Cyclotron production of high–specific activity 55Co and in vivo evaluation of the stability of 55Co metal-chelate-peptide complexes

Tara Mastren
Washington University School of Medicine in St. Louis

Bernadette V. Marquez
Washington University School of Medicine in St. Louis

Deborah E. Sultan
Washington University School of Medicine in St. Louis

Elizabeth Bollinger
Washington University School of Medicine in St. Louis

Paul Eisenbeis
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/4664

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Authors
Tara Mastren, Bernadette V. Marquez, Deborah E. Sultan, Elizabeth Bollinger, Paul Eisenbeis, Tom Voller, and Suzanne E. Lapi

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/4664
Cyclotron Production of High–Specific Activity 55Co and In Vivo Evaluation of the Stability of 55Co Metal-Chelate-Peptide Complexes

Tara Mastren, Bernadette V. Marquez, Deborah E. Sultan, Elizabeth Bollinger, Paul Eisenbeis, Tom Voller, and Suzanne E. Lapi

Abstract

This work describes the production of high–specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/µmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/µg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl$_2$. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.

Positron Emission Tomography (PET) is a common imaging modality in nuclear medicine. Clinical interest in positron-emitting metals has increased due to their longer half-lives, which are more suitable for radiolabeling macromolecules such as antibodies, peptides, and nanoparticles over traditional PET isotopes such as 18F, 11C, and 15O.1-2 Currently, the most common radioisotopes used in PET imaging are 54Cu, 68Ga, 89Zr, and 86Y, with 64Cu, 68Ga, and 89Zr being used in clinical trials.3-5 The chemistry of each metal is different, and chelates need to be optimized for the radiometal of interest that will provide stable metal-chelate complexes in vivo.

55Co is another isotope of interest for PET imaging. It has a half-life of 17.5 hours, a positron branching ratio of 77%, and an average positron energy of 570 keV, qualities that make it well suited for imaging with peptides, small molecules, and antibodies.6-1 55CoCl$_2$ has previously been used clinically to image ischemia in stroke patients12-15 and in late-onset epileptic seizures1 due to its ability to mimic calcium uptake. However, it is important to study the preclinical pharmacologic properties of this isotope when it will be incorporated into targeting ligands as imaging agents to probe other diseases. Thus, we investigated the biodistribution of free 55CoCl$_2$ along with the stability of 55Co-chelate-peptide complexes in vivo.

55Co can be produced via several nuclear reactions, such as 58Ni(p,α)55Co, 56Fe(p,α)55Co, 56Fe(p,2n)55Co, and 54Fe(d,n)55Co. The 54Fe(d,n)55Co has the highest measured cross section at low energies23; however, 54Fe has a low natural abundance. Thus, this target may be cost prohibitive for routine production in most laboratories. The 56Fe(p,2n)55Co reaction also creates undesirable 56Co (via 56Fe(p,n)56Co), a positron-emitting isotope with a half-life of 77 days that is chemically inseparable from 55Co. Additionally, the decay scheme for this isotope yields many high-energy photons. The proton reaction on 58Ni has a higher cross section at lower energies than the proton reaction on 56Fe,19,20,22 making it more desirable for low-energy (15 MeV) cyclotrons. This method also produces a small amount of an inseparable side product, 57Co ($t_{1/2} = 217.8$ days) at higher energies with a Q value of 8.17 MeV. 57Co decays 100% by electron capture and has a low-energy gamma ray of 122 keV. In addition to 57Co, this method also produces another side product, 59Ni ($t_{1/2} = 35.6$ hours), which can be used as a way to monitor the separation of 55Co from the starting nickel material by tracking the characteristic gamma rays via gamma spectroscopy.

The production of 55Co using natNi and 58Ni has previously been reported.11,18,26,27 The specific activity of 55Co
has been investigated using both ion chromatography of productions using \(^{58}\text{Ni}\), and 4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) titration of productions using \(^{58}\text{Ni}\). High–effective specific activity (ESA) of radiometals is important, as metal contaminants have negative impacts on radiolabeling. For best radiolabeling results using \(^{55}\text{Co}\), important, as metal contaminants have negative impacts on radiolabeling. For best radiolabeling results using \(^{55}\text{Co}\), ESA measurements must be performed and productions optimized so that high–specific activity material can be obtained.

In this work, we discuss the production of \(^{55}\text{Co}\) via the \(^{58}\text{Ni}(p,\alpha)^{55}\text{Co}\) reaction and report its ESA using both DOTA titrations and ion chromatography. We also report the in vivo biodistribution \(^{55}\text{CoCl}_2\) and compare it to its \(^{55}\text{Co}\)-chelate biodistribution \(^{55}\text{CoCl}_2\) and compare it to its \(^{55}\text{Co}\)-chelate complexes as \(^{55}\text{Co-DO3A-L19K-FDNB}\) and \(^{55}\text{Co-NO2A-L19K-FDNB}\) in vivo at time points up to 48 hours. The macrocyclic chelates DOTA and NOTA were chosen because they meet the coordination chemistry required to bind \(^{55}\text{Co}\). DOTA and NOTA are commonly attached to peptides via one of their carboxylic acid arms, resulting in DO3A- and NO2A-peptide conjugates, respectively. As a model system, we applied \(^{55}\text{Co}\) to a peptide ligand, L19K-FDNB, which has been shown to have a long blood-clearance time. This property makes this peptide an optimal system for studying the stability of \(^{55}\text{Co}\)-chelate complexes as \(^{55}\text{Co-DO3A-L19K-FDNB}\) and \(^{55}\text{Co-NO2A-L19K-FDNB}\) in vivo at time points up to 48 hours. The biodistribution data for \(^{55}\text{CoCl}_2\), \(^{55}\text{Co-NO2A-L19K-FDNB}\), and \(^{55}\text{Co-DO3A-L19K-FDNB}\) were compared at 24 and 48 hours postinjection to establish the in vivo stability of \(^{55}\text{Co}\) chelated with NO2A- and DO3A-peptide conjugates in tumor-bearing mice.

Materials and Methods

Materials

Trace metal grade reagents were purchased from Sigma-Aldrich (St. Louis, MO) and used without purification, and Milli-Q deionized water (18 MΩ cm\(^{-1}\)) was used for all dilutions unless stated otherwise. All glassware and vials were acid washed in 8 M HNO\(_3\) for 24 hours prior to use. DOTA was purchased from Macroyclics (Dallas, TX). Two versions of the peptide L19K were synthesized by CPC Scientific (Sunnyvale, CA) consisting of the sequence DO3A- or NO2A-PEG\(_4\)GGNEDIARMWECFERK-COH\(_2\), with a Cys-Cys disulfide bridge and polyethylene glycol (PEG) as a spacer between peptide and chelate. \(^{58}\text{Ni}\) was purchased from Isotrex (San Francisco, CA) with 99.48% isotopic enrichment.

Targetry and Irradiation

Forty-five to 55 mg of \(^{58}\text{Ni}\) in powder form was plated onto a gold disk by electrodeposition as previously described by McCarthy and colleagues and Szelecsenyi and colleagues. The electroplating cell was 9 cm in height, with an inner diameter of 1.8 cm. The bottom of the cell consisted of a Teflon base that connected to the gold disk, exposing a 5 mm circle. A graphite rod was used as the cathode and stirred the solution slowly as a voltage of 2.5 V was applied for ~ 12 hours. The current remained between 8 and 20 mA throughout the process. Targets were irradiated on a 15 MeV cyclotron (CS-15) for 20 to 60 μAhr and were able to withstand currents up to 30 μA. Targets were allowed to sit for 2 hours prior to processing to allow short-lived contaminants to decay.

Purification

For processing, targets were placed in 10 mL of 9 M HCl and heated with reflux for approximately 1 hour to dissolve the nickel from the gold disk. Once the solution cooled, it was placed in a 1 cm × 10 cm glass column (Bio-Rad, Hercules, CA) with 2.5 g AG1-X8 resin (Bio-Rad). To determine separation conditions, the eluate and 10 to 40 mL of 9 M HCl were collected, followed by another 10 mL of 0.5 M HCl to elute the \(^{55}\text{Co}\). Fractions of 1 mL were collected and analyzed using a high-purity germanium (HPGe) detector (Canberra, Meriden, CT), and the final \(^{55}\text{Co}\) fractions were evaporated to dryness and reconstituted with 20 μL Milli-Q water. \(^{55}\text{Co}\) productions were analyzed using ion chromatography for transition metal contamination.

Effective Specific Activity

DOTA titrations were performed to determine the ESA of \(^{55}\text{Co}\) productions, and the method was adapted from the 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) titration method reported previously by McCarthy and colleagues. Then, 1.2 MBq (5 μL) of \(^{55}\text{Co}\) was added to eight different amounts of DOTA in ammonium acetate pH 5.5, ranging from 4.3 × 10\(^{-4}\) μmol to 6.3 × 10\(^{-2}\) μmol. The final volume was brought to 50 μL using 0.5 M ammonium acetate buffer pH 5.5. The solutions were placed in an agitating incubator at 37°C for 30 minutes. Solutions were cooled to room temperature and then centrifuged. A 1 μL aliquot from each DOTA concentration and 1 μL of unbound \(^{55}\text{Co}\), for use as a control, were spotted separately onto a silica plate for thin-layer chromatography (TLC) using a 1:1 mixture of 10% w/v ammonium acetate and methanol as the eluent. Plates were analyzed using a Radio TLC Plate Reader (Washington, DC) and analyzed for the percent \(^{55}\text{Co}\) incorporated into DOTA. Data were plotted as the molar concentration of DOTA versus percent \(^{55}\text{Co}\) incorporation. The curve was fit using a sigmoid plot fit program in Prism.
(GraphPad Software, La Jolla, CA). The EC₅₀ value, the concentration of ⁵⁵Co that bound to 50% of the DOTA molecules, was determined from this fit. The ESA was calculated as two times the EC₅₀ value.

Animal Models

All animal care was performed as stated in the Guide for Care and Use for Laboratory Animals by the National Institutes of Health under a protocol approved by the Animal Studies Committee at Washington University in St. Louis. Female athymic Nu/Nu mice (National Cancer Institute, Bethesda, MD) age 6 to 9 weeks were anesthetized with a ketamine/xylazine cocktail (VEDCO, St, Joseph, MO). One hundred microliters of approximately 2 × 10⁷ cell/mL HCT-116 colon cancer cells suspended in saline was subcutaneously injected into the shoulder. Tumors were allowed to grow for 2 weeks before imaging and biodistribution studies.

Small Animal PET/CT imaging

Prior to imaging, animals were anesthetized with 2% isoflurane. One hundred microliters of 74 kBq/μL ⁵⁵CoCl₂ in saline was injected into HCT-116 tumor-bearing mice (n = 4) via tail vein injection and imaged using an Inveon MicroPET/CT scanner (Siemens, Washington, DC) at 2, 24, and 48 hours postinjection. Static PET images were acquired for 20 minutes. PET data were reconstructed using standard methods with the maximum a posteriori probability (MAP) algorithm and coregistered with computed tomography (CT) using image display software (Inveon Research Workplace Workstation, Siemens). Volumes of interest (VOI) were drawn using CT anatomic guidelines.

Biodistributions

⁵⁵Co-NO₂A-L19K-FDNB and ⁵⁵Co-DO₃A-L19K-FDNB were prepared and radiolabeled similarly to the ⁶⁴Cu analogues described by Marquez and colleagues and with a final specific activity of 3.7 MBq/μg. One hundred microliters of 74 kBq/μL ⁵⁵CoCl₂, 37 kBq/μL ⁵⁵Co-NO₂A-FDNB, or 37 kBq/μL ⁵⁵Co-DO₃A-FDNB in saline was injected into HCT-116 tumor-bearing mice. For each agent, three mice were sacrificed at 24 and 48 hours postinjection followed by removal of blood, lung, liver, spleen, kidney, muscle, fat, heart, brain, bone, tumor, stomach, small intestine, upper large intestine, and lower large intestine. Each organ was weighed and measured for radioactivity using a gamma counter. The radioactivity was background subtracted, decay corrected to the time of injection, and reported as percent injected dose/g tissue (% ID/g).

Statistical Analysis

All data were analyzed using Prism version 6 and reported as mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was used to calculate p values in order to compare more than two groups with one variable, and p values with a 95% confidence interval (<.05) were considered significant.

Results

Production and Purification of High-Specific Activity ⁵⁵Co

⁵⁸Ni was plated onto a gold disk with an average efficiency of 95 ± 3% and a thickness of ~300 μm. Irradiations produced an average of 6 ± 1 MBq ⁵⁵Co/μAhr, which is consistent with yields predicted by Kaufman and about 30% lower than yields predicted by Reimer and Qaim. ⁵⁷Ni and ⁵⁵Co were coproduced at rates of 16 ± 2 kBq/μAhr and 11 ± 2 kBq/μAhr, respectively, and were approximately 25% and 20% lower than yields predicted by Reimer and Qaim, respectively.

Due to the coproduction of ⁵⁷Ni, separation could be analyzed by measuring the characteristic gamma rays of ⁵⁷Ni (E₁ = 1.378 MeV, I₁ = 81.7% and E₂ = 0.127 MeV, I₂ = 16.7%) and ⁵⁵Co (E₁ = 0.931 MeV, I₁ = 75%; E₂ = 0.477 MeV, I₂ = 20.2%; and E₃ = 1.409 MeV, I₃ = 16.9%) in each fraction using an HPGe detector. Elution profiles for ⁵⁷Ni and ⁵⁵Co are shown in Figure 1. ⁵⁷Co contamination was determined by analyzing its characteristic gamma ray 0.122 MeV (85.6%) in each fraction. Washing the column with an additional 10 to 40 mL 9 M HCl removed nickel without significant loss of ⁵⁵Co. The average recovery of ⁵⁵Co with a 40 mL 9 M HCl column wash was 92 ± 3%.

![Figure 1. Activity of ⁵⁵Co and ⁵⁷Ni in each fraction, as measured using high-purity germanium detection of the characteristic gamma rays, showing good separation.](image-url)
ESA measured via DOTA titration was found to be 259 MBq/μmol DOTA when washing the column with 10 mL 9 M HCl. Increasing the column wash to 40 mL resulted in an increased ESA of 1.96 GBq/μmol DOTA (Figure 2). Ion chromatography measured nickel concentrations to be 94.6 μmol/MBq and 757 nmol/MBq for 10 mL and 40 mL column washes, respectively. The only radioactive impurity found in the final 55Co fraction was 57Co at 0.2% of the total 55Co activity.

55CoCl2 Small Animal PET/CT Imaging and Biodistribution

As an emerging radioisotope applicable in oncologic PET imaging, very few data existed about the in vivo stability of different 55Co-chelate complexes. HCT-116 tumor xenografts were imaged (Figure 3A) and post-PET biodistribution studies (Table 1) were performed at 2, 24, and 48 hours postinjection to investigate the distribution of free 55CoCl2 in this model. Interestingly, free 55CoCl2 was observed in the tumor at each of these time points. Tumor to blood ratios at 2 and 48 hours were 0.6 ± 0.1 and 1.9 ± 0.4, respectively (p = .006), exhibiting a threefold increase due to fast blood clearance and relatively slow tumor washout (see Figure 3B and Table 1). High uptake in the heart at 2 hours postinjection could be due to the potential of Co2+ to mimic calcium influx.12,15 Clearance of free 55CoCl2 occurred through the liver and kidney as indicated by the high uptake values at 2 hours postinjection followed by about a twofold consecutive decrease in 55CoCl2 uptake at 24 and 48 hours postinjection (see Table 1).

Stability of 55Co-Chelate Complexes

The stability of radiometal-chelate combinations is crucial when designing new PET imaging probes. Complexes that are not stable in vivo can lead to the radiometal decomplexing from the chelate and accumulating in different organs throughout the body, increasing background signal and dose to nontarget organs. The longer blood clearance associated with the L19K-FDNB peptide that we chose as our model system to investigate 55Co allows for the potential decomplexation of 55Co-chelate complexes to be measured at clinically relevant time points to evaluate the in vivo stability of these complexes. It has previously been established that changing the radiometal on peptides can have a drastic effect on the affinity of the peptide to its receptor.35 Using 55Co to radiolabel the NO2A- or DO3A-peptides dramatically decreased the affinity for their tumor-associated target, vascular endothelial growth factor (VEGF),32 as shown by their reduced tumor uptake compared to the 64Cu-labeled analogue, which was radiolabeled at the same specific activity (Figure S1, online version only).
Table 1. Biodistribution Data for 55CoCl$_2$, 55Co-NO$_2$A-L19K-FDNB, and 55Co-DO$_3$A-L19K-FDNB Postinjection

<table>
<thead>
<tr>
<th>Organ</th>
<th>2 hr (%ID/g ± SD)</th>
<th>24 hr (%ID/g ± SD)</th>
<th>48 hr (%ID/g ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Blood</td>
<td>4.5 ± 0.6</td>
<td>1.40 ± 0.04</td>
<td>1.57 ± 0.09</td>
</tr>
<tr>
<td>Lung</td>
<td>4.0 ± 0.3</td>
<td>1.9 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>Liver</td>
<td>15.7 ± 0.4</td>
<td>6.2 ± 0.8</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.9 ± 0.4</td>
<td>0.82 ± 0.05</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Kidney</td>
<td>10.5 ± 1.4</td>
<td>4.4 ± 0.4</td>
<td>12.6 ± 4.1</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.6 ± 0.1</td>
<td>0.37 ± 0.08</td>
<td>0.31 ± 0.04</td>
</tr>
<tr>
<td>Fat</td>
<td>1.5 ± 0.9</td>
<td>0.7 ± 0.4</td>
<td>0.8 ± 0.4</td>
</tr>
<tr>
<td>Heart</td>
<td>4.8 ± 0.4</td>
<td>2.8 ± 0.7</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>Brain</td>
<td>0.31 ± 0.02</td>
<td>0.17 ± 0.03</td>
<td>0.08 ± 0.06</td>
</tr>
<tr>
<td>Bone</td>
<td>1.3 ± 0.2</td>
<td>0.8 ± 0.1</td>
<td>0.28 ± 0.04</td>
</tr>
<tr>
<td>Tumor</td>
<td>2.8 ± 0.6</td>
<td>1.6 ± 0.2</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.1 ± 0.1</td>
<td>1.0 ± 0.2</td>
<td>0.14 ± 0.05</td>
</tr>
<tr>
<td>Small intestine</td>
<td>3.6 ± 0.6</td>
<td>1.1 ± 0.2</td>
<td>0.26 ± 0.01</td>
</tr>
<tr>
<td>Upper large intestine</td>
<td>4.3 ± 0.8</td>
<td>1.5 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>Lower large intestine</td>
<td>1.9 ± 1.0</td>
<td>2.2 ± 0.3</td>
<td>1.0 ± 0.1</td>
</tr>
</tbody>
</table>

A = 55CoCl$_2$; B = 55Co-NO$_2$A-L19K-FDNB; C = 55Co-DO$_3$A-L19K-FDNB.

The 24- and 48-hour biodistribution studies of 55Co-NO$_2$A-L19K-FDNB and 55Co-DO$_3$A-L19K-FDNB were compared to free 55CoCl$_2$ (see Table 1). These data show that both NO$_2$A and DOTA chelates radiolabeled with 55Co exhibit good in vivo stability, as shown by their low uptake in the liver, lung, heart, bone, stomach, and small intestine compared to the high uptake of free 55CoCl$_2$ in these organs. The difference in uptake is most notable in the liver, where the 55Co-labeled peptides had a sixfold lower uptake than free 55CoCl$_2$ at 24 and 48 hours. 55Co-labeled peptides had a fourfold lower uptake than free 55CoCl$_2$ in the heart at 24 hours and a sevenfold lower uptake at 48 hours. Although the affinity of this particular peptide was negatively affected by radiolabeling with 55Co, this study shows that DOTA- and NOTA-derived chelates form stable complexes with 55Co in vivo and may be used to investigate other probes that are insensitive to changes in radiometals.

Discussion

The 58Ni(p,α)55Co reaction is an effective route for producing high–specific activity 55Co. Previously, this method was reported using a copper disk as opposed to gold; however, using copper as the target backing material could have a negative effect on the ESA as copper has a high affinity to both NOTA and DOTA chelators and would compete with 55Co for binding. The downside to this reaction is that it has a lower cross section when compared to other radiometals, such as 64Cu and 89Zr, which may limit the availability of this isotope to facilities that have solid target cyclotron capabilities.

The biodistribution of 55CoCl$_2$ is comparable to that previously observed for 64CuCl$_2$, as both metals are divalent cations and may have similar interactions with transport proteins in vivo. The tumor uptake of 55Co is interesting and warrants further investigation. It is possible that its uptake is due to the overexpression of calcium ion channels often found in cancer cells. Several studies have shown the uptake of 55CoCl$_2$ in ischemic cells, and this is believed to be due to 55Co partially mirroring calcium influx.

The in vivo stability of the NOTA and DOTA analogues, NO$_2$A and DO$_3$A, complexed with 55Co provides the foundation for developing 55Co-labeled peptides, antibodies, nanoparticles, and small molecules. 55Co-NOTA and 55Co-DOTA complexes have significantly lower liver uptake when compared to 64Cu-NOTA and 64Cu-DOTA complexes (see Table 1), which could be beneficial in cases where reduced background signal is desired; that is, liver metastases. The lower liver uptake observed with the 55Co complexes implies that the transchelation problem that exists with 64Cu$^{42-44}$ is greatly reduced with the use of 55Co. This reduction in transchelation for the cobalt complexes is in agreement with the transfer half-life of 800 hours for Co from Co(DOTATOC) in human blood serum measured by Heppeler and colleagues. Additionally, the high positron
branching ratio (four times that of ^{64}Cu and three times that of ^{89}Zr) leads to similar images with a lower amount of radioactivity administered. One drawback, however, is the higher dose to nontarget tissue from the additional gamma rays present from the decay of ^{53}Co.

Since the affinity of some peptides is dependent on the attached radiometal, it would be interesting to examine this effect on different peptide models. The anti-VEGF peptide used in this work exhibited lower tumor uptake than previously measured with ^{64}Cu (see Figure S1, online version only); however, in work done by Heppeler and colleagues, ^{55}Co-DOTATOC showed higher affinity for the somatostatin type 2 receptor than any other radiometals measured. These different studies imply that ^{55}Co may also coordinate with the peptide probe concurrently with the chelate to elicit a change in the peptide’s affinity for its target. Therefore, determining the structure-activity relationship of these peptide-chelate-metal complexes would be significant for designing superior PET imaging probes.

Conclusions

^{55}Co can be made with high specific activity via the $^{58}\text{Ni}(p,\alpha)^{55}\text{Co}$ reaction. The in vivo stability of ^{55}Co-labeled NOTA and DOTA derivatives makes this radioisotope a promising isotope for many different applications. Future work should compare the affinity of ^{55}Co-labeled peptides to other radiometals to optimize the best metal-chelate-peptide combination for the application.

Acknowledgments

We would like to acknowledge Patricia Margenau and Bill Margenau for operation of the CS15 cyclotron. The studies presented in this work were conducted in the MIR Pre-Clinical Pet-CT Facility of the Washington University School of Medicine.

Financial disclosure of authors: This work was performed with support from the Siteman Cancer Center Small Animal Imaging Core under grant number P30 CA91842. This work was supported in part by Department of Energy grant number DESC0007352.

Financial disclosure of reviewers: None reported.

References

Cyclotron Production of High–Specific Activity 55Co and In Vivo Evaluation of the Stability of 55Co Metal-Chelate-Peptide Complexes

Tara Mastren, Bernadette V. Marquez, Deborah E. Sultan, Elizabeth Bollinger, Paul Eisenbeis, Tom Voller, and Suzanne E. Lapi

Figure S1. 64Cu-NO2A-FDNB, 55Co-NO2A-FDNB, and 55Co-DO3A-FDNB biodistribution at 24 hours showing significantly higher tumor uptake when using 64Cu over 55Co. ID = injected dose; l lg int = lower large intestine; sm int = small intestine; u lg int = upper large intestine.

From the Departments of Chemistry and Radiology, Washington University, St. Louis, MO.

Address reprint requests to: Suzanne E. Lapi, Department of Radiology, Washington University, Campus Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO 63110; e-mail lapis@mir.wustl.edu.

DOI 10.2310/7290.2015.00025
© 2015 Decker Intellectual Properties