Target-specific glycinergic transmission from VGlut3-expressing amacrine cells shapes suppressive contrast responses in the retina

Nai-Wen Tien
Washington University School of Medicine in St. Louis

Tahnbee Kim
Washington University School of Medicine in St. Louis

Daniel Kerschensteiner
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Tien, Nai-Wen; Kim, Tahnbee; and Kerschensteiner, Daniel, 'Target-specific glycinergic transmission from VGlut3-expressing amacrine cells shapes suppressive contrast responses in the retina.' Cell Reports. 15,7. 1369-1375. (2016).
https://digitalcommons.wustl.edu/open_access_pubs/4958
Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina

Highlights

- VGluT3-expressing amacrine cells (VG3-ACs) are dual transmitter neurons

- VG3-ACs provide purely glycinergic input to Suppressed-by-Contrast RGCs (SbC-RGCs)

- VG3-ACs form synapses on processes linking ON and OFF arbors of SbC-RGC dendrites

- VG3-ACs shape responses of SbC-RGCs in a contrast- and size-selective manner

Authors

Nai-Wen Tien, Tahnbee Kim, Daniel Kerschensteiner

correspondence

dkerschensteiner@wustl.edu

In Brief

Tien et al. show that VG3-ACs deploy dual transmitters (glycine and glutamate) in a target-specific manner and form glycinergic synapses on the link processes connecting ON and OFF arbors of SbC-RGC dendrites. Cell-type-specific deletion in mature circuits reveals contrast- and size-selective influences of VG3-ACs on SbC-RGC responses.
INTRODUCTION

Classically, each neuron was thought to use a single transmitter to send uniform signals across all its synapses (i.e., Dale’s principle) (Strata and Harvey, 1999). In recent years, however, it has become clear that the output of neurons can be more diverse (Hnasko and Edwards, 2012; Vaaga et al., 2014). Neurons that release neuromodulatory peptides or monoamines often release a fast transmitter as well, emitting parallel signals that act over different spatial and temporal scales (Contini and Raviola, 2003; Nusbaum et al., 2001; Tritsch et al., 2012). In addition, some neurons release two fast transmitters. The identification of dual-transmitter neurons has been facilitated by optogenetics, and co-release of excitatory (Gras et al., 2008; Ren et al., 2011), inhibitory (Apostolides and Trussell, 2013; Jonas et al., 1998; Wojcik et al., 2006), and excitatory and inhibitory fast transmitters (Noh et al., 2010; O’Malley et al., 1992; Root et al., 2014; Saunders et al., 2015) have all been reported. How neurons use dual transmitters to support specific circuit functions, however, is not well understood.

Some dual transmitters share a vesicular transporter (Jonas et al., 1998; Tritsch et al., 2012; Wojcik et al., 2006) or are packaged into the same vesicles by synergistic action of two transporters (Gras et al., 2008; Hnasko and Edwards, 2012). These transmitters are co-released at all synapses of the respective neurons, which send the same complex signal to all their targets. By contrast, recent studies revealed spatial separation of vesicle pools containing monoamines and fast neurotransmitters in some axons (Chuhma et al., 2014; Gagnon and Parent, 2014; Onoa et al., 2010; Zhang et al., 2015). This in principle enables the respective neurons to send different messages to different targets. Whether neurons can selectively deploy two fast transmitters, particularly excitatory and inhibitory ones, to send opposite signals to specific targets and, if so, how these signals shape the function of postsynaptic partners are unclear.

Amacrine cells (ACs) are a diverse class of retinal interneurons. One of the 30–50 distinct AC types in mice expresses the vesicular glutamate transporter 3 (VGluT3). VGluT3-expressing ACs (VG3-ACs) are conserved from rodents to primates (Haverkamp and Wässle, 2004; Johnson et al., 2004) and prefer light decrements (OFF) to increments (ON) (Grimes et al., 2011; Kim et al., 2014; Lee et al., 2014) and small stimuli to large ones (i.e., size selectivity) (Kim et al., 2015; Lee et al., 2014). Recent anatomic and functional studies showed that VG3-ACs provide selective glutamatergic input to several types of retinal ganglion cells (RGCs), output neurons of the eye, which share response properties with VG3-ACs (Kim et al., 2015; Krishnaswamy et al., 2015; Lee et al., 2014). Elsewhere in the nervous system, VGluT3 is associated with dual transmitter phenotypes (Gagnon and Parent, 2014; Gras et al., 2008; Noh et al., 2010). VG3-ACs express an uptake transporter for glycine and accumulate glycine in their cytosol but appear to lack the transporter for its vesicular packaging (Haverkamp and Wässle, 2004; Johnson et al., 2004). Thus, whether VG3-ACs release glycine, which RGC types are
targets of this putative inhibitory transmission and how their output is shaped by VG3-AC input is unknown.

Unlike other RGCs, Suppressed-by-Contrast RGCs (SbC-RGCs) encode contrast through depressions in tonic firing (Levick, 1967; Rodieck, 1967). SbC-RGCs are conserved from rodents to primates (de Monasterio, 1978; Tien et al., 2015) and are suppressed by ON and OFF stimuli, both large and small (Jacoby et al., 2015; Tien et al., 2015). Their responses propagate through the retino-geniculo-cortical pathway (Niell and Stryker, 2010; Piscopo et al., 2013). The circuit mechanisms giving rise to the unique responses of SbC-RGCs are incompletely understood but involve strong inhibitory synaptic inputs at light ON and OFF (Sivyer et al., 2010; Tien et al., 2015). A recent study revealed that ON inhibition is mediated by Crh1-ACs and likely AII-ACs (Jacoby et al., 2015). The source of OFF inhibition remains unknown.

Using optogenetics, we discover that VG3-ACs provide selective glycinergic input to SbC-RGCs. Anatomic circuit reconstructions reveal that VG3-ACs form inhibitory synapses preferentially on the ascending and descending processes that link the bistratified dendrites of SbC-RGCs. Genetic deletion of VG3-ACs in mature circuits reduces OFF inhibition to SbC-RGCs particularly in response to small stimuli and attenuates suppressive spike responses with similar contrast bias and size selectivity. VG3-ACs thus are dual-transmitter neurons that deploy excitatory and inhibitory transmitters in a target-specific manner, using glycinergic transmission to shape suppressive contrast responses in the retina.

RESULTS

To identify sources of inhibitory input to SbC-RCCs, we crossed mice expressing channelrhodopsin-2 fused to yellow fluorescent protein (ChR2-YFP, ChR2 mice) in a Cre-dependent manner (Madisen et al., 2012) to different driver lines, including VG3-Cre (Grimes et al., 2011). Based on two-photon guided recordings in VG3-Cre ChR2 double transgenic mice (VG3-ChR2 mice), we chose optogenetic stimulus parameters that match depolarizations of VG3-ACs to their photoreceptor-mediated light responses (Figure S1). Optogenetic stimulation with these parameters elicited large postsynaptic currents in all (7/7) SbC-RGCs tested. These currents reverse at –68.7 ± 4.2 mV (Figures 1A–1D), close to the expected reversal potential for chloride conductances (60 mV) in our recording conditions, suggesting that VG3-ACs, which previously have been shown to provide excitatory input to several RGC types (Kim et al., 2015; Krishnaswamy et al., 2015; Lee et al., 2014), provide inhibitory input to SbC-RGCs. The delay of ChR2-mediated inhibitory postsynaptic currents (IPSCs) is much shorter than that of photoreceptor-mediated light responses (Figure S2). Indeed, ChR2-mediated IPSCs in SbC-RGCs begin to rise <2 ms after the voltage of VG3-ACs and peak before the voltage response (Figures 1E and 1F). The
Figure 2. VG3-ACs Form Inhibitory Synapses on Link Processes of SbC-RGC Dendrites

(A) z (top) and y axis (bottom) projections of a confocal image stack of a representative CFP-expressing SbC-RGC labeled by biolistics.

(B) Summary data (n = 5) comparing inhibitory synapse density among ON dendrites, link processes, and OFF dendrites (p < 0.05 for ON dendrites versus link processes, p < 0.03 for OFF dendrites versus link processes, and p > 0.8 for ON versus OFF dendrites). Dots represent data from individual cells and circles (error bars) indicate mean ± SEM. For all processes (i.e., ON and OFF dendrites), the fraction of synapses with appositions was lower (p < 0.003) when the VG3-AC signal was rotated by 90°.

(C) Excerpts of single-image planes in the ON dendrite (left column), link processes (middle column), and OFF dendrite (right column) portions of a confocal image stack of an SbC-RGC. SbC-RGC dendrites are labeled with CFP (red), inhibitory postsynaptic sites with YFP-NL2 (green) and VG3-AC neurites with tdTomato (blue, VG3-tomato retina). The presence and absence of VG3-AC boutons at inhibitory synapses on SbC-RGC dendrites is indicated by Y and N, respectively.

(D) Summary data (n = 5) comparing the fraction of inhibitory synapses apposed by VG3-AC neurites among ON dendrites, link processes, and OFF dendrites (p < 10^-6 for ON and OFF dendrites versus link processes, p < 0.001 for ON versus OFF dendrites). Black dots show data from individual cells and black circles (error bars) represent mean ± SEM. For all processes (i.e., ON dendrites, link processes, and OFF dendrites), the fraction of synapses with appositions was lower (p < 0.003) when the VG3-AC signal was rotated by 90° (gray dots and circles), confirming the significance of this co-localization.

short delay of IPSCs and their persistence in the presence of AMPA and NMDA receptor blockers (Figure S2) rule out di-synaptic pathways driven by glutamate release from VG3-ACs as their source. ChR2-mediated IPSCs are abolished by application of strychnine (Figures 1G and 1H). Together, these results show that VG3-ACs provide direct glycinergic input to SbC-RGCs.

SbC-RGCs are bistratified neurons whose ON and OFF dendrites are linked by numerous ascending and descending processes (Sivyer and Vaney, 2010; Tien et al., 2015). To determine the sites of inhibitory input from VG3-ACs, we biolistically labeled SbC-RGCs with cyan fluorescent protein (CFP) and YFP fused to neuriligin 2 (YFP-NL2), a selective marker of inhibitory synapses on RGC dendrites (Soto et al., 2011), in mice that express tdTomato in VG3-ACs. The density of inhibitory synapses was highest on link processes between ON and OFF arbors (Figures 2A and 2B). A majority of these synapses were apposed by boutons of VG3-ACs, compared to a lower fraction of such appositions on ON and OFF dendrites (Figures 2C and 2D). Thus, VG3-ACs appear to provide glycinergic input to SbC-RGCs preferentially through synapses on link processes, both a characteristic and conserved feature of SbC-RGC dendrites.

To elucidate the contribution of VG3-ACs to inhibition of SbC-RGCs during visual processing, we selectively removed VG3-ACs from mature circuits. Toward this end, we injected VG3-DTR and control mice intraperitoneally with diphertheria toxin starting at postnatal day 30 (see Experimental Procedures (Krishnaswamy et al., 2015)). VGlut3 staining showed that the density of VG3-ACs was reduced by >90% 1 week after injections in VG3-DTR mice, but remained unchanged in littermate controls (Figures 3A and 3B) (Kim et al., 2015). The density of other amacrine cells was unaffected in VG3-DTR mice (Figure S3), confirming the specificity of this manipulation. Comparing IPSCs elicited by contrast steps presented in spots of different size between VG3-DTR and control mice, we found that OFF but not ON inhibition to SbC-RGCs was reduced in a size-selective manner by removal of VG3-ACs (Figures 3C-3F).

Responses of VG3-ACs match the size selectivity of this deficit (Kim et al., 2015). VG3-ACs respond more strongly to OFF than ON stimuli (Kim et al., 2015). The preservation of ON inhibition in VG3-DTR mice suggests either that VG3-AC responses to ON stimuli fail to elicit glycine release or that other ON-responsive amacrine cells compensate for lost input from VG3-ACs (Jacoby et al., 2015).

To determine how inhibitory input from VG3-ACs shapes spike responses of SbC-RGCs, we obtained current-clamp recordings in VG3-DTR and control mice. Consistent with the reduced inhibitory input and reduced suppression of tonic excitation (Figure S4), spike suppression of SbC-RGCs by OFF stimuli was attenuated in a size-selective manner by removal of VG3-ACs (Figures 4C and 4D). By contrast, suppression by ON stimuli was enhanced (Figures 4A and 4B). Voltage-clamp recordings revealed that this enhanced suppression is a result of a decrease in the ON-signed excitatory input to SbC-RGCs (Jacoby et al., 2015; Tien et al., 2015) in VG3-DTR compared to control mice (Figures 4E and 4F), suggesting presynaptic actions of VG3-ACs in this circuit.

DISCUSSION

Here, we discover that VG3-ACs, which previously had been shown to provide glutamatergic input to four RGC types (Kim et al., 2015; Krishnaswamy et al., 2015; Lee et al., 2014), provide glycinergic input to SbC-RGCs (Figure 1). Concurrent with our finding, another study came to the same conclusion (Lee et al., 2016). In addition, we reconstruct circuits anatomically (Figure 2) and find that VG3-ACs form inhibitory synapses preferentially on ascending and descending processes that link the bistratified dendrites of SbC-RGCs. Finally, using cell-type-specific deletion in mature circuits, we show that VG3-ACs shape suppressive
Figure 3. Genetic Removal of VG3-ACs Reduces Inhibition of SbC-RGCs in a Contrast- and Size-Selective Manner

(A) Representative z axis projections of confocal image stacks of retinal whole mounts stained for VGluT3 in control (top) and VG3-DTR mice (bottom) 1 week after diphtheria toxin injections.

(B) Summary data of VG3-AC density in control (black) and VG3-DTR after diphtheria toxin injections.

(C and D) Representative IPSCs in SbC-RGCs elicited by light increments (C, ON) and decrements (D, OFF) in small (150 μm diameter, top) or large (600 μm diameter, bottom) circles recorded in control (left, black) and VG3-DTR (right, purple) retinas.

(E and F) Summary plots (mean ± SEM) comparing inhibitory synaptic conductances in SbC-RGCs of control (n = 5, black) and VG3-DTR (n = 4, purple) retinas elicited by ON (E) and OFF (F) stimuli of different sizes (i.e., circle diameters). Inhibitory conductances elicited by small and large ON stimuli are unaffected by deletion of VG3-ACs (e.g., p > 0.1 for control versus VG3-DTR at 150 μm and 600 μm). Inhibitory conductances activated by small (p < 0.01 for control versus VG3-DTR at 150 μm) but not large (p > 0.5 for control versus VG3-DTR at 600 μm) OFF stimuli are reduced by removal of VG3-ACs. See also Figure S3.

The numerous ascending and descending processes between ON and OFF dendrites are a characteristic feature of SbC-RGCs (Sivyer and Vaney, 2010; Tien et al., 2015). Here, we find that these link processes are the primary site of synaptic input from VG3-ACs (Figure 2), whose neurites stratify between ON and OFF arbors of SbC-RGCs. SbC-RGC link processes and the lamination of VG3-ACs are conserved from rodents to primates (Haverkamp and Wässle, 2004; Siwyer and Vaney, 2010; Tien et al., 2015), suggesting that their connectivity patterns are as well. In this unusual anatomical arrangement, VG3-ACs use their inhibitory transmitter in a target-specific manner to shape suppressive contrast responses of SbC-RGCs.

EXPERIMENTAL PROCEDURES

Mice

We used BAC transgenic mice in which Cre recombinase is expressed under control of regulatory sequences of the Slc17a8 gene, which encodes VGluT3 (VG3-Cre mice), to genetically target VG3-ACs (Grimes et al., 2011; Kim et al., 2015). Ai32 and Ai9 mice, which express channelrhodopsin-2 fused to yellow fluorescent protein (ChR2-YFP) and tdTomato in a Cre-dependent manner (Madisen et al., 2012; Madisen et al., 2010) were crossed to VG3-Cre
Figure 4. Genetic Removal of VG3-ACs Alters Spike Suppression and Excitatory Input of SbC-RGCs in a Contrast- and Size-Selective Manner

(A and C) Representative spike responses of SbC-RGCs to light increments (A, ON) and decrements (C, OFF) in small (150 μm diameter, top) and large (600 μm diameter, bottom) circles recorded in control (left, black) and VG3-DTR (right, purple) retinas.

(B and D) Summary plots (mean ± SEM) comparing the duration of spike suppression of SbC-RGCs of control (n = 8, black) and VG3-DTR (n = 6, purple) retinas elicited by ON (B) and OFF (D) stimuli of different sizes. Spike suppression by small ON stimuli is enhanced (p < 0.001 for control versus VG3-DTR at 150 μm) and spike suppression small OFF stimuli is reduced (p < 0.001 for control versus VG3-DTR at 150 μm) by removal of VG3-ACs. By contrast, responses to large ON and OFF stimuli are unchanged (p > 0.6 and p > 0.2 for control versus VG3-DTR for 600 μm ON and OFF stimuli, respectively).

(E) Representative excitatory postsynaptic current traces elicited by small (150 μm diameter, top) and large (600 μm diameter, bottom) ON stimuli.

(F) Summary data of excitatory conductances of SbC-RGCs in control (n = 7, black) and VG3-DTR (n = 7, purple) retinas activated by ON stimuli of different sizes. Excitatory input is reduced significantly for small ON stimuli (p < 0.02 for control versus VG3-DTR at 150 μm).

See also Figure S4.
varying size was square-wave-modulated at 0.25 Hz (average intensity; 1,500 rhodopsin isomerizations rod$^{-1}$s$^{-1}$; Michelson contrast: 100%). The order in which spots of different size were presented was randomly chosen for each cell. IPSG amplitudes were measured as baseline subtracted averages during 200-ms time windows. The duration of spike suppression was defined as the time following a stimulus during which the firing rate was below 50% of the average firing rate (Jacob et al., 2015).

Bioluminescence Imaging

Gold particles (1.6 μm diameter, Bio-Rad) were coated with plasmids encoding cytotoxic CFP and neuritin 2 fused at its N terminus to yellow fluorescent protein (YFP-NL2). Particles were delivered to RGCs from a helium-pressurized gun (Bio-Rad) at approximately 40 psi (Kim et al., 2015). After shooting, retinal flat-mount preparations in ACSF HEPES, containing (in mM) 119 NaCl, 2.5 KCl, 2.5 CaCl$_2$, 1.3 MgCl$_2$, 1 NaH$_2$PO$_4$, 11 glucose, and 20 HEPES (pH adjusted to 7.37 with NaOH), were incubated in a humid oxygenated chamber at 33–35°C for 14–18 hr. The tissue was then fixed for 30 min in 4% paraformaldehyde in mACSF/HEPES, and washed PBS (3 × 10 min) before mounting and imaging. Confocal image stacks of biologically labeled SbC-RGCs in VG3-to7 mice were acquired on Fv1000 laser scanning microscopes (Olympus) using a 60× 1.35 NA oil immersion objective. Synaptic connectivity was analyzed in image stacks with voxel size 0.103 μm (x/y axis) – 0.3 μm (z axis). Using local thresholding SbC-RGC dendrites, YFP-NL2 puncta and VG3-AC neurites were masked separately in Amira (FEI Company). Inhibitory synapses on SbC-RGCs formed by VG3-ACs were defined as YFP-NL2 clusters with a center of mass within 0.5 μm from a VG3-AC neurite. We confirmed that varying this distance from 0.25 to 1 μm did not qualitatively change the results. Given the size of synaptic puncta, this range implies overlap or direct apposition of signals from YFP-NL2 and tdTomato in VG3-AC neurites. To compare the fraction of YFP-NL2 apposed by VG3-AC neurites to that caused by random signal overlap, the same analysis was repeated for each cell in image stacks in which the VG3-AC channel was rotated by 90° (i.e., switching x and y axes).

Statistics

Paired and unpaired t tests were used to assess the statistical significance of observed differences.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.04.025.

AUTHOR CONTRIBUTIONS

N.-W.T., T.K., and D.K. designed, performed, and analyzed experiments and wrote the manuscript.

ACKNOWLEDGMENTS

We thank members of D.K.’s lab for helpful discussion and comments on the manuscript. We are grateful to Dr. Robert Edwards for sharing VG3-Cre mice with us. This work was supported by the Research to Prevent Blindness Foundation (Career Development Award to D.K. and an unrestricted grant to the Department of Ophthalmology and Visual Sciences at Washington University) and the NIH (EY021855 and EY023341 to D.K. and EY0268 to the Department of Ophthalmology and Visual Sciences at Washington University).

Received: March 10, 2016
Revised: March 28, 2016
Accepted: April 3, 2016
Published: May 5, 2016

REFERENCES

