cognition, most have examined prediction
of later progression to dementia (Craig-Schapiro et al., 2010;
Fagan et al., 2007; Li et al., 2007). Only a few studies have
examined the relationship between CSF biomarkers and
longitudinal cognitive change, and these studies have yielded
variable findings including no relationship (Stomrud et al.,
2010; Rolstad et al., 2013), correlations only with Aβ42
(Li et al., 2014; Lo et al., 2011) or ptau (Glodzik et al., 2011)
to correlations with multiple biomarkers (Roe et al., 2013).
We had two primary goals in the present study. First, we

assessed the sensitivity of attentional control and episodic
memory composite scores to baseline levels of markers for
AD pathology, particularly CSF measures (tau and Aβ42)
and PET-PIB binding. We focus specifically on tau and
Aβ42, given that these measures often account for independent
variance and may reflect different underlying pathological
processes (Aschenbrenner et al., 2015; Storandt et al., 2012).
Importantly, we extend the results of the aforementionedmeta-
analysis by also evaluating the sensitivity of attention to levels
of tau-related biomarkers, which was not examined by Hedden
et al. (2013). We expected that both composite scores would
be sensitive to the biomarkers at baseline based on the avail-
able literature. Second, and more importantly, we evaluated
via longitudinal analyses the extent to which the two cognitive
composite scores exhibited decline over time as a function of
the same baseline biomarkers.

METHOD

Participants

All participants were recruited through the Charles F. and
Joanne Knight Alzheimer Disease Research Center at
Washington University in St. Louis as part of the Adult
Children Study. This study was designed to longitudinally
follow a group of cognitively normal middle-aged adults
(age 45–74 years of age at study entry) on antecedent markers
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and risk factors of AD, including the presence or absence of a
family history of AD. The Washington University Human
Research Protection office approved this study.
All participants were assessed for symptoms of dementia

by trained physicians using the Clinical Dementia Rating
scale (Morris, 1993). To be included in the present analyses,
participants were required to be CDR 0 at the time of the
first cognitive assessment (hereafter referred to as “baseline
assessment”) and also have received a lumbar puncture to
collect CSF within 2 years of the initial cognitive assessment.
Any individual who did not receive a lumbar puncture within
2 years of the baseline cognitive assessment was excluded
(N = 30), leaving 238 individuals for further analysis.
Similarly, any individual who did not receive a PET scan
within 2 years of the first assessment was excluded from the
PIB analysis leaving 228 individuals.

Cognitive Battery

Participants were given a series of computerized and paper
and pencil tasks to measure different facets of cognition.
Performance on selected tests from the battery was combined
to form two cognitive composite scores. The first composite
measured episodic memory and was created from the total
number of items correctly recalled from the three free recall
trials of the Selective Reminding Test (Grober, Buschke,
Crystal, Bang, & Dresner, 1988), a weighted sum of the easy
and hard trials from the associate learning subtest of the
Wechsler Memory Scale (Wechsler & Stone, 1973), and the
number of correctly recalled units from the Logical Memory
Delayed Recall task (Wechsler, 1997). These standard neuro-
psychological tests of episodic memory have shown strong
sensitivity to AD dementia (see Morris et al., 1991; Storandt
& Hill, 1989).
The second composite measured attentional control and

was formed from computerized versions of the Stroop color
naming task (Spieler, Balota, & Faust, 1996; Stroop, 1935),
the Simon task (Castel, Balota, Hutchison, Logan, &
Yap, 2007; Simon, 1969), and consonant-vowel/odd-even
(CVOE) task-switching paradigm (Tse, Balota, Yap, Duchek,
& McCabe, 2010). Each of these attentional control tasks is
discussed briefly below and more detailed information is
provided elsewhere (Duchek et al., 2009).

Stroop Color Naming

The Stroop task consisted of four color words (yellow, red,
blue, and green) and four neutral items (bad, legal, poor,
and deep). The words and colors were crossed to form
36 congruent trials (each color word printed in its corre-
sponding color nine times), 36 incongruent trials (each color
word printed in each of the other colors three times), and
32 neutral trials (each neutral word printed twice in each
color). Participants made a vocal response into a microphone
and an experimenter coded each response as correct, incorrect
or microphone error (false starts, stutters, or soft responses).

Simon Task

Participants were presented with a left or right pointing arrow
and were asked to indicate which direction the arrow was
pointing by pressing a key on the left or right side of the
keyboard. On each trial, the arrow could appear in the middle,
left or right side of the computer screen and participants were
instructed to ignore the spatial location of the stimulus when
making their response. Forty trials were congruent (the arrow
direction was the same as the location on the screen), 40
incongruent (the arrow direction was opposite that of the
screen), and 40 were neutral trials (the arrow was displayed in
the center).

CVOE Task-Switching

Participants were presented with a letter-number stimulus
(e.g., “A14”) accompanied by one of two response cues. “CV”
indicated they should classify the letter as either a consonant or
a vowel and “OE” indicated they should classify the number as
odd or even. During the switch block1, the cues alternated such
that the response cue switched every two trials. Participants
completed 60 trials consisting of 30 switch trials (where the
response cue was the opposite from the previous trial) and
30 non-switch trials (where the response cue was the same
as the previous trial). The stimulus and the cue appeared
simultaneously and remained until a response was made. The
next trial began immediately after each response.

Formation of the Composite Scores

The episodic memory composite was created by standardiz-
ing each participant’s raw score on each task to the mean and
standard deviation of the groups’ first time completing that
particular test. The Z-scores were then averaged together and
a higher score indicated better performance. The attentional
control composite was formed in the same way using
accuracy from the incongruent trials only from each task2.
These are trials that place the strongest demands on attentional
control.

Cerebrospinal Fluid Assessment

CSF was collected using methods described previously
(Fagan et al., 2007). After an overnight fasting period,
20–30 mL were collected and then alliquoted (500 μL) and
stored at −84°C in polypropylene tubes. Analyses were
conducted after a single thaw using ELISA (INNOTEST,

1 This task also included “pure” blocks in which participants only made
consonant-vowel decision or odd-even decisions. We do not consider these
trials in the present composite because it is unlikely to rely on attentional
control mechanisms to the same extent as the switch block.

2 For the attention composite, we also evaluated the efficacy of a response
latency measure. We formed a similar composite as the accuracy measure but
using latencies rather than accuracy scores. This measure did not exhibit any
sensitivity to AD biomarkers which is consistent with Balota et al. (2010) in
demonstrating that accuracy measures tend to be more sensitive indicators of
preclinical AD pathology.
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Fujirebio [formerly Innogenetics], Ghent, Belgium). Scores
were examined for outliers and one was identified and
excluded from further analysis (tau level greater than 6 SDs
from the group mean).

PET-PIB Imaging

Imaging methods have been fully described elsewhere
(Su et al., 2013). A tissue mask for each region of interest was
generated using Freesurfer segmentation (Fischl, 2004) and
binding potentials were calculated using Logan graphical
analysis with cerebellar gray matter as a reference region.
A mean cortical binding potential (MCBP) was created by
averaging across the following regions: left and right lateral
orbitofrontal, inferior parietal, precuneus, rostral middle
frontal, superior frontal, superior temporal, and middle
temporal. After examining the distribution of MCBP, one
individual was excluded as an outlier (score greater than
5 SDs from the group mean). It should be noted that this
was the same individual who was excluded from the CSF
analyses due to high tau.

Statistical Analysis

Each composite score was analyzed separately using the
lme4 package in R (Bates, Maechler, Bolker, & Walker,
2014). Our model selection strategy proceeded in two steps.
We first tested a model that included main effects of baseline
age, family history (coded 0 for negative and 1 for positive),
apolipoprotein-E (APOE) genotype (coded 0 for absence of
an ε4 allele and 1 for the presence of at least one allele),
education, years in study (hereafter referred to as “time”),
baseline CSF tau and Aβ42, the interaction between the CSF
markers and time, as well as the interaction between tau and
Aβ42. These model terms were always retained because they
serve as tests of our theoretically motivated hypotheses. In
the second step, we added all additional two-way interactions
between the covariates (e.g., age, APOE) with time to
examine which other variables may moderate the longitudinal
change. Any interaction terms from this step that were not
significant were removed from the final model.We believe this
procedure strikes the best balance between testing theoretical
terms of interest (specifically, the interaction of CSF bio-
markers with time) and forming overly complex statistical
models that may capitalize on chance fluctuations in the data.
A separate model was specified in the same manner that sub-
stituted the CSF markers with PET-PIB.
Degrees of freedom for the approximate t tests were

calculated using the Satterthwaite method implemented in the
“lmerTest package” (Kuznetsova, Brockhoff, & Christensen,
2014). All models included random intercepts and slopes for
time across subjects unless otherwise noted. Finally, because
the residuals were non-normally distributed, due to the
skewness of the cognitive composites, for our inferential tests
of the fixed effects, we calculated the standard errors from
a non-parametric (case-resampling) bootstrap procedure.

This approach is most robust to model misspecification
compared with other bootstrapping techniques (Davison &
Hinkley, 1997)3.

RESULTS

Sample Characteristics

Demographic information on our sample is provided in
Table 1. For descriptive purposes, we have indicated the
proportion of individuals with “abnormal”Aβ42 and tau based
on recently published cut offs (Vos et al., 2013) although we
use the continuous measures for the current analyses.

Attention Composite Analysis

To avoid the undue influence of extreme outliers, we first
calculated the estimated slope of the attention score over time
for each participant. We then eliminated any individual who
exhibited a slope (i.e., decline over time) that was greater
than 3 standard deviations from the average slope of the
sample, which removed 4 participants4. These analyses

Table 1.Demographic characteristics, mean (SD) at initial assessment

Variable Mean (SD)

Age 61.2 years (7.9)
Education 16.1 years (2.5)
% FH positive 57%
% APOE ε4 positive 36%
CSF Tau 242 pg/mL (105)
CSF Aβ42 668 pg/mL (242)
MCBP .22 (.29)
Time from LP .49 years (.55)
Time from PET scan .53 years (.50)
Number of assessments 2.2 (1.6)
Time between attention assessments 2.91 years (1.51)
Time between memory assessments 2.97 years (1.63)
% Abnormal Aβ42 19%
% Abnormal Tau 18%
Time in Study 3.7 years (2.8)
MMSE 29.2 (1.1)

Note. FH = family history, CSF = cerebrospinal fluid, MMSE = Mini
Mental State Exam, LP = lumbar puncture, MCBP = mean cortical binding
potential. Abnormal Aβ42 was defined as less than 459 pg/mL and abnormal
tau was defined as greater than 339 pg/mL.

3 Another common technique for dealing with non-normal residuals is to
apply a nonlinear transformation of the dependent variable. We did so, using
a natural log transform, which substantially improved the normality of the
residuals. However, because this technique yielded the same inferences as the
bootstrap method, we choose only to present the bootstrap results to maintain
the interpretability of the original scale (as opposed to making inferences on
the transformed scale).

4 We also examined other outlier screening strategies including removing
participants who exhibited an attention score above 5 SDs from the group
mean at any test point, removing only the particular observations that were
greater than 5 SDs from the mean, as well as no screening at all. Importantly,
results from all techniques were qualitatively identical.
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included 233 participants and of those 170 completed at least
one follow up cognitive assessment. Given our interest in
both baseline and longitudinal differences, individuals with
only one assessment (the baseline assessment) were included
to provide a better estimate of initial differences. It is not
problematic for individuals with only one observation to be
included when data are analyzed within the multi-level
modeling framework (Snijders & Bosker, 1999).
For descriptive purposes, we first calculated the intra-class

correlation (ICC) from a random intercept only model to
provide an estimate of between and within person variability.
The ICC was .33 indicating that 33% of the variation in the
attention composite was due to cross sectional differences,
leaving 67% of the variability due to within person change.
We next added fixed and random effects of time to assess the
magnitude of individual differences in rate of change. The
inclusion of random slopes for time provided a significant
increment in model fit over the random intercepts only model
(χ2(3) = 47.43; p≤ .001), indicating substantial individual
differences in rate of change. Figure 1 displays a spaghetti
plot of the entire sample to visually convey these individual
differences. The random effects confidence interval for time
was − .192 to.164, which indicates that 95% of our sample
was predicted to have a slope between those values.
We next entered our predictor variables and their interac-

tions in a single model as described above. The parameter
estimates from this model are provided in Table 2.
Importantly for the present work, baseline levels of CSF

were significantly related to attention performance at the
initial assessment such that individuals with lower levels of
Aβ42 exhibited lower baseline performance (Figure 2;
β = .14; p = .003). In contrast, tau levels at baseline did not
correlate with concurrent performance although the effect

was in the expected direction (β = − .09; SE = .072;
p = .19). In addition, APOE genotype also did not predict
attention performance, however our recent results have
shown that the effect of APOE on cognitive performance is
mediated by levels of Aβ42 (Aschenbrenner et al., 2015),
thus APOE did not exert an influence above and beyond
Aβ42 in these data.
Importantly, turning to longitudinal change, our analysis

revealed a significant interaction between tau and time,
indicating that individuals with the highest levels of tau at
baseline declined significantly on the attention composite
over the course of the study. This relationship is depicted in
Figure 3, which plots change in attention at three tertiles of
tau. As shown, when tau is relatively high, the decline in the
attention score was particularly dramatic. None of the other
factors, in particular neither Aβ42 nor the tau by Aβ42
interaction, interacted with time indicating that longitudinal
changes in the cognitive composites in the present sample
were driven primarily by tau5.
The results of the second model, using PIB as a predictor

rather than the CSF biomarkers, are presented in Table 3. The
effect of PIB on baseline attention performance was statisti-
cally significant using a one-tailed test which is justified by
the a priori predicted directionality of the effect (i.e., higher

Fig. 1. Spaghetti plots of individual predicted trajectories in the
attention composite over time.

Table 2. Parameter estimates from the analysis of CSF and
attentional control

Variable Estimate (SE)a
Degrees of
freedomb t-Valuec p-Value

Intercept .043 (.066) 298.2 .662 .508
Age −.057 (.040) 231.6 −1.449 .149
Education .033 (.018) 339.4 1.823 .069
Time −.004 (.012) 196.8 −.328 .743
APOE genotype −.046 (.098) 237.6 −.470 .639
FH .044 (.081) 245.6 .549 .583
Tau −.094 (.072) 335.4 −1.304 .193
Aβ42 .138 (.046) 331.5 2.975 .003
Education * Time .017 (.007) 205.6 2.550 .012
Tau * Time −.030 (.015) 186.4 −2.068 .040
Aβ42 * Time .011 (.058) 197.3 .198 .843
Tau * Aβ42 −.010 (.014) 233.4 −.777 .438

Note. Age and the CSF markers were standardized within the sample.
Education was centered at 16 years (the average of the sample). Time reflects
years since the initial assessment. APOE genotype was coded 0 for absence
of and 1 for the presence of the ε4 allele. Family history was coded 0 for no
history and 1 for positive history.
aStandard error was calculated from the standard deviation of the boot-
strapped distribution based on 5000 replications.
bDegrees of freedom estimated using the Satterthwaite method.
cEstimate divided by the bootstrapped standard error.

5 Although we did not detect the three-way interaction among tau, Aβ42
and time, we conducted an exploratory analysis of the influence of tau at high
and low levels of Aβ42 defined using a mean split. Although the tau by time
interaction was not significant at either level of Aβ42, the beta weight was
numerically larger at low levels of Aβ42 (β = −.033, p = .11) compared to
high Aβ42 (β = −.023, p = .22). Given the reduction in sample size due to
the mean split, these analyses should be considered descriptive only.
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PIB values should impair cognition). Despite this, there was
no detectable influence of PIB on longitudinal change.

Episodic Memory Composite

The memory assessment was given separately from the
attention assessment and the assessments were on average
53 days apart. Since we were interested in how episodic
memory changes within the same time frame as the attention
measures, we excluded 17 participants who received the
episodic memory tests more than 1 year before or after the
attention assessment. It should be noted that inclusion or
exclusion of these participants had minimal effects on the
outcomes. As before, we also screened for individuals with
extreme slopes, which removed five individuals.
The intra-class correlation was .74 indicating the bulk of

the variation was carried by cross-sectional differences. As
shown in Figure 4, the overall trend was for scores on
episodic memory to increase over time, which is consistent
with a practice effect on certain episodic memory tasks
(Galvin et al., 2005). This observation was confirmed by a
simple model including fixed and random effects for time,
which revealed a positive and significant slope over time,
β = .051, SE = .007, p< .001, with a random effects
confidence interval of 0 to .103.

Parameters from a model that included all baseline risk
factors and CSF are presented in Table 4. As shown, none of
the risk factors including APOE, family history, tau or Aβ42
significantly correlated with baseline performance in episodic
memory. However, in terms of the longitudinal changes, we
again observed that levels of CSF tau were significantly

Fig. 3. Relationship between attention and time in study varies as
a function of baseline CSF tau. For visualization, regression lines
are plotted at the lowest tertile of tau (solid line, less than 190 pg/mL),
middle tertile (dashed line), and highest tertile (dotted line, greater
than 276 pg/mL).

Fig. 2. Relationship between cognition and Aβ42 (Top Panel) and
PET-PIB (Bottom Panel) at baseline assessment.

Table 3. Parameter estimates from the analysis of PIB and
attentional control

Variable Estimate (SE)a
Degrees of
freedomb t-Valuec p-Value

Intercept .10 (.071) 255.12 1.51 .132
Age −.077 (.043) 217.18 −1.82 .07
Education .036 (.019) 281.54 1.948 .052
Time −.012 (.014) 156.11 −0.884 .378
APOE genotype −.09 (.093) 228.18 −0.97 .333
FH −.042 (.09) 228.54 −0.468 .64
PIB −.116 (.066) 276.02 −1.763 .079d

Education * Time .015 (.008) 167.36 2.011 .046
PIB * Time −.011 (.019) 152.34 −0.57 .57

Note. Age and the CSF markers were standardized within the sample.
Education was centered at 16 years (the average of the sample). Time reflects
years since the initial assessment. APOE genotype was coded 0 for absence
of and 1 for the presence of the ε4 allele. Family history was coded 0 for no
history and 1 for positive history. PIB = Pittsburgh compound B.
aStandard error was calculated as the standard deviation of the bootstrapped
distribution based on 5000 replications.
bDegrees of Freedom estimated using the Satterthwaite method.
cEstimate divided by the bootstrapped standard error.
dThis comparison is significant using a one-tailed test.
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related to the magnitude of change in memory performance
over time depicted in Figure 5. As shown, although everyone
increased in performance over the course of the study (likely
due to practice effects), individuals with relatively high levels
of baseline tau exhibited a slightly attenuated increase rela-
tive to the rest of the sample. As with the attention composite,
the 3-way interaction among tau, Aβ42 and time was not
significant.

Table 5 lists the parameters from the model that included
PIB. Similar to the attention analysis, PIB did not significantly
predict baseline performance nor longitudinal change.

DISCUSSION

The primary goals of the present report were to provide a sys-
tematic evaluation of cross-sectional differences in two cogni-
tive constructs as a function of AD pathology measured with
well-established biomarkers, and more importantly, to analyze
whether baseline biomarkers would predict the magnitude of
cognitive change over time. Our results returned two primary
findings. First, baseline Aβ42 was correlated with concurrent
attention performance consistent with our prior research.
Second, levels of tau in the CSF significantly predicted long-
itudinal change in both the attention and episodic memory
composites. We discuss each of these issues in turn.
Individuals who exhibit slight deficits on sensitive

cognitive measures, in addition to possessing indicators of
AD pathology are possibly at the greatest risk of developing
symptomatic AD. This is supported by Vos et al. (2013) who
used a composite score of three episodic memory tests to
define stage 3 of preclinical AD and showed the rate of
progression to dementia was greatest for individuals in
stage 3 over a 5-year period. Past literature has focused to a
large extent on episodic memory performance given that brain
regions that underlie episodic memory retrieval appear parti-
cularly vulnerable to the accumulation of AD pathology (e.g.,
Buckner et al., 2005). However, a growing body of evidence
suggests that measures of attentional control are also sensitive
cognitive markers and indeed the relationship between memory

Fig. 4. Spaghetti plots of individual predicted trajectories in the
episodic memory composite over time.

Table 4. Parameter estimates from the analysis of CSF and
episodic memory

Variable Estimate (SE)a
Degrees of
freedomb t-Valuec p-Value

Intercept −.015 (.079) 223.21 −0.202 .840
Age −.088 (.050) 205.16 −1.785 .076
Education .038 (.019) 209.23 2.014 .045
Time .053 (.007) 97.73 7.104 <.001
APOE genotype −.015 (.116) 203.58 −0.13 .896
FH .052 (.100) 209.45 0.524 .601
Tau −.024 (.064) 217.16 −0.381 .703
Aβ42 −.048 (.058) 220.19 −0.838 .403
Education * Time .000 (.003) 104.92 1.95 .054
Tau * Time −.015 (.007) 87.02 −2.15 .034
Aβ42 * Time .006 (.008) 106.14 0.756 .451
Tau * Aβ42 .088 (.052) 203.74 1.708 .089

Note. Age and the CSF markers were standardized within the sample.
Education was centered at 16 years (the average of the sample). Time reflects
years since the initial assessment. APOE genotype was coded 0 for absence
of and 1 for the presence of the ε4 allele. Family history was coded 0 for no
history and 1 for positive history.
aStandard error was calculated from the standard deviation of the boot-
strapped distribution based on 5000 replications.
bDegrees of Freedom estimated using the Satterthwaite method.
cEstimate divided by the bootstrapped standard error.

Fig. 5. Relationship between episodic memory and time in study
varies as a function of baseline CSF tau. For visualization,
regression lines are plotted at the lowest tertile of tau (solid line,
less than 190 pg/mL), middle tertile (dashed line). and highest
tertile (dotted line, greater than 276 pg/mL).
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and attention processes has already been well-established
(Balota & Duchek, 2015; Craik & Lockhart, 1972).
Our attention composite was highly related to levels of

Aβ42 at baseline assessment. Although past results using
attentional control measures (Aschenbrenner et al., 2015)
showed sensitivity to both CSF markers separately, we did
not replicate the relationship with tau in the present sample.
This is possibly because our sample consists of individuals
who are younger (mean age = 61 years) than our past report
(mean age = 68 years). Concurrent tau-cognition relationships
are possibly more likely to be detected in older individuals,
who are further along in the disease process.
The attention composite was also related to levels of PIB at

baseline when using a one-tailed test. In contrast, the episodic
memory composite score was not reliably related to either the
CSF markers or the PIB measure at the initial assessment in
this sample. This is concordant with the literature in showing
that relationships between episodic memory and concurrent
AD biomarkers are subtle and difficult to detect (Hedden
et al., 2013). Whether our inability to detect a concurrent
relationship between amyloid and memory is due to differ-
ences in power or the relatively younger age range of our
sample remains to be determined. However, it is interesting
to note that the relationship with Aβ42 was significant for
attentional control and larger than the same relationship with
episodic memory (Z = 2.53; p< .05) in the present sample.
Thus, to stage individuals within the preclinical AD con-
tinuum according to recent recommendations (Sperling et al.,
2011), attentional control measures may serve as a more
promising target for defining stage 3 “subtle cognitive
impairment”, and should be considered in cognitive assess-
ment batteries. Clearly, larger samples are important to better
establish this possibility.
Most importantly, both the attention and episodic

memory composite exhibited changes in longitudinal

trajectories that were related to baseline tau. Specifically,
individuals with high levels of tau exhibited robust declines in
attention relative to the rest of the cohort. Similarly, although
the net result was for episodic memory to increase over time,
individuals with high tau levels exhibited an attenuated
increase in performance over the course of the study. As pre-
viously mentioned, the majority of studies to date have
examined the relationship of PET-PIB to longitudinal changes
in cognition and this study is important in extending those
findings to CSF markers.
In contrast to tau, neither Aβ42 nor PET-PIB predicted

longitudinal change in either cognitive composite. It is par-
ticularly noteworthy that we did not detect a relationship
between PIB and cognitive decline because these two mea-
sures have been shown to be correlated in past reports even in
cognitively healthy controls (Doraiswamy et al., 2012; Ellis
et al., 2013; Storandt et al., 2009). One possible reason for
this discrepancy is, as noted, the present sample is relatively
young compared to previous studies. The three studies cited
above, for example, examined individuals who were in their
early to mid-seventies.
Prior research has also provided evidence for a relationship

between CSF markers and cognitive decline (e.g., Fagan et al.,
2007; Roe et al., 2013). It is interesting to note that the best
predictor is often the tau/Aβ42 ratio which conflates the two
main effects as well as the interaction between these two
biomarkers. Indeed, when we examined the ratio in the present
data, the results showed a reliable effect on baseline perfor-
mance as well as on longitudinal change in attentional control
(β = − .11; p = .009). However, when we decompose the ratio
into the constituent parts (as we did in the reported analyses) the
baseline differences were driven by Aβ42 and the longitudinal
effect by tau. This is consistent with recent evidence modeling
the temporal changes in CSF biomarkers which suggests that
Aβ42 plateaus while individuals are still in the asymptomatic
stage of AD but tau continues to increase into mild cognitive
impairment (Bertens, Knol, Scheltens, & Visser, 2015). Thus, it
may be the continued increase of tau throughout the early stages
of the disease that ultimately drives cognitive decline. Our
results are also consistent with a temporal ordering
of AD biomarkers, in which Aβ42 becomes abnormal first (and
drives the baseline correlation with attentional control), fol-
lowed by amyloid deposition measured with PET-PIB followed
by changes in tau (which drives longitudinal change across
multiple cognitive domains). Clearly, this interpretation is post
hoc and further modeling efforts should strive to test these
hypotheses more directly.
It is important to consider these findings within the

framework of neurobiological changes that occur in early and
pre-clinical AD. As mentioned, focus is often devoted to
medial temporal regions, but substantial PIB deposition
appears in prefrontal and parietal regions (Klunk et al., 2004;
Mintun et al., 2006), regions that are often implicated in
attention based tasks (e.g., Banich et al., 2000; Kane & Engle,
2002; Vanderhasselt, De Raedt, & Baeken, 2009). Indeed,
accumulation of biomarkers have functional and behavioral
consequences for these regions even in otherwise cognitively

Table 5. Parameter estimates from the analysis of PIB and
episodic memory

Variable Estimate (SE)a
Degrees of
freedomb t-Valuec p-Value

Intercept .004 (.079) 205.48 0.050 .480
Age −.092 (.051) 192.88 −1.79 .038
Education .049 (.019) 191.56 2.53 .0006
Time .048 (.007) 285.74 6.601 <.001
APOE genotype .023 (.116) 195.46 0.198 .422
FH .036 (.103) 196.2 0.349 .364
PIB .066 (.059) 202.25 1.12 .132
PIB * Time −.011 (.009) 280.26 −1.25 .106

Note. Age and the CSF markers were standardized within the sample.
Education was centered at 16 years (the average of the sample). Time reflects
years since the initial assessment. APOE genotype was coded 0 for absence
of and 1 for the presence of the ε4 allele. Family history was coded 0 for no
history and 1 for positive history. PIB = Pittsburg compound B.
aStandard error was calculated as the standard deviation of the bootstrapped
distribution based on 5000 replications.
bDegrees of Freedom estimated using the Satterthwaite method.
cEstimate divided by the bootstrapped standard error.
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healthy adults (Duchek et al., 2013; Gordon et al., 2015).
Given that attention is heavily linked to episodic memory
processes (McCabe, Roediger, McDaniel, Balota, &Hambrick,
2010), it is possible that early disruption of attention systems
can be detected at the same time or potentially before
substantial accumulation of pathology leads to clinically
detectable effects on memory.
Despite its strengths, there are a few limitations to this

study that should be noted. We performed a large number of
statistical comparisons without including any correction to
p-values. We addressed this issue by testing only theoretically
justified higher-order interactions involving time in study and
using composite scores of cognition rather than individual test
scores. In addition, many of our participants had only two
assessment points whichmay have limited our power. Asmore
data and assessments become available, future work should
carefully address the shape of trajectories (e.g., linear vs.
quadratic) as well as testing for the presence of higher order
interactions among the targeted variables. Furthermore, future
studies should also consider correlated age-related changes
such as lewy body accumulation6. Finally, CSF biomarkers
and PET PIB measures have differential reliability (Mattsson
et al., 2011; Su et al., 2013), and because of this, one should
be cautious in arguing for a null effect of Aβ42 and PIB on
cognitive change.

CONCLUSION

AD biomarkers have the potential to provide critical insight
into the preclinical AD process and to help stage individuals
based on relative risk of developing dementia. CSF markers
predict concurrent deficits in attentional control as well as
longitudinal declines in both attention and memory. Both
attentional control measures and episodic memory provide
insight into the cognitive consequences of preclinical AD and
should continue to be evaluated as sensitive screening
instruments for preclinical staging as well as cognitive
endpoints for treatment outcomes. Future work should be
conducted with increased emphasis on longitudinal change in
these cognitive constructs to best characterize the preclinical
AD profile.
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